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Abstract

Integral representations of the locally defined star-generalized surface content mea-
sures on star spheres are derived for boundary spheres of balls being convex or radially
concave w.r.t. a fan in Rn. As a result, the general geometric measure representation
of star-shaped probability distributions and the general stochastic representation of the
corresponding random vectors allow additional specific interpretations in the two men-
tioned cases. Applications to estimating and testing hypotheses on scaling parameters
are presented, and two-dimensional sample clouds are simulated.
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1 Introduction

The families of multivariate Gaussian and elliptically contoured distributions have served for
a long time as the main basis of numerous probabilistic models and their many successful
applications. Basics of estimation theory of elliptically contoured distributions can be found
in [5],[1],[3] and, e.g., [9]. Advancing needs of statistical practice as well as longstanding
challenging mathematical questions stimulated the development of larger classes of proba-
bility laws containing many well known distributions as particular elements. We note that
[2] surveys a big part of the distribution theory in R2. Numerous authors contributed to
establishing the class of multivariate star-shaped distributions. For a recent review of this
development, see [14]. Estimating level sets of star-shaped densities has been dealt with in
[15],[16], [17] and [4].

Several aspects of analyzing a cloud of sample points may be of importance for the process
of defining a class of probability laws. The visual impression of the appearance of star-
shaped figures built by the points of a sample cloud may lead to the idea that the boundaries
of star-bodies, henceforth called star-spheres, represent density level sets of a probability law.

1



Counting the sample points belonging to thin layers about star-spheres then leads to the idea
that a certain function that assigns a nonnegative number to every such star-sphere serves
as the density generating function (dgf) of a non-negative random variable (rv), or more
generally, as a function being proportional to the Radon-Nikodym density of a multivariate
probability law w.r.t. a certain σ-finite measure defined on the sample space. We call such a
function an univariate level density function of the multivariate probability distribution.

The combination of the aspects of defining level sets of a multivariate density and of
assigning a non-negative level to every such set will be reflected here in a new method of
integration. This method may be considered as a hightening and generalization of the classical
principle of Cavalieri which was modified by Torricelli. Combining integration on level sets
with that along the levels may also be considered as a geometric disintegration method. This
method is essentially based upon certain non-Euclidean surface measures on star-spheres.
It is one of the main aims of this paper to further develop this theory for two important
types of star-spheres. Convex bodies and star-bodies being radially concave w.r.t. a fan in
Rn build these two classes of star-bodies. Thus, in this paper, the focus is on considering
probability laws having the boundary of such sets as their density level sets or their contour
sets. Actually, the results in Section 3 are mainly restricted to, possibly shifted, symmetric
contour sets being norm or antinorm spheres.

There are different ways to introduce a dgf of a continuous probability law. Looking
through the statistical and mathematical literature, one finds many interesting non-negative
and suitably integrable functions which may serve as a dgf. Another way to introduce a dgf
is to analyze the structure of a known multivariate density and to extract from it, if possible,
a function which does not depend on the surface measure on the star-spheres but depends
exclusively on the levels of the multivariate density.

It is well known that the definition of a dgf is not unique, and how to deal with this
circumstance. Densities with heavy tails may be of interest in (re-)insurance, and densities
with light tails may be of interest in reliability theory. Both types of densities can be modeled
using each time a suitable dgf.

Modeling the density level sets and the univariate level density of a multivariate distribu-
tion can be done in a combined way or separate from each other. Sometimes a parameter may
influence both the level density and the density contour sets of a multivariate distribution.
Another parameter may be only for one of these two aspects of importance.

The paper is organized as follows. Some basic facts from the theory of star-shaped distri-
butions, with an emphasis on geometric measure representations, are collected in Section 2.
New geometric descriptions of surface measures on boundary spheres of balls being radially
concave w.r.t. a fan in Rn, or convex, are presented in Section 3. Moreover, new statistical
applications of geometric measure representations of norm and antinorm contoured distri-
butions and of stochastic representations of correspondingly distributed random vectors are
discussed there. In particular, distributions are illustrated by simulated sample clouds. The
basics for estimating and testing hypothesis on scaling parameters are presented at the end
of Section 3. Section 4 deals with proving the new results, and a discussion of the results can
be found in the final Section 5.
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2 Star-shaped distributions

Geometric measure representations and stochastic representations of corresponding random
vectors have been proved in [14] for general star-shaped distributions making essentially use
of the notion of a star-generalized surface content measure. The latter is defined in a local way
by taking derivatives of sector volumes and is known to be equivalently defined in an integral
(in dimension two even explicitly differential geometric) way in the cases of ln,p-spheres and
ellipsoids. For recent results and a survey of their probabilistic and statistical applications we
refer to [14]. Here, some basic facts from star-shaped distribution theory and its applications
will be summarized.

Let a random vector Y follow the probability density function (pdf)

ϕg,K,ν(x) = C(g,K)g(dK(x− ν)), x ∈ Rn

where ν ∈ Rn is a vector of location, K ⊂ Rn is a star-body having the origin as an inner
point, dK is the distance function, or Minkowski functional, of the star-body K,

dK(x) = inf{λ ≥ 0 : x ∈ λK}, x ∈ Rn,

the function g : [0,∞) → [0,∞) satisfies 0 < I(g) < ∞ where I(g) =
∞∫
0

rn−1g(r)dr, and the

normalizing constant allows the representation

C(g,K) =
1

OS(S)I(g)
.

Assuming that the technical Assumption 1 in [14] is satisfied which deals with a certain
smoothness property of the boundary S of K, OS denotes the star-generalized surface content
measure defined on the Borel subsets of S. The probability measure corresponding to ϕg,K,ν
allows the geometric measure representation or disintegration formula

Φg,K,ν(B) = C(g,K)

∞∫
0

rn−1g(r)OS([
1

r
(B − ν)] ∩ S)dr,B ∈ Bn. (1)

K is called the density contour defining star body of this distribution, and any g under
consideration a density generating function (dgf). The sets (B − ν) ∩ S(r) with S(r) =
rS may be considered playing the role of the indivisibles within a generalized principle of
Cavalieri (which was modified by Torricelli). The random vector Y satisfies the stochastic
representation

Y
d
= R · US (2)

where R and US are stochastically independent, R has the pdf

fR(r) = I(0,∞)(r)
1

I(g)
rn−1g(r),

and US follows the star-generalized uniform probability distribution ωS on the Borel-σ-field
BS = Bn ∩ S over S, US ∼ ωS ,

P (US ∈ A) =
OS(A)

OS(S)
, A ∈ BS . (3)
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Because of (3), US is called the star-generalized uniform basis of Y . The symbol X
d
= Y

means that the random vectors X and Y follow the same probability law while X ∼ Q
indicates that the random vector X follows the probability distribution Q.

For A ∈ BS , we introduce the central projection cone

CPC(A) = {x ∈ Rn :
x

hK(x)
∈ A}

and the star sector of star radius r,

sector(A, r) = CPC(A) ∩K(r)

where
K(r) = r ·K = {(rx1, ..., rxn)T : (x1, ..., xn)T ∈ K}

is a star ball of star radius r. Let µ be the Lebesgue measure in Rn. Then the star-generalized
surface measure is defined on rBS in a local approach by

OS(A) = f ′(r) where f(r) = µ(sector(A, r)). (4)

Making use of the star-sphere intersection proportion function (ipf) of a set A,

FS(A, r) = ωS([
1

r
A] ∩ S), r > 0,

the disintegration representation of Φg,K,ν may be written

Φg,K,ν(B) =
1

I(g)

∞∫
0

rn−1g(r)FS(B − ν, r)dr, B ∈ Bn. (5)

The most immediate applications of this formula appear in cases where the ipf is a constant
or an indicator of an interval. If, for a certain set B, the ipf takes a constant value, C say,
then Φg,K,ν(B) is just equal to this value C.

If, for a statistic T , B(t) = {T < t}, t ∈ R, and the ipfs of all sets B(t) take the constant
value, C(t) say, then the statistic T is robust w.r.t. the dgf g, i.e. the distribution of T does
not depend on g.

If, for a certain set A(x), the ipf is the indicator function of an interval, [0, b(x)] say, then

d

dx
Φg,K,ν(A(x)) =

b′(x)b(x)n−1g(b(x))

I(g)
. (6)

For specific statistical examples of such type we refer to Section 3. Applications of (5) in cases
where the ipf is more structured are often more involved. Such a situation will be considered
in Example 3.4.

The main aim of this paper, however, is not only to give attractive examples where the
geometric measure representation applies but is also to give non-trivial explanations of the
locally defined surface measure OS on the basis of an integral (or differential-geometric)
approach. This will be done in the first two parts of Section 3 for the two important cases
where K is a norm or antinorm ball. As a result, in formulas (1)-(3) and (5), OS will
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afterwards allow additional specific integral (or differential geometric) interpretations in the
two mentioned cases. The class

CStSh = {Φg,K,ν : ν ∈ Rn,K is a star body with 0 ∈ intK, g is a dgf}

where intK means the interior of K is called the class of continuous star-shaped distributions.
A random vector Y is said in [14] to belong to the bigger class of star-shaped distributions
StSh(n) if there are a vector ν ∈ Rn, a star body K with 0 ∈ intK (and boundary S), a
non-negative random variable (rv) R with cumulative distribution function (cdf) F such that

Y − ν d
= R · US where US ∼ ωS , and R and US are independent. In this case, we write

Y ∼ ΨF,K,ν (7)

and

StSh(n) = {ΨF,K,ν : F is the cdf of a non-negative rv, K is a star body, 0 ∈ intK, ν ∈ Rn}.

The random vector US is called the star-generalized uniform basis of the class StSh(n). If
K is symmetric w.r.t. the origin, K = −K, then the functional dK is a norm, dK = ||.||K ,
if K is convex, and is an antinorm, dK =- . -K , if K is radially concave w.r.t. a fan in Rn.
For the latter notions, see [11]. Note that ln,p-symmetric distributions are norm or antinorm
contoured if p ≥ 1 or 0 < p ≤ 1, respectively. We shall study general convex or norm
contoured distributions in Section 3.1 and distributions being radially concave w.r.t. a fan
in Rn, or antinorm contoured, in Section 3.2. The main aim of these two sections is to give
closer descriptions of OS being basic for both the general stochastic representation of Y in
(2) and the specific geometric measure representations of ωS in (3) and Φg,K,ν in (1) and (5)
in case Y has a density. Moreover, two-dimensional distributions are illustrated by graphics
showing simulated sample clouds. Applications to estimating and testing hypotheses on
scaling parameters are demonstrated in Section 3.3. The proofs of the results from Sections
3.1 and 3.2 will be presented in Section 4, and a final discussion of the results follows in
Section 5.

3 Results

We start the presentation of new results with a remark on asymmetric distribution laws which
seems to be very useful: a distribution beeing star-shaped w.r.t. a fan F may be restricted
to arbitrary unions of elements of F.

Remark 3.1. Let Ci ∈ F, i ∈ I and C =
⋃
i∈I

Ci. Then

ΦC
g,K,ν(B) =

OS(S)

OS(S ∩ C)

1

I(g)

∞∫
0

rn−1g(r)FS(B − ν, r)dr

is a probability law on C ∩Bn.
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Here, I is a suitable index set. The proof of this result follows immediately by conditioning.
We call the collection of all such distributions the class of fan restricted star laws and

denote it by StL,

StL = {ΦC
g,K,ν , C =

⋃
i∈I

Ci, Ci ∈ F, ∀i}.

Elements of this distribution class are not symmetric, in general.

3.1 Norm contoured distributions

Let K be convex and symmetric w.r.t. the origin throughout this section. Our consideration
is restricted therefore here to the class of norm contoured distributions,

NC = {ΨF,K,ν ∈ StSh(n) : K is the unit ball of a norm in Rn}.

Let the system of Borel sets from the upper half of the sphere S be B+
S . For A ∈ B+

S , put

G(A) = {ϑ ∈ Rn−1 : ∃η = η(ϑ) with (ϑT , η)T ∈ A},

and denote, where ever it exists, the outer normal vector to the norm sphere S at the point
(ϑT , η)T ∈ S by N(ϑ). Where ever the outer normal vector is not defined, let N(ϑ) denote
the zero element of Rn. Note that the set of boundary points of K where ∇η does not exist
is countable and thus without of any influence onto the value of the integral in the following
theorem. We recall that the surface content measure OS was locally defined in (4).

Theorem 3.1. In formulas (1)-(3) and (5), the surface content measure OS allows the
representation

OS(A) =

∫
G(A)

dK∗(N(ϑ))dϑ, A ∈ B+
S

where K∗ is the unit ball of the norm ||.||∗ being dual to dK = ||.||K .

We shall refer to this result as to the integral or differential geometric approach to mea-
suring surface content on a norm sphere based upon the dual norm geometry. We mention
that a similar representation of OS(A) follows for arbitrary A ∈ BS . Due to Theorem 3.1,
if K is convex, the surface measure OS henceforth allows both the local and the integral
interpretation in formulas (1)-(3) and (5). Moreover, Theorem 3.1 reflects a certain specific
aspect of duality theory for norms.

In the next section we will deal in an analogous way with balls being radially concave
w.r.t. a fan in Rn.

Figures 1-3 show sample clouds of size k = 2000 of p-generalized Gaussian distributed
two-dimensional (n = 2) random vectors for different choices of p, p ≥ 1. Notice that the
six frames reflect different scaling of the clouds due to different values of p. While the
sample cloud in Figure 1(a) might seem to be similar to the illustration of the Gaussian
case the shape of the sample cloud approaches that of an axes-aligned square if p increases
(or even tends to infinity). At the same time, the cloud (probability mass) becomes more
and more concentrated. If, however, p ≥ 1 is tending to one then the shape of the sample
cloud approaches that of the diamond. At the same time, probability mass becomes much less
concentrated and the contour of the sample cloud appears to be not as sharp as in the opposite
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Figure 1: Sample clouds of convex contoured p-generalized normal distributions (n=2)
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Figure 2: Convex contoured cases far from the normal one
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Figure 3: Two extremal convex cases

7



case. Hence, the parameter p of such a distribution might be called a shape-concentration
parameter. Note that Figures 6-8 also present sample clouds of convex contoured distributions
but where emphasis is, inter alia, on the effect forced by an increasing sample size k.

Finally, let us remark that Figure 3(b) with equal rights could be presented in the next
section because ln,p-balls are both convex and radially concave w.r.t. the standard fan in Rn
if p = 1.

3.2 Antinorm contoured distributions

Throughout the present section, let K denote a star body having a positive and continuous
radial function and being symmetric w.r.t. the origin and radially concave w.r.t. a fan
F = {C1, C2, ...} in Rn. The Minkowski functional or distance function of K is then an
antinorm, dK =- . -, i.e. a continuous, positively homogeneous, non-degenerate, and in F super
additive function. For more details we refer to [11]. According to all the assumptions made
so far, our consideration is restricted here to the class of antinorm contoured distributions,

ANC = {ΨF,K,ν ∈ StSh(n) : K is the unit ball of an antinorm in Rn}.

Moreover, we assume that K belongs to a particular class of antinorm balls, AN1, meaning
that

1) for every i there is a 1-1-map xS,i : S(n−1) ∩ Ci → S ∩ Ci
where S(n−1) denotes the Euclidean unit sphere in Rn

and
2) for every i, for all u ∈ S(n−1) ∩ Ci there is a hyperplane T (u) satisfying T (u) ⊥ u

and being an inner tangent plane to (the boundary of) K at xS,i(u).

We define the anti-support function of K w.r.t. F by

hFK(u) =
∑
i

ICi(u) inf{uT y : y ∈ S ∩ Ci}, u ∈ Rn,

and the anti-polar set of K,

Ko = {λ(u)u : 0 ≤ λ(u)hFK(u) ≤ 1, u ∈ S(n−1)
E }

where 0 ≤ λ(u) ≤ ∞ if hFK(u) = 0. Let N(ϑ) be the inner normal vector to S at (ϑT , η)T ∈ S.
In the sense of Remark 1 in [14], in what follows we will simply write∫

G(A)

dKo(N(ϑ))dϑ instead of
∑
i

∫
G(A∩Ci)

dKo(N(ϑ))dϑ.

Theorem 3.2. In formulas (1)-(3) and (5), the surface content measure OS allows the
representation

OS(A) =

∫
G(A)

dKo(N(ϑ))dϑ, A ∈ BS .

Additionally to the general local definition in formula (4), the result of this theorem allows
the integral or differential geometric interpretation of the surface measure OS in the geometry
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having Ko as its unit ball. Note that the special case where surface content of subsets of the

boundary of the antinorm ball K = Ba,p = {x ∈ Rn : (
n∑
i=1
|xiai |

p)1/p ≤ 1}, 0 < p ≤ 1, ai > 0,∀i

is measured based upon the corresponding semi-antinorm geometry has been dealt with
already in [14].

Figures 5 and 6 show sample clouds of the same sample size and from the same distri-
bution class as in Section 3.1 but with parameter p chosen from the interval (0, 1). A big
proportion of probability mass can be observed tending to the far tails of such distribution if
p is approaching zero. At the same time one can identify several points which could be con-
sidered being outliers if they had appeared under other circumstances. Hence, the parameter
p of such distribution might be called a shape-tail parameter.
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Figure 4: Sample clouds of radially concave contoured p-generalized normal distributions
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Figure 5: Far reaching tails
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3.3 Statistical applications

This section deals with several examples where formula (5) applies. The first three examples
present relatively immediate applications while the last example concerns a more advanced
situation for calculating the ipf.

Example 3.1. Let X1, ..., Xn be independent rv’s following the common density of the power-
exponential (or p-generalized Gaussian, or p-generalized Laplace) distribution,

fp(x;µ, σ2) =
Cp
σ

exp{−|x− µ|
p

pσp
}, x ∈ R, Cp =

p1−1/p

2Γ(1/p)

where the location parameter µ ∈ R and the shape-concentration or shape-tail parameter p > 0
are known and the scaling parameter σ is unknown. The maximum-likelihood estimator (mle)
of σ is

σ̂ = (
1

n

n∑
i=1

|Xi − µ|p)1/p

and the random vector X(n) = (X1, ..., Xn)T follows the density ϕgPE ,K,ν where ν = (µ, ..., µ)T ,

K = σBp, Bp = {x ∈ Rn : |x|p ≤ 1}, |x|p = (
n∑
i=1
|xi|p)1/p, and

gPE(r) = exp{−r
p

p
}, r ≥ 0.

The set Bp is convex if p ≥ 1, and radially concave w.r.t. the standard fan in Rn if 0 < p ≤ 1.
Hence,

1

σ
(X(n) − ν) ∼ ΦgPE ,Bp,0n

follows a centered convex or radially concave contoured distribution if p ≥ 1 or 0 < p ≤ 1,
respectively. It turns out that

P (n(
σ̂

σ
)p < t) = ΦgPE ,Bp,0n(t1/pBp),

thus

P (n(
σ̂

σ
)p < t) =

1

I(gPE)

∞∫
0

rn−1gPE(r)FSp(t
1/pBp, r)dr

where I(gPE) = pn/p−1Γ(n/p),Γ denotes the Gamma function, Sp = ∂Bp is the p-sphere, i.e.
the set of boundary points of Bp and the p-sphere ipf of t1/pBp is

FSp(t
1/pBp, r) = I[0,t1/p](r), r ≥ 0.

Consequently,

P (n(
σ̂

σ
)p < t) =

1

I(gPE)

t1/p∫
0

rn−1gPE(r)dr,
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i.e. n( σ̂σ )p follows the χpgPE -density with n d.f. introduced in [12],

t 7→ tn/p−1e−t/p

pn/pΓ(n/p)
= fχn,gPE ,p(t), t > 0.

This exact distributional result allows constructing confidence intervals for and testing hy-
potheses on the scaling parameter σ.

Example 3.2. We consider independent rv’s X1, ..., Xn following the densities

fp(x;µi, σ
2a2
i ) =

Cp
σai

exp{−|x− µi|
p

p(σai)p
}, x ∈ R

where µi ∈ R, p > 0, ai > 0 are known and σ > 0 is an unknown common scaling parameter.
The mle of σ allows the functional representation

σ̂ =
1

n1/p
|X(n) − ν|a,p

where X(n) = (X1, ..., Xn)T , ν = (µ1, ..., µn)T and

|x|a,p = (
n∑
i=1

|xi
ai
|p)1/p, x ∈ Rn.

The density of X(n) is

fX(n)
(x) =

Cnp
σna1...an

gPE(dσBa,p(x− ν)),

thus

P (n(
σ̂

σ
)p < t) = ΦgPE ,Ba,p,0n(t1/pBa,p)

where Ba,p = {x ∈ Rn : |x|a,p ≤ 1}. Note that FSa,p(t
1/pBa,p, r) does not depend on a. Hence,

n( σ̂σ )p follows the χpgPE -distribution with n d.f., independently of a = (a1, ..., an)T .

While Examples 3.1 and 3.2 are restricted to the p-generalized Gaussian or Laplace distri-
bution which is defined using the dgf gPE , p > 0, Example 3.3 deals with measuring the same
sets as before but with measures having another level distribution, especially allowing lighter
and heavier distribution tails. Such tails may be of interest in various types of applications.

Example 3.3. Let us assume that Y follows the probability distribution law Φg,K,ν with
ν ∈ Rn,K = Bσa,p and dgf g. Examples of dgf ’s are, besides gPE, the Kotz type dgf gK
defined by gK(r) = rM−1e−βr

γ
, β, γ > 0,M + n > 1, and the Pearson-VII-type dgf gPT7

defined by gPT7(r) = (1 + r
m)−M ,M > n,m > 0. Note that the Student- and Cauchy-type

dgfs are special cases of gPT7, and that

I(gPE) = pn/p−1Γ(n/p), I(gK) =
Γ((n+M − 1)/γ)

γβ(n+M−1)/γ
, I(gPT7) = mnB(M − n, n)
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where B denotes the Beta function. It follows with Bσa,p = σBa,p and

P (Y − ν ∈ t1/pBσa,p) =
1

I(g)

∞∫
0

rn−1g(r)FSa,p(t
1/pBσa,p, r)dr =

1

I(g)

t1/p∫
0

rn−1g(r)dr

that, independently of a,

d

dt
P (n(

σ̂

σ
)p < t) =

d

dt
P (|Y1 − ν1

a1
|p + ...+ |Yn − νn

an
|p < t) =

tn/p−1g(t1/p)

pI(g)
= fχn,g,p(t).

Note that our earlier representation of this density in [13] differs from the present one because
of the (slightly) different notation for the dgf g.

Example 3.4. Let Xi ∼ fp(.; 0, σ1), i = 1, ..., n1 and Yi ∼ fp(.; 0, σ2), i = 1, ..., n2 where p > 0
is known and σ1, σ2 > 0 are unknown. These rv’s are assumed to be completely independent.
We define X = (X1, ..., Xn1)T and Y = (Y1, ..., Yn2)T . It follows from the well known theory
of exponential families that the statistic T = (|X|pp, |Y |pp) is sufficient for (σ1, σ2). The rv
Z = (XTY T )T has the density

fZ((xT , yT )T ) =
Cn1+n2
p

σn1
1 σn2

2

gPE(|(xT , yT )T |p,σ1,σ2), x ∈ Rn1 , y ∈ Rn2

with

|(xT , yT )T |p,σ1,σ2 = (
|x|pp
σp1

+
|y|pp
σp2

)1/p.

Thus, for every measurable function h : R2
+ → R,

P (h(T ) < t) = ΦgPE ,Bp,σ1,σ2
(B(t)), (8)

B(t) = {(xT , yT )T : h(|x|pp, |y|pp) < t}, Bp,σ1,σ2 = {(xT , yT )T ∈ Rn1+n2 : |(xT , yT )T |p,σ1,σ2≤1}.
Applications of formula (8) allow the derivation of geometric measure representations of

exact distributions of statistics such as α|X|pp + β|Y |pp, |X|
p
p

|Y |pp
and

|X|pp
|X|pp+|Y |pp

, under the non-

standard model assumptions made here.
A non-constant ipf of the set B(t) has been dealt with for different functions h and under

different parameter assumptions in earlier papers of the author and several coauthors,see [14].

Example 3.5. For data in [8] reporting the profits at the box office and the number of sold
home videos, in [10] the authors study fitting a linear regression model with random errors
distributed according to an exponential power distribution. When analyzing the residuals they
present Q-Q-plots for both the exponential power distribution with the estimated parameter
p = 2, 386877 and the normal distribution (p = 2). The observer’s subjective impression after
a visual inspection of these plots may be that one cannot really be sure in preferring one of
the two error models, this way.

This example, which was presented by the authors only for the purpose to show the use
of the functions implemented by them to fit a linear regression model if errors are possibly
exponentially power distributed, gives rise to throw up in a similar two-dimensional situation
the following standard question of statistical practice: how large should a sample size be to
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(b) p = 2, 388677

Figure 6: Generalized normal distribution: (small) sample size k = 30
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Figure 7: (Medium) sample size k = 850
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(b) p = 2, 388677

Figure 8: (Large) sample size k = 2000
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make a practical decision based upon a visual inspection ”relatively safe” ? In particular, how
large should a sample size be for the observer being able to visually choose between the two
two-dimensional p-generalized normal distributions with parameters p = 2 and p = 2, 388677
?

This question, clearly, is not formulated in a strong mathematical way, and will not be
answered in such way, here. Instead, we present Figures 6-8 showing that one can hardly
distinguish this way between the parameters p = 2 and p = 2, 388677 of the two-dimensional
p-generalized normal distribution even if sample sizes are large. As a consequence, one may
ask, e.g., for a mathematical method yielding a sure decision about the first decimal place of
parameter p, say. For a certain general 20-percent sensitivity and g-robustness principle, es-
tablished when dealing with another particular problem, we refer to Application 2 and Section
3 in [6].

Example 3.6. (a) Simulation in dimension one. There are several possibilities for
simulating the p-generalized normal distribution. The p-generalized polar method and the p-
generalized rejecting polar method are established in [7] and compared with several methods
known from the literature. Moreover, the resulting recommendation for using which of the
methods in which situation is realized by S. Kalke in the R-module ’pgnorm’.
(b) Simulation in dimension two. If dimension is n = 2, and K = Bp for some p > 0
then S = {(x1, x2)T ∈ R2 : |x1|p + |x2|p = 1}. A random vector (Up,1, Up,2)T following the
star-generalized uniform distribution ωS on BS allows the stochastic representation

(Up,1, Up,2)T
d
= (cosp(Φ), sinp(Φ))T

where the generalized trigonometric functions

cosp(ϕ) =
cosϕ

Np(ϕ)
, sinp(ϕ) =

sinϕ

Np(ϕ)
with Np(ϕ) = (| sinϕ|p + | cosϕ|p)1/p

are introduced in [12] and applied to the class of ln,p-symmetric distributions in [13], and the
polar angle Φ has the pdf

fΦ(ϕ) =
pΓ(2

p)

4(Γ(1
p)Np(ϕ))2

I(0,2π)(ϕ).

For a graphical representation of this function, we refer to [7].
Let Z be a uniformly on the interval (0, 1) distributed random variable, z1, ..., zk realiza-

tions of it in k independent trials, and put FΦ(ϕ) =
ϕ∫
0

fΦ(ψ)dψ, 0 < ϕ < 2π. Numerically

solving the equations

FΦ(ϕi) = zi with starting value ϕi,0 = 2πzi, i = 1, ..., k

yields the realizations (u
(1)
p,1, u

(1)
p,2), ..., (u

(k)
p,1, u

(k)
p,2) of (Up,1, Up,2)T from k independent trials.

Moreover, let the random variable R independently of (Up,1, Up,2)T follow the density
fR(r) = f(r; 1/3; 1.6, 2.6; 3, 4) where with suitably chosen a < b < c < d,

f(r; p; a, b; c, d) = pI(a,b)(r) + (1− p)I(c,d)(r), 0 < p < 1.
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If r1, ..., rk are realizations of R in independent trials then yi = ri(u
(i)
p,1, u

(i)
p,2), i = 1, ..., k

are realizations of a so called two-layer l2,p-symmetrically distributed random vector Y which
are represented in Figure 9(a). Similarly, Figure 9(b) is drawn with fR(r) = f(r; 2/3; 1.9, 2.9; 3, 4).
Still using the latter function but having smaller sample sizes, Figure 10 is generated. It turns
out that it becomes impossible to further visually distinguish between the two layers for sample
sizes becoming too small.
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(a) fR(r) = f(r; 1
3
; 1.6, 2.6; 3, 4)
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(b) fR(r) = f(r; 2
3
; 1.9, 2.9; 3, 4)

Figure 9: Two-layer l2,p-symmetric distributions sampled in k = 2000 independent trials with
p = 2, 388677
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(b) k = 300

Figure 10: Independent realizations of two-layer l2,p-symmetrically distributed random points
where p and fR are as in Figure 9(b)

We remark additionally that Figures 9 and 10 do not represent elliptically contoured dis-
tributions as one might argue at first glance. This again supports the above discussion on
introducing 20-percent g-robust decisions.

Finally, we notice that Figures 1-8 are generated with the level density function of the
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two-dimensional p-generalized normal density,

fR(r) =
1

p
2
p
−1

Γ(2
p)
re
− r

p

p , r > 0.

4 Proofs

The general method of proof in this paper can be divided into two main parts. Using the
properties of the support function of a convex body, hK , in the first part it will be shown that
the absolute value of the Jacobian of a certain transformation may be interpreted in terms
of the normal vector N to the boundary of K. This allows according to Lemma 1 in [14] to
represent the surface measure OS as an integral of hK(N). The second part of the method
of proof deals with a relation between the functional hK(N) and the Minkowski functional
of a suitably defined set K∗, or Ko. While, in the convex case, K∗ is extensively studied, Ko

yet has to be found in the most general case when K is radially concave w.r.t. a fan in Rn.

Proof of Theorem 3.1. The support function of the convex body K is defined as

hK(u) = sup{uT y : y ∈ K}, u ∈ Rn. (9)

Recall that if u ∈ S(n−1) then hK(u) describes the distance from the origin to the hy-
perplane with outer normal vector u and supporting K. For compactness and continuity
reasons, the supremum is always attained,

∀u ∈ S(n−1)∃xS(u) ∈ S : hK(u) = uTxS(u). (10)

The set of all such points xS is called the supporting set of K at u. If the norm is smooth then
xS(u) ∈ S ∩ T (u) where T (u) is the tangent hyperplane to S at the point xS(u) with T (u)
being orthogonal to u. If K is strongly convex then the supporting set of K at u consists of
just one point, thus xS(u) being then always uniquely defined. Note that it may happen that
a point ξ ∈ S satisfies ξ = xS(u) for more than one point u ∈ S(n−1). To see this, assume
that S contains corner points, and let ξ be such a corner point of S. As a consequence, even
the union of all supporting sets of a convex body may be finite.

According to Lemma 1 in [14],

OS(A) =

∫
G(A)

|(ϑT , η(ϑ))N(ϑ)|dϑ

where the function ϑ 7→ η(ϑ) is chosen such that dK((ϑT , η(ϑ))T ) = 1 describes the boundary
S of K. Note that here x = (ϑT , η(ϑ))T ∈ S and a.e. N(ϑ) = (∇η(ϑ),−1)T is the outer
normal vector of S at (ϑT , η(ϑ))T , thus (ϑT , η(ϑ))N(ϑ) > 0. It follows from (10) that

hK(n(ϑ)) = n(ϑ)T (ϑT , η(ϑ))T , n(ϑ) = N(ϑ)/|N(ϑ)|E

where |.|E means the Euclidean norm. By the homogeneity property of hK ,

OS(A) =

∫
G(A)

hK(N(ϑ))dϑ. (11)

The theorem follows by the well known fact that hK = dK∗
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Proof of Theorem 3.2. We consider (ϑT , η(ϑ))T ∈ S ∩Ci and denote the (a.e. defined ) inner
normal vector to the boundary S of the antinorm ball K at (ϑT , η(ϑ))T by N(ϑ). Further
we put n(ϑ) = N(ϑ)/|N(ϑ)|2 and u = −n(ϑ). Then u ∈ S(n−1) ∩ Ci and because K ∈ AN1,

|(ϑT , η(ϑ))Tn(ϑ)| = |xTS,i(n(ϑ))n(ϑ)| = inf{nT (ϑ)y : y ∈ S ∩ Ci}.

Thus, |(ϑT , η(ϑ))Tn(ϑ)| = hFK(n(ϑ)), and

OS(A) =

∫
G(A)

hFK(N(ϑ))dϑ. (12)

The proof will be finished by the following lemma.

Lemma 4.1. The anti-support function of K w.r.t. F is equal to the distance function of
Ko, hFK = dKo .

Proof. The radial function of the radially concave star-shaped set Ko is, on the one hand, by
definition

%Ko(u) = sup{λ ≥ 0 : λu ∈ Ko} =
1

hFK(u)
, u ∈ S(n−1),

and allows, on the other hand, the representation

%Ko(u) = sup{λ ≥ 0 : u ∈ 1

λ
Ko} = 1/inf{µ ≥ 0 : u ∈ µKo} = 1/dKo(u).

Thus hFK = dKo .

5 Discussion

To make both the similarity and the difference between Theorems 3.1 and 3.2 more visible,
let us remark that K∗ allows a representation looking similar to that of Ko,

K∗ = {y ∈ Rn : yTx ≤ 1,∀x ∈ K} = {λ(u)u : 0 ≤ λ(u)hK(u) ≤ 1, u ∈ S(n−1)}.

For dealing with a combined example where both Theorems 3.1 and 3.2 apply, we recall that
the function x 7→ |x|a,p is a norm if p ≥ 1 and, according to [11], an antinorm if 0 < p ≤ 1.
Thus, K = Ba,p is convex if p ≥ 1 and radially concave w.r.t. the standard fan F if 0 < p ≤ 1.
Let q be defined by the equation 1

p + 1
q = 1, and 1

a = ( 1
a1
, ..., 1

an
)T . Note that if p > 1 then

K∗ = B 1
a
,q, and if 0 < p < 1 then q < 0 and

Ko = {x ∈ Rn :
n∑
i=1

1

|aixi||q|
≥ 1}

is a semi-antinorm ball. For an illustration of such sets, see [11]. Note that a and p are
independently dealt with when constructing the sets K∗ and Ko.
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Remark 5.1. In the applications of Theorem 3.1, the surface content of [1
r (B−ν)]∩S (which

may be considered as an indivisible of the set B − ν) is always measured w.r.t. the metric
dK∗. Successful applications of this generalized method of indivisibles are surveyed in [14].
The representation of Theorem 3.1 generalizes those presented in the latter and several earlier
papers.

Remark 5.2. The set Ko in Section 3.2 is radially concave, thus dKo is a semi-antinorm.

Proof. We show that if x1 and x2 are from K̄o∩C for some C ∈ F then λx1+(1−λ)x2 ∈ K̄o∩C
for 0 < λ < 1 where K̄o means the complement of the set Ko. Let x1 = λ1u1, x2 = λ2u2 with
ui ∈ S(n−1), λi ≥ 1

hFK(ui)
, i = 1, 2. Then

hFK(λx1 + (1− λ)x2) = hFK(λλ1u1) + hFK((1− λ)λ2u2) ≥ λλ1

λ1
+

(1− λ)λ2

λ2
= 1
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