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depend from each other as the components of continuous ln,p-symmetrically

distributed random vectors do, n ∈ {3, 4}, p > 0. Once the representations are

implemented in a computer program, it is easy to change the density gener-

ator of the ln,p-symmetric distribution with another one for newly evaluating

the distribution of interest.
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1 Introduction

It is well known that uncorrelatedness of a finite number of random variables (rvs) implies

their independence if their joint multidimensional distribution is a Gaussian one. More

specifically, if the density generating function (dgf) of a spherically distributed random

vector is that of a Gaussian vector then the components of this vector are independent

rvs. For any other choice of the dgf, these rvs depend from each other in a certain

way. Similarly, if a random vector follows a continuous ln,p-symmetric or ln,p-spherical

distribution, p > 0, its n components are independent if its dgf is that of a suitably

defined n-dimensional p-power exponential distribution, and only in this case.

Therefore, studying distributions of functions of spherically or ln,p-symmetrically dis-

tributed random vectors means, in general, studying distributions under specific de-

pendence assumptions w.r.t. the joint sampling distribution. Note that the class of
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ln,2-symmetric distributions is just that of all spherical distributions. The type of de-

pendence among the components of a continuous ln,p-symmetrically distributed random

vector depends on both the dgf and the parameter p. One might call, for short, this

dependence the ln,p-symmetry dependence.

Order statistics are useful tools in parametric and nonparametric statistics as well as,

e.g., in reliability theory and other applied research areas. The distributions of order

statistics of independent and identically distributed random variables are exhaustively

dealt with in the last decades, see e.g. David and Nagaraja (2003). The probability

density function (pdf) of the maximum statistic as well as that of a linear combina-

tion of order statistics of arbitrary absolutely continuous dependent random variables

is studied in Arellano-Valle and Genton (2008) and Arellano-Valle and Genton (2007),

respectively. In both papers, special emphasis is on the case that the joint multivariate

sample distribution is an elliptically contoured distribution. In Jamalizadeh and Balakr-

ishnan (2010) and some papers referred to there, the latter investigations are followed

up and further developed by representing the results with the help of skewed distribu-

tions. For a related result for continuous l2,p-symmetrically distributed sample vectors,

see Batún-Cutz, González-Farías, and Richter (2013).

The class of elliptically contoured distributions extends that of spherical distributions,

see Fang, Kotz, and Ng (1990). Another extension is the class of ln,p-symmetric or ln,p-

spherical distributions. This class has been introduced in Osiewalski and Steel (1993),

and dealt with later on, e.g., in Gupta and Song (1997). A geometric measure represen-

tation of these distributions was proved in Richter (2009), see equation (3) in Section

5.1. This representation found applications to simulation in Kalke and Richter (2013)

and to the derivation of certain exact distributions in Kalke, Richter, and Thauer (2013).

In Müller and Richter (2015), integral representations of exact distributions of extreme

value statistics of l2,p-symmetrically distributed samples are proved making possible to

easily change a given density generator with another one. Here, we extend these results

to dimensions three and four.

The aim of the present paper, however, is twice. On the one hand, as indicated,

we contribute new results on the exact distribution of order statistics of three or four

dependent rvs if the sample distribution is an ln,p-symmetric one, n ∈ {3, 4}. On the

other hand, we conduce to a systematic study of cases in which the geometric measure

representation successfully applies. While the first aim of this paper needs no further

explanation, the second one will to be discussed a bit closer in the following.

In Richter (2014a), a problem is dealt with which was considered beforehand by sev-

eral authors in a series of papers and by using different methods. Reproving certain

of the known results with a new method, applying the geometric measure representa-

tion, actually needs most of the space in Richter (2014a). For the subsequent step of
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substantially extending the class of random variables possessing the same property of

interest, however, only little additional effort is needed. This way, a sometimes involved

method suddenly mutates to a powerful ancillary tool of mathematical work. For a

general discussion on the value of reproving, see Silverman (1994).

Another effect of systematically applying a geometric measure representation is dis-

covered in Dietrich, Kalke, and Richter (2013). Among other things, the authors develop

a new integral representation of the cumulative distribution function (cdf) of the largest

eigenvalue of a certain Wishart distributed random matrix although another represen-

tation in terms of hypergeometric functions has been well established already in the

literature for a long time. The non-anticipated wage for these methodological efforts was

in numerical stability properties of the new result. Furthermore, the systematic geomet-

ric measure theoretical studies in Günzel, Richter, Scheutzow, Schicker, and Venz (2012)

and Richter and Venz (2014) bring more structure into a variety of well-known proofs

and results on skewed distributions, and noticeable generalize several well established

results.

In all these cases, new results are proved for rvs depending from each other under the

influence of a dgf and possibly additional parameters.

In order to summarize the two main aims of this paper, besides proving new results

on distributions of order statistics, we extend the range where geometric measure repre-

sentations successfully apply. This way, we contribute to establish such representations

as standard ancillary tools of practical work in probability theory and statistics.

The rest of the present paper is organized as follows. In Section 2, general information

on the model class of ln,p-symmetric distributions are given. Assuming this ln,p-symmetric

model class, in Section 3, our main results on the cdf and pdf of maximum, median, and

minimum statistics of three dependent rvs and on the cdf of extreme value statistics

of four dependent rvs are presented. The pdf of the median is visualized, one the one

hand, for trivariate p-generalized Gaussian distributed populations, p = 3, jointly with

histogram plots for increasing sample sizes and, on the other hand, for l3,p-symmetrically

Kotz type and Pearson Type VII distributed populations for several choices of parame-

ters. Section 4 is aimed to discuss some figures given beforehand and to interrelate the

underlying distributions with heavy tailed ones. In Section 5, the results of Section 3 are

proved. In particular, basics of the geometric method of proof are explained in Section

5.1. In the final Section 6, some conclusions are drawn from the results in the present

paper.
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2 The model class

We consider the model class of continuous ln,p-symmetric distributions in this paper as

a subclass of the class of star-shaped distributions. This point of view leads to a slight

change of notation for continuous ln,p-symmetric distributions, compared with previous

papers dealing with these distributions.

Let K ⊂ R
n be a star body having the origin in its interior and let S denote its topo-

logical boundary. The functional hK : Rn → [0,∞) defined by hK(x) = inf{λ > 0: x ∈
λK}, x ∈ R

n, is known as the Minkowski functional of K where λK = {(λx1, . . . , λxn)T :

(x1, . . . , xn)T ∈ K}. A function g : (0,∞) → (0,∞) satisfying the assumption 0 <

I(g) < ∞ is called density generating function (dgf) of an n-variate distribution where

I(g) =
∞
∫

0
rn−1g(r) dr. According to Richter (2014b), moreover assuming the homogeneity

of degree one and a certain smoothness of hK , a probability measure having the pdf

ϕg,K(x) = C(g,K)g(hK(x)), x ∈ R
n,

is called a star-shaped distribution with density contour defining star body K, and

denoted by Φg,K . The normalizing constant allows the representation

C(g,K) =
1

OS(S) I(g)

where OS denotes the star generalized surface measure on S and is defined as well in

Richter (2014b). If K is the unit ball of the finite-dimensional normed or antinormed

space (Rn, ‖·‖) then hK(x) = ‖x‖, and Φg,K is called a norm or antinorm contoured

distribution in R
n, respectively, see Richter (2015b) for the 2-dimensional and Richter

(2015a) for the general case. For the notion of an antinorm, we refer to Moszyńska and

Richter (2012).

Throughout this paper, let p > 0. We denote the ln,p-unit ball and the ln,p-unit

sphere by Kn,p = {x ∈ R
n : |x|p ≤ 1} and Sn,p = {x ∈ R

n : |x|p = 1}, respectively,

where |x|p =
(

n
∑

k=1
|xk|p

)
1
p

, x = (x1, . . . , xn)T ∈ R
n, stands for the p-functional. Then,

hKn,p
(x) = |x|p, and hKn,p

is a norm if p ≥ 1 and, according to Moszyńska and Richter

(2012), an antinorm if p ∈ (0, 1). Further, the star generalized surface measure OSn,p

matches with the ln,p-generalized surface measure Op defined in Richter (2009), and ωn,p

denotes the ln,p-generalized surface content of Sn,p, ωn,p =
(2Γ( 1

p))
n

pn−1Γ(n
p )

.

In particular, an n-dimensional random vector X : Ω → R
n defined on a probability

space (Ω,A, P ) and having a pdf fX(x) = ϕg,Kn,p
(x) = g(|x|p)

ωn,p I(g)
, x ∈ R

n, is said to

follow the continuous ln,p-symmetric distribution Φg,p with dgf g. For short, the density

fX = ϕg,Kn,p
is written as fX = ϕg,p. This pdf is norm contoured if p ≥ 1 and radially
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concave star-shaped if p ∈ (0, 1). From now on, we assume that g is specifically chosen as

a density generator (dg), i.e. the normalizing constant meets the condition ωn,p I(g) = 1.

In other words, g is chosen in such a way that

ϕg,p(x) = g(|x|p), x ∈ R
n.

This notation of an ln,p-symmetric pdf slightly differs from the notation fX(x) =

g̃(|x|pp), x ∈ R
n, used in Gupta and Song (1997), Richter (2009), Arellano-Valle and

Richter (2012), Batún-Cutz et al. (2013), Kalke et al. (2013), Müller and Richter (2015),

as well as Fang et al. (1990) and Günzel et al. (2012) in the spherical case. Because of

g(c) = g̃(cp), c > 0, we obtain I(g) = In,g̃,p where the notation In,g̃,p =
∞
∫

0
rn−1g̃(rp) dr is

used in previous papers.

The remaining part of this section deals with examples of density generators of contin-

uous ln,p-symmetric distributions. In slightly other notation, these and other examples

can be found already in Gupta and Song (1997), and for the case p = 2 in Fang et al.

(1990). Note that only g = gPE in Example 3 generates independence of the components

of the random vector.

Example 1. The dg of the ln,p-symmetric (or n-dimensional p-generalized) Kotz type

distribution with parameters β, γ > 0 and M > 1 − n
p

is

gKt;M,β,γ(r) =





p

2Γ
(

1
p

)





n
γβ

n+p(M−1)
pγ Γ

(

n
p

)

Γ
(

n+p(M−1)
pγ

) rp(M−1) exp{−βrpγ}, r > 0.

If p = 2, paying attention to the change of notation, this is the dg of standardized

Kotz type distribution, see Nadarajah (2003). In Gupta and Song (1997), ΦgKt;M,β,γ ,p has

parameter N = M − 1 ≥ 0, and is called p-generalized Weibull distribution.

Example 2. The dg of the ln,p-symmetric power exponential distribution with parameter

γ > 0 is

gPE;γ(r) =





p

2Γ
(

1
p

)





n
γ Γ

(

n
p

)

p
n

pγ Γ
(

n
pγ

) exp

{

−rpγ

p

}

, r > 0,

i.e. gPE;γ = gKt;1,1/p,γ . If p = 2, this dg generates the standardized multivariate power ex-

ponential distribution, see Gómez, Gómez-Villegas, and Marín (1998), whose univariate

form is introduced in Subbotin (1923). Under various parameterizations, and sometimes

called exponential power distribution, the univariate distribution ΦgP E;γ ,2 is studied in

Box and Tiao (1973), Osiewalski and Steel (1993), and Nadarajah (2005, 2006).

Example 3. The particular function gPE;1 = gPE is called the dg of the n-dimensional
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p-power exponential or p-generalized Gaussian or p-generalized Laplace distribution,

gPE(r) =





p1− 1
p

2Γ
(

1
p

)





n

exp

{

−rp

p

}

, r > 0.

If p = 1 or p = 2, gPE is the dg of the n-dimensional Laplace or Gaussian distribution,

respectively.

Example 4. The dg of the ln,p-symmetric Pearson Type VII distribution with parameters

ν > 0 and M > n
p

is

gPT7;M,ν(r) =





p

2Γ
(

1
p

)





n
Γ(M)

ν
n
p Γ
(

M − n
p

)

(

1 +
rp

ν

)−M
, r > 0.

Example 5. The dg gSt;ν of the ln,p-symmetric Student-t distribution with ν > 0 degrees

of freedom is defined as

gSt;ν(r) =





p

2Γ
(

1
p

)





n
Γ(n+ν

p
)

ν
n
p Γ
(

ν
p

)

(

1 +
rp

ν

)− n+ν
p

, r > 0.

In addition, gSt;ν = gPT7; n+ν
p
,ν .

Example 6. The dg gC of the ln,p-symmetric Cauchy distribution satisfies

gC = gSt;1

as it is well known in the spherical case p = 2.

Let 1A(t) =











1 if t ∈ A

0 otherwise
denote the indicator function of the set A.

Example 7. The dg of the ln,p-symmetric Pearson Type II distribution with parameter

ν > 0 is

gPT2;ν(r) =





p

2Γ
(

1
p

)





n
Γ
(

n
p

+ ν + 1
)

Γ(ν + 1)
(1 − rp)ν 1(0,1)(r), r > 0.

3 Exact distributions of order statistics

For the rest of the paper, we assume that the random variables X1, . . . , Xn are the

components of the random vector X, X ∼ Φg,p, for an arbitrary shape/ tail parameter
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p > 0 as well as an arbitrary dg g. Furthermore, we denote the corresponding vector of

order statistics by

X
(ord)
(n) = (X1:n, . . . , Xn:n)T

and the cdf and pdf of Xk:n, k = 1, . . . , n, by Fk:n and fk:n, respectively. The following

result describes the basic structure of our representations of Fk:n and fk:n.

Lemma 1 (Separating property). The cdf and the pdf of Xk:n allow the representa-

tions

Fk:n(t) =

∞
∫

0

f(t, r) rn−1g(r) dr, (1)

fk:n(t) =

∞
∫

0

h(t, r) rn−1g(r) dr, (2)

t ∈ R, with functions f, h : R × (0,∞) → R not depending on the dg g.

For simplicity of notation, we do not indicate that the functions f and h depend

on the integers n and k, and on the parameter p. Note that the influence of g onto the

distribution of Xk:n is separated in Lemma 1 from that of all the other parameters. Once

the functions f and h are implemented in a computer program, it is easy to change a

certain dg g with another one for newly evaluating the functions Fk:n and fk:n. Figures

1-3 show the median density for different types of the dg (recognize different scaling in

different pictures). The underlying results of Sections 3.1 and 3.2 specify the functions f

and h, and will be derived on using the geometric measure representation (3), see Section

5.1.

3.1 Maximum, median, and minimum distributions of three

dependent rvs

In order to define the function f in (1) for n = 3 in a dense form, we will make use of

the following notations. For any reals ρa < ρb from [0,∞) and any functions ϕa and ϕb

mapping [0,∞) to [0, 2π) and satisfying ϕa(ρ) < ϕb(ρ) for all ρ ∈ (0,∞), let

H(ρa, ρb;ϕa, ϕb) =

ρb
∫

ρa

ρ (1 − ρp)
1−p

p G(2)
p (ϕa(ρ), ϕb(ρ)) dρ

where G(2)
p (ϕa(ρ), ϕb(ρ)) =

ϕb(ρ)
∫

ϕa(ρ)

dϕ

(Np(ϕ))2 with Np(ϕ) = (|cos (ϕ)|p + |sin (ϕ)|p)
1
p denotes

the p-generalized uniform distribution on S2,p(ρ), see Richter (2008a, 2008b). Here,

Sn,p(ρ) = ρ · Sn,p = {x ∈ R
n : |x|p = ρ} denotes the ln,p-sphere with p-radius ρ ∈
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(0,∞). Furthermore, for all r ∈ (0,∞) and t ∈ R, let αt,r(ρ) = arctan
(

|t|
p
√
ρprp−|t|p

)

and

Hi(ρa, ρb) = H(ρa, ρb;ϕa,i, ϕb,i), i = 1, . . . , 5, where the functions ϕa,i and ϕb,i are given

in Table 1.

i = 1 i = 2 i = 3 i = 4 i = 5
ϕa,i(ρ) π + αt,r(ρ) π − αt,r(ρ)

π
2

− αt,r(ρ) π − αt,r(ρ)
π
2

+ αt,r(ρ)
ϕb,i(ρ)

3π
2

− αt,r(ρ)
π
2

αt,r(ρ)
3π
2

+ αt,r(ρ)
3π
2

− αt,r(ρ)

Table 1: Definitions of the functions ϕa,i(ρ) and ϕb,i(ρ), i = 1, . . . , 5, ρ > 0.

Theorem 1. The cdf of the maximum statistic satisfies representation (1) with n = k = 3

and

f(t, r) = 1(−∞,0](t)1( p
√

3|t|,∞)(r)H1(
p
√

2|t|
r

,
1

r
p

√

rp − |t|p) + 1(0,∞)(t)



1(0,t)(r)ω3,p

+ 1[t, p
√

2t)(r)



ω3,p

(

1 − 1

2r2
(rp − tp)

2
p

)

− 8H2(
t

r
, 1)



+ 1[ p
√

2t, p
√

3t)(r)



ω3,p
t2

2r2

+H3(
1

r
p
√
rp − tp,

p
√

2t

r
) +H4(

1

r
p
√
rp − tp, 1) +H3(

t

r
,

p
√

2t

r
) +H4(

t

r
, 1)





+ 1[ p
√

3t,∞)(r)



ω3,p
t2

2r2
+H4(

t

r
, 1) +H3(

1

r
p
√
rp − tp, 1) +H3(

t

r
,

p
√

2t

r
)







.

In order to derive from this result a tightly looking representation of the function h

in (2), for any ρa < ρb from (0,∞) and ψa < ψb from [0, 2π), we use the notations

kρ(ρa, ρb;ϕa, ϕb) =

ρb
∫

ρa

ρ (1 − ρp)
1−p

p α′
t,r(ρ)

[

N−2
p (ϕa(ρ)) +N−2

p (ϕb(ρ))
]

dρ,

kψ(ψa, ψb) = rp−3 (rp − |t|p)
2−p

p G(2)
p (ψa, ψb)

and

βt,r = αt,r

(

1

r
p

√

rp − |t|p
)

= arctan





|t|
p

√

rp − 2 |t|p





where kψ and βt,r are defined for all r ∈ (0,∞) and t ∈ R. Note that

α′
t,r(ρ) =

d

dt
αt,r(ρ) =

(ρprp − |t|p)
1
p + |t|p (ρprp − |t|p)

1−p

p

t2 + (ρprp − |t|p)
2
p

.
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Finally, we put kρ,i(ρa, ρb) = kρ(ρa, ρb;ϕa,i, ϕb,i) for i = 1, . . . , 5 and kρ,6(ρa, ρb) =

kρ(ρa, ρb;ϕa,2, ϕa,2).

Corollary 1. The pdf of the maximum statistic satisfies representation (2) with n =

k = 3 and

h(t, r) = 1(−∞,0](t)1( p
√

3|t|,∞)(r)



kρ,1(
p
√

2|t|
r

,
1

r
p

√

rp − |t|p) + kψ(π + βt,r,
3π

2
− βt,r)





+ 1(0,∞)(t)



 1[t, p
√

2t)(r)





tp−1

r2
(rp − tp)

2−p

p ω3,p + 4kρ,6(
t

r
, 1)



+ 1[ p
√

2t, p
√

3t)(r)



kψ(
π

2
− βt,r, βt,r) + kρ,3(

1

r
p
√
rp − tp,

p
√

2t

r
)



+ 1[ p
√

3t,∞)(r)



ω3,p
t

r2
+ kρ,4(

t

r
, 1)

+ kψ(π − βt,r,
3π

2
+ βt,r) − rp−3t (rp − tp)

1−p

p 2π(p) + kρ,4(
1

r
p
√
rp − tp, 1)

+ kρ,3(
t

r
,

p
√

2t

r
)







 .

It is worthwhile to mention that the cdf and the pdf of the minimum statistic satisfy

the representations F1:3(t) = 1 − F3:3(−t) and f1:3(t) = f3:3(−t), t ∈ R, respectively.

Theorem 2. The cdf of the median statistic satisfies representation (1) with n = 3,

k = 2 and

f(t, r) = 1[ p
√

2t, p
√

3t)(r)



2H5(
|t|
r
,
1

r
p

√

rp − |t|p) + 2H1(
p
√

2|t|
r

, 1)





+ 1[ p
√

3t,∞)(r)



2H5(
|t|
r
,
1

r
p

√

rp − |t|p) + 2H1(
1

r
p

√

rp − |t|p, 1)



,

if t ≤ 0, and f(t, r) = ω3,p − f(−t, r), if t > 0.

Corollary 2. The pdf of the median statistic satisfies representation (2) with n = 3,

k = 2 and

h(t, r) = 1[ p
√

2|t|, p
√

3|t|)(r)



2kρ,5(
|t|
r
,
1

r
p

√

rp − |t|p) + 2kψ(
π

2
+ βt,r,

3π

2
− βt,r)

+ 2kρ,1(
p
√

2|t|
r

, 1)



+ 1[ p
√

3|t|,∞)(r)



rp−3 (rp − |t|p)
1−p

p π(p)

+ 2kρ,5(
|t|
r
,
1

r
p

√

rp − |t|p) + 2kρ,1(
1

r
p

√

rp − |t|p, 1)



.

9



Figures 1-3 give an impression of how the density f2:3 in representation (2) looks like

for different types of dgs and several different parameter choices. In particular, Figure

1 deals with the particular independence case of dg g = gPE and p = 3 (c.f. Example 3,

formula (2) and Corollary 2). Note that the numerical correctness of our evaluations is

revealed by adding histogram plots of samples of increasing sizes from 103 up to 2.5×105.

Also illustrating the pdf of the median statistic but now of three dependent rvs fol-

lowing a joint continuous l3,p-symmetric distribution, Figures 2 and 3 deal with generally

dependence generating dgs of Kotz type and Pearson Type VII, respectively. Note the

different scales of axes of ordinates as well as of abscissas, and that Figures 3(a) and

3(b) are further discussed under several aspects in Section 4.

3.2 Extreme value distributions of four dependent rvs

In the present section, we restrict our considerations to the cdfs of extreme values, i.e.

to the functions Fk:4 in (1) with k = 4 and k = 1, respectively. For any ρa < ρb from

(0,∞), any functions ϕa and ϕb mapping (0,∞) to [0, 2π) and satisfying ϕa(ρ) < ϕb(ρ)

for all ρ ∈ (0,∞), and any functions θa and θb mapping (0,∞) × [0, 2π) to [0, 2π) and

satisfying θa(ρ, ϕ) < θb(ρ, ϕ) for all (ρ, ϕ) ∈ (0,∞) × [0, 2π), let

L(ρa, ρb;ϕa, ϕb; θa, θb) =

ρb
∫

ρa

ρ2 (1 − ρp)
1−p

p G(3)
p (ϕa(ρ), ϕb(ρ); θa(ρ, ϕa(ρ)), θb(ρ, ϕb(ρ))) dρ

where

G(3)
p (ϕa(ρ), ϕb(ρ); θa(ρ, ϕa(ρ)), θb(ρ, ϕb(ρ))) =

ϕb(ρ)
∫

ϕa(ρ)

θb(ρ,ϕb(ρ)
∫

θa(ρ,ϕa(ρ))

sinp(θ)

N2
p (θ)N2

p (ϕ)
dθ dϕ

denotes the p-generalized uniform distribution on S3,p(ρ) with ρ ∈ (0,∞), and sinp is the

p-generalized sine function defined in Richter (2007). Moreover, let

γt,r(ρ) = arctan





|t|
p

√

ρprp − 2|t|p





define a parametric function mapping [0,∞) to [0, π/2), for all r ∈ [0,∞) and t ∈ R.

Recognize that γt,r(1) = βt,r for all t and r. Additionally, let

δ−
t,r(ρ, ϕ) =

π

2
+arctan





p

√

rpρp |sinp(ϕ)|p − |t|p

|t|



 and δ+
t,r(ρ, ϕ) = arctan

(

p

√

|cot(ϕ)|p + 1
)
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Figure 1: Median pdf f2:3 and histogram for p = 3, increasing sample sizes and dg
g = gPE.
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, dg g = gKt;M,β,γ , and several choices of the

parameters M > 1 − 3
p
, β > 0, and γ > 0.

11



−1.5 −1 −0.5 0 0.5 1 1.5
0

1

2

3

4

5

6

7

8

9

10

 

 

M=6.5,ν=1
M=8.5,ν=1
M=11,ν=1
M=8.5,ν=2
M=11,ν=3

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 

 

M=6.5,ν=1
M=6.5,ν=2
M=6.5,ν=3

(a) p = 1

2

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

 

 

M=3.5,ν=1
M=5.5,ν=1
M=7.5,ν=1
M=5.5,ν=2
M=7.5,ν=3

−1.5 −1 −0.5 0 0.5 1 1.5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 

M=3.5,ν=1
M=3.5,ν=2
M=3.5,ν=3

(b) p = 1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 

 

M=2,ν=1
M=4,ν=1
M=6,ν=1
M=2,ν=2
M=2,ν=3
M=4,ν=2
M=6,ν=3

(c) p = 2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

M=1.5,ν=1
M=3.5,ν=1
M=5.5,ν=1
M=1.5,ν=2
M=1.5,ν=3
M=3.5,ν=2
M=5.5,ν=3

(d) p = 3

Figure 3: Median pdf f2:3 for p ∈
{

1
2
, 1, 2, 3

}

, dg g = gPT7;M,ν , and several choices of the

parameters M > 3
p

and ν > 0.

be parametric functions defined on (0,∞) × [0, 2π), and, for all parameters r and t,

L1(ϕa(ρ), ϕb(ρ)) = L(
p
√

3|t|
r

,
1

r
p

√

rp − |t|p;ϕa(ρ), ϕb(ρ);
π

2
+ αt,r, δ

−
t,r),

L2,1(ϕa(ρ), ϕb(ρ)) = L(
t

r
, 1;ϕa(ρ), ϕb(ρ); 0,

π

2
− αt,r),

L2,2(ϕa(ρ), ϕb(ρ)) = L(
t

r
, 1;ϕa(ρ), ϕb(ρ); 0, δ+

t,r),

L3,1(ϕa(ρ), ϕb(ρ)) = L(
t

r
,
1

r
p

√

rp − |t|p;ϕa(ρ), ϕb(ρ); 0,
π

2
− αt,r),

L3,2(ϕa(ρ), ϕb(ρ)) = L(
t

r
,
1

r
p

√

rp − |t|p;ϕa(ρ), ϕb(ρ); 0, δ+
t,r).

Theorem 3. The cdf of the maximum statistic satisfies representation (1) with n = k = 4
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and

f(t, r) = 1(−∞,0](t)1( p
√

4|t|,∞)(r)2L1(π + γt,r,
5π

4
) + 1(0,∞)(t)



 1(0,t)(r)ω4,p + 1[t, p
√

2t)(r)



ω4,p − ω4,p

2

(

1 −
∣

∣

∣

∣

t

r

∣

∣

∣

∣

p) 3
p

− 12L2,1(0, π)



+ 1[ p
√

2t, p
√

3t)(r)



ω4,p + 6L3,1(0, π)

− ω4,p

2

(

1 −
∣

∣

∣

∣

t

r

∣

∣

∣

∣

p) 3
p

− 6L2,1(
π

2
− γt,r, γt,r) − 6L2,1(π − γt,r,

3π

2
+ γt,r)

− 12L2,2(γt,r, π − γt,r)



+ 1[ p
√

3t, p
√

4t)(r)



ω4,p − 6L2,1(π − γt,r,
3π

2
+ γt,r)

− ω4,p

2

(

1 −
∣

∣

∣

∣

t

r

∣

∣

∣

∣

p) 3
p

− 12L2,2(
π

4
, π − γt,r) + 3L3,1(π − γt,r,

3π

2
+ γt,r)

+ 3L3,1(
π

2
− γt,r, γt,r) + 6L3,2(γt,r, π − γt,r)



+ 1[ p
√

4t,∞)(r)



ω4,p

− ω4,p

2

(

1 −
∣

∣

∣

∣

t

r

∣

∣

∣

∣

p) 3
p

− 12H2,2(
π

4
, π − γt,r) − 6H2,1(π − γt,r,

3π

2
+ γt,r)

+ 3H3,1(π − γt,r,
3π

2
+ γt,r) + 6H3,2(

π

4
, π − γt,r)







 .

4 Heavy tails

Distributions having heavy tails play an important role in statistical practice and find

especially many applications to insurance and financial mathematics. The median pdf

f2:3 plotted in Figure 3 deals with heavy tails where the dg of X is of l3,p-symmetric

Pearson Type VII which includes both Student and Cauchy type sample distributions.

It appears to be typical in such cases that only very few probability mass is concentrated

around the distribution center leading on the right hand sides of Figures 3(a) and 3(b) to

the misleading impression that the drawn densities could build a monotonically decreas-

ing sequence of functions. By zooming into the right hand side of Figures 3(a), however,

and taking the symmetry w.r.t. axis of ordinates into account, one detects the points of

intersection of the black and the green solid, the black and the green dashed, and the

green solid and the green dashed graphs at t1/2 ≈ ±15, t3/4 ≈ ±23, and t5/6 ≈ ±44,

respectively, see Figure 4. A similar explanation avoids a potential misunderstanding in

the case of Figure 3(b).

Furthermore, the Figures 3(a) and 4 suggest the visual impression that the tail

heaviness of the distribution of the median statistic of three dependent rvs following

a joint l3, 1
2
-symmetric Pearson Type VII distribution increases if the parameter M is

13
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Figure 4: Zoom into the right hand side of Figure 3(a).

Aν(z) z = 1.5 z = 100 z = 103 z = 104 z = 106

ν = 1 0.1903 0.5906 0.7368 0.8249 0.9077
ν = 2 0.0889 0.4689 0.6571 0.7777 0.8943
ν = 3 0.0512 0.3884 0.5988 0.7416 0.8832

Table 2: Interval probabilities of the sample median in jointly l3, 1
2
-symmetrically Pearson

Type VII distributed samples with M = 13
2

and ν ∈ {1, 2, 3}.

constant and the parameter ν > 0 increases. For specific values of interval probabil-

ities see Table 2 where the values Aν(z) =
z
∫

−z
f2:3(t) dt are numerically computed for

z ∈ {1.5, 100, 103, 104, 106}, shape/ tail parameter p = 1
2
, and dg gPT7;M,ν with parame-

ters M = 13
2

and ν ∈ {1, 2, 3}. If M is constant and ν > 0 increases, such a manner of

heaviness of tails can be observed in all cases of Figure 3.

5 Proofs

In order to proof the assertions from Section 3, the general method of proof and some

basics on applying this method to order statistics are presented in Sections 5.1 and 5.2,

respectively. Afterwards, the claimed results on the distributions of order statistics for

three dependent rvs and extreme value statistics for four dependent rvs are established

whereas the details of proofs decrease in quantity in later parts of these sections.

5.1 Basics of the geometric method of proof

Let T : Rn → R be any statistic and A(t) = {x ∈ R
n : T (x) < t} a sublevel set (sls)

generated by it. If X ∼ Φg,p with an arbitrary dg g, the cdf of T (X) is

FT (t) = Φg,p (A(t)) , t ∈ R.

14



The geometric measure representation in Richter (2009), with notations as described in

Section 2 suitably adapted to the ones used in Richter (2014b) and here, applies

Φg,p (A(t)) = ωn,p

∞
∫

0

Fp (A(t), r) rn−1g(r) dr (3)

where the ln,p-sphere intersection-proportion function (ipf) Fp : (0,∞) → [0,∞) is de-

fined on Bn by

r 7→ Fp (A, r) =
Op

([

1
r
A
]

∩ Sn,p
)

Op (Sn,p)
.

According to Richter (2009), the ln,p-generalized surface content is defined on Bn by

Op(A) =
∫

G(A∩S−
n,p)



1 −
n−1
∑

j=1

|xj|p




1−p

p

dx +
∫

G(A∩S+
n,p)



1 −
n−1
∑

j=1

|xj|p




1−p

p

dx

where

G(A) := {(x1, . . . , xn−1) ∈ Kn−1,p : ∃ xn ∈ R : (x1, . . . , xn) ∈ A}

and S+(−)
n,p = {x ∈ Sn,p : xn ≥ (≤) 0}. Hence,

FT (t) =

∞
∫

0

Op

([

1

r
A(t)

]

∩ Sn,p

)

rn−1g(r) dr.

Since Op

([

1
r
A(t)

]

∩ Sn,p
)

does not depend on the dg g, this representation proves the

first part of Lemma 1, i.e. (1) and the independence of the function f from the dg g,

whereas T is chosen as an arbitrary order statistic. The second part of Lemma 1 follows

by the Leibniz integral rule.

Now, we prepare for the proofs of the results from Sections 3.1 and 3.2. With the

help of the ln−1,p-spherical coordinate transformation SPH(n−1)
p : [0,∞) × [0, π)×(n−3) ×

[0, 2π) → R
n−1 and its corresponding inverse mapping, see Richter (2007), the cdf of

T (X) allows the general representation

FT (t) =

∞
∫

0





∫

M−
(t,r)

h̃(ρ, ϕ) d(ρ, ϕ) +
∫

M+
(t,r)

h̃(ρ, ϕ) d(ρ, ϕ)



rn−1g(r) dr (4)

where h̃(ρ, ϕ) = (1 − ρp)
1−p

p J
(

SPH(n−1)
p

)

(ρ, ϕ),

M
+(−)
(t,r) =

(

SPH(n−1)
p

)−1
(

G
([

1

r
A(t)

]

∩ S+(−)
n,p

))

,
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and

J
(

SPH(n−1)
p

)

(ρ, ϕ) = ρn−2
n−2
∏

i=1

(sinϕi)
n−2−i

(Np(ϕi))
n−i

is the Jacobian of SPH(n−1)
p . Thus, it remains to determine the domains of integration

M+
(t,r) and M−

(t,r) for all cases considered in Sections 3.1 and 3.2.

5.2 General representations of the domains of integration M
+(−)
(t,r)

As it can be seen from Section 5.1, studying the sets G(
[

1
r
A(t)

]

∩ S−
n,p) and G(

[

1
r
A(t)

]

∩
S+
n,p) plays a fundamental role for the application of the geometric measure representation

formula. The present section is aimed to prove general representations of these sets if the

generating statistic is any order statistic. More specific representations will be derived

from it in the next section and will be used there to prove results for all cases considered

in Sections 3.1 and 3.2.

For k ∈ {1, . . . , n}, let

Ank(t) = {x ∈ R
n : at least k components of x are less than t} , t ∈ R,

be a sls generated by the kth order statistic of an n-dimensional random vector. An

illustration of the set Ank(t) can be seen in Figure 5 for (n, k) ∈ {(3, 3), (3, 2)} and t < 0.

b (t, t, t)

A3

3
(t)

x

y

z

(a) Sls of the maximum

b
(t, t, t)

A3

2
(t)

x

y

z

(b) Sls of the median

Figure 5: Sls of order statistics of three variables and t < 0.

Remark 1. Let X be a continuous and symmetrically with respect to the origin dis-

tributed random vector, X ∼ −X, and let Fk:n(t) = P (Xk:n < t) be the cdf of the

kth order statistic Xk:n of X. Then, for k = 1, . . . , n and every t ∈ R, Fn−k+1,n(t) =

1 − Fk,n(−t), and

Fk:n(t) = P (X ∈ Ank(t)) .
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Lemma 2. If t ≤ 0, then

G
([

1

r
Ank(t)

]

∩ S−
n,p

)

=



K̊n−1,p





p

√

1 −
∣

∣

∣

∣

t

r

∣

∣

∣

∣

p


 ∩ 1

r
An−1
k−1(t)



 ∪
[

Kn−1,p ∩ 1

r
An−1
k (t)

]

,

G
([

1

r
Ank(t)

]

∩ S+
n,p

)

= Kn−1,p ∩ 1

r
An−1
k (t)

and, if t > 0,

G
([

1

r
Ank(t)

]

∩ S−
n,p

)

= Kn−1,p ∩ 1

r
An−1
k−1(t),

G
([

1

r
Ank(t)

]

∩ S+
n,p

)

=



Rn−1,p





p

√

1 −
∣

∣

∣

∣

t

r

∣

∣

∣

∣

p


 ∩ 1

r
An−1
k−1(t)



 ∪
[

Kn−1,p ∩ 1

r
An−1
k (t)

]

where Aml (t) = ∅ if l = 0 or l > m, Å denotes the topological interior of the set A ⊆ R
n,

Kn,p(ρ) = {x ∈ R
n : |x|p ≤ ρ} the ln,p-ball with p-radius ρ ∈ (0,∞), and

Rn,p(ρa, ρb) = Kn,p(ρb)\Kn,p(ρa) = {x ∈ R
n : ρa < |x|p ≤ ρb}

the ln,p-layer with p-radii ρa < ρb.

Proof. Let t ≤ 0, B1 =
[

1
r
An−1
k−1(t)

]

×
{

xn ∈ R : xn <
t
r

}

, and B2 =
[

1
r
An−1
k (t)

]

×R. Then
1
r
Ank(t) = B1 ∪ B2 where B1 = ∅, if k = 1, and B2 = ∅, if k = n. Note that, for every

x = (x1, . . . , xn)T ∈ B1 ∩ S−
n,p,

(x1, . . . , xn−1)
T ∈ 1

r
An−1
k−1(t) , xn <

t

r
≤ 0 , and

n
∑

i=1

|xi|p = 1.

Since |xn|p >
∣

∣

∣

t
r

∣

∣

∣

p ≥ 0, it follows

(x1, . . . , xn−1)
T ∈ 1

r
An−1
k−1(t) and

n−1
∑

i=1

|xi|p < 1 −
∣

∣

∣

∣

t

r

∣

∣

∣

∣

p

.

That is why every element of

G(B1∩S−
n,p) =

{

(x1, . . . , xn−1)
T ∈ R

n−1 : ∃! xn ≤ 0 :
n
∑

i=1

|xi|p = 1, xn <
t

r
, (x1, . . . , xn−1)

T ∈ 1

r
An−1
k−1(t)

}

is an element of

C1 := K̊n−1,p





p

√

1 −
∣

∣

∣

∣

t

r

∣

∣

∣

∣

p


 ∩ 1

r
An−1
k−1(t).
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In other words, G(B1 ∩ S−
n,p) ⊆ C1. Let (x1, . . . , xn−1)

T ∈ C1. Choosing ρp =
n−1
∑

i=1
|xi|p, it

follows 0 ≤ ρ < p

√

1 −
∣

∣

∣

t
r

∣

∣

∣

p
. Further, one can uniquely choose xn = − p

√
1 − ρp < 0 such

that ρp + |xn|p = 1, i.e. (x1, . . . , xn−1, xn) ∈ S−
n,p. Then, xn <

t
r

and C1 ⊆ G(B1 ∩ S−
n,p).

Hence,

G(B1 ∩ S−
n,p) = K̊n−1,p





p

√

1 −
∣

∣

∣

∣

t

r

∣

∣

∣

∣

p


 ∩ 1

r
An−1
k−1(t).

For any x = (x1, . . . , xn)T ∈ B2 ∩ S−
n,p,

(x1, . . . , xn−1)
T ∈ 1

r
An−1
k (t) and xn ≤ 0.

As G(B2 ∩ S−
n,p) = {(x1, . . . , xn−1)T ∈ R

n−1 : ∃! xn ≤ 0 :
n
∑

i=1
|xi|p = 1, (x1, . . . , xn−1)

T ∈
1
r
An−1
k (t)}, for any (x1, . . . , xn−1)

T ∈ G(B2 ∩ S−
n,p)

(x1, . . . , xn−1)
T ∈ C2 := Kn−1,p ∩ 1

r
An−1
k (t),

i.e., G(B2 ∩ S−
n,p) ⊆ C2. Let (x1, . . . , xn−1)T ∈ C2. Choosing ρp =

n−1
∑

i=1
|xi|p, it follows

0 ≤ ρ ≤ 1. Further, let xn = − p
√

1 − ρp ≤ 0 such that ρp + |xn|p = 1. Because of

(x1, . . . , xn−1)T ∈
[

1
r
An−1
k (t)

]

⊆ C2, we have (x1, . . . , xn−1, xn)T ∈
[

1
r
An−1
k (t)

]

× {z ∈
R : z ≤ 0} ⊆ B2. Thus, C2 ⊆ G(B2 ∩ S−

n,p), and consequently,

G(B2 ∩ S−
n,p) = Kn−1,p ∩ 1

r
An−1
k (t).

Summarizing the above results, the first assertion of the lemma follows. The other cases

can be dealt with in an analogous way.

The next step of analyzing the sets G(
[

1
r
A(t)

]

∩ S−
n,p) and G(

[

1
r
A(t)

]

∩ S+
n,p) consists

of numerous case studies. Because the number of cases increases if the number of rvs

does, we restrict the outline of this way mainly to the case of three rvs.

5.3 Specific representations of the domains of integration for

considering the maximum of three dependent rvs

This section demonstrates that, in the case of three dependent rvs, the geometric method

of proof applies as successful as in Müller and Richter (2015) where the case of sample

size two was dealt with. The present calculations may also serve as an orientation for

the derivation of analogous results in more general star-shaped model classes.

Proof of Theorem 1. To get the exact cdf of the considered statistic, according to equa-
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tion (4), it remains to represent the sets G
([

1
r
A3

3(t)
]

∩ S−
3,p

)

, generally satisfying the

representations of Lemma 2 for k = n = 3 and G
([

1
r
A3

3(t)
]

∩ S+
3,p

)

, in l2,p-spherical

coordinates with arbitrary r ∈ (0,∞). For this purpose, let

Ri(t) =











x ∈ R
3 : x =

1

r







t
t
t





− λe
(3)
i , λ ≥ 0











,

i ∈ {1, 2, 3}, denote the rays, which represent the dashed edges of 1
r
A3

3(t), see Figure

5(a). Note that, without loss of generality, all figures are drawn throughout this proof

for p = 3.

Case 1: Let t ≤ 0. Because of 1
r

(t, t, t)T /∈ 1
r
A3

3(t), the intersection
[

1
r
A3

3(t)
]

∩ S3,p

is empty if the point 1
r

(t, t, t)T is off or on the l3,p-unit sphere, i.e. 1 ≤ 1
r

p
√

3|t|. Hence,
[

1
r
A3

3(t)
]

∩S3,p 6= ∅ iff r ∈
(

p
√

3|t|,∞
)

, and G
([

1
r
A3

3(t)
]

∩ S+
3,p

)

= ∅ for every r ∈ R+, since
1
r
A3

3(t) ⊂ {x ∈ R
3 : x3 ≤ 0}. The set G

([

1
r
A3

3(t)
]

∩ S−
3,p

)

is shown in Figure 6, where

Pi = Ri(t)∩S3,p and P ′
i = G (Pi) for i ∈ {1, 2, 3}. Note that P1 =

(

−1
r

p

√

rp − 2|t|p, 1
r
t, 1
r
t
)

,

P2 =
(

1
r
t,−1

r
p

√

rp − 2|t|p, 1
r
t
)

, and P3 =
(

1
r
t, 1
r
t,−1

r
p

√

rp − 2|t|p
)

.

Figure 6: The set G
([

1
r
A3

3(t)
]

∩ S−
3,p

)

for t ≤ 0 and r ∈
(

p
√

3|t|,∞
)

.

The rays starting in the origin and passing through the points (z, 0) and
(

z, 1
r
t
)

, and
(

1
r
t, z
)

and (0, z), respectively, enclose angles of the same magnitude α(ρ), where one has

to determine z < 0 such that the point
(

z, 1
r
t
)

belongs to the l2,p-sphere with p-radius

ρ, i.e. ρp = |z|p +
∣

∣

∣

1
r
t
∣

∣

∣

p
. Thus, z = −1

r
p

√

ρprp − |t|p. By the definition of the tangent

function, and making use of the notation at the beginning of Section 3.1,

α(ρ) = αt,r(ρ).
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If r ∈
(

p
√

3|t|,∞
)

, the set G
([

1
r
A3

3(t)
]

∩ S−
3,p

)

satisfies the representation

G
([

1

r
A3

3(t)
]

∩ S−
3,p

)

= SPH(2)
p

({

(ρ, ϕ) : ρ ∈
[

‖P ′
3‖p , ‖P ′

1‖p
]

, ϕ ∈
(

π + αt,r(ρ),
3π

2
− αt,r(ρ)

)})

= SPH(2)
p

({

(ρ, ϕ) : ρ ∈
[

p
√

2|t|
r

,
1

r
p

√

rp − |t|p
]

, ϕ ∈ (ϕa,1(ρ), ϕb,1(ρ))

})

.

Case 2: Let t > 0. We consider
[

1
r
A3

3(t)
]

∩ S3,p.

Case 2.1: Let r ∈ (0, t). Then the l3,p-unit sphere is completely contained in 1
r
A3

3(t).

Therefore, G
([

1
r
A3

3(t)
]

∩ S−
3,p

)

= G
([

1
r
A3

3(t)
]

∩ S+
3,p

)

= K2,p.

Case 2.2: Let r ∈ [t, p
√

2t). This case occurs iff the rays Ri(t), i ∈ {1, 2, 3}, do not

intersect S3,p, but the three planes, which are defined such that each of them contains

exactly two of these rays, intersect the l3,p-unit sphere, i.e. Ri(t) ∩ S3,p = ∅, and

{

(1 − λ)z1 + λz2 ∈ R
3 : z1 ∈ Ri(t), z2 ∈ Rj(t), λ ∈ [0, 1]

}

∩ S3,p 6= ∅

for i, j ∈ {1, 2, 3} with i 6= j. In other words, the range of r for this case ends if the

rays are tangents to S3,p and, without any loss of generality, if R1(t) is a tangent to S3,p,
1
r

(0, t, t) is the boundary point.

(a) G
([

1

r
A3

3(t)
]

∩ S+

3,p

)

(b) G
([

1

r
A3

3(t)
]

∩ S−

3,p

)

Figure 7: The sets in case 2.2.

To achieve representations of the sets G
([

1
r
A3

3(t)
]

∩ S+
3,p

)

and G
([

1
r
A3

3(t)
]

∩ S−
3,p

)

for

r ∈ [t, p
√

2t), see Figure 7. With the help of l2,p-spherical coordinates, we determine z < 0

such that the point
(

z, 1
r
t
)

belongs to the l2,p-sphere with p-radius ρ, i.e. ρp = |z|p+
(

1
r
t
)p

.

Thus, z = −1
r

p
√
ρprp − tp. Analogously to the case t ≤ 0, the angle of the magnitude
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α(ρ), enclosed by the rays starting in the origin and passing through the points (z, 0)

and
(

z, 1
r
t
)

, satisfies

α(ρ) = αt,r(ρ).

Since l2,p-spheres are invariant with respect to rotations of angles
{

k π
2

: k ∈ N

}

around

the origin, the set G
([

1
r
A3

3(t)
]

∩ S+
3,p

)

satisfies for t > 0 and r ∈ [t, p
√

2t) the representa-

tion

G
([

1

r
A3

3(t)
]

∩ S+
3,p

)

= K2,p\
(

K2,p

(

1

r
p
√
rp − tp

)

∪ SPH(2)
p (M)

)

where

M =
{

(ρ, ϕ) : ρ ∈
[

t

r
, 1
]

, ϕ ∈
[

α(ρ) − π

2
,
π

2
− α(ρ)

]

∪ [α(ρ), π − α(ρ)]
}

.

As the set 1
r
A3

3(t) is unbounded with respect to the x3-direction, G
([

1
r
A3

3(t)
]

∩ S−
3,p

)

satisfies

G
([

1

r
A3

3(t)
]

∩ S−
3,p

)

= K2,p\SPH(2)
p (M)

for r ∈ [t, p
√

2t). Using the symmetry, one gets the claimed result.

Case 2.3: Let r ∈ [ p
√

2t, p
√

3t). The range of r for this case starts when the rays Ri(t),

i ∈ {1, 2, 3}, are tangents to S3,p and ends before the origin 1
r

(t, t, t) of the rays is on

S3,p. Let {Ti,1, Ti,2} = Ri(t)∩S3,p denote the set of points of intersection of the ray Ri(t)

and the l3,p-unit sphere and T ′
i,j = G (Ti,j) for i ∈ {1, 2, 3} and j ∈ {1, 2}. Analogously

to the case t ≤ 0, T1,j =
(

(−1)j 1
r

p
√
rp − 2tp, 1

r
t, 1
r
t
)

, T2,j =
(

1
r
t, (−1)j 1

r
p
√
rp − 2tp, 1

r
t
)

,

and T3,j =
(

1
r
t, 1
r
t, (−1)j 1

r
p
√
rp − 2tp

)

for j ∈ {1, 2}, and Ti,1 = Ti,2, i ∈ {1, 2, 3}, if

r = p
√

2t. Figure 8 illustrates that, as in the case before, the sets G
([

1
r
A3

3(t)
]

∩ S+
3,p

)

and

G
([

1
r
A3

3(t)
]

∩ S−
3,p

)

allow for r ∈ [ p
√

2t, p
√

3t) the representations

G
([

1

r
A3

3(t)
]

∩ S+
3,p

)

= SPH(2)
p

({

(ρ, ϕ) : ρ ∈
(

1

r
p
√
rp − tp, 1

]

, ϕ ∈ (ϕa,4(ρ), ϕb,4(ρ))
})

∪ SPH(2)
p

({

(ρ, ϕ) : ρ ∈
[

1

r
p
√
rp − tp,

p
√

2t

r

]

, ϕ ∈ (ϕa,3(ρ), ϕb,3(ρ))

})

and

G
([

1

r
A3

3(t)
]

∩ S−
3,p

)

= SPH(2)
p

({

(ρ, ϕ) : ρ ∈
[

t

r
, 1
]

, ϕ ∈ (ϕa,4(ρ), ϕb,4(ρ))
})

∪ SPH(2)
p

({

(ρ, ϕ) : ρ ∈
[

t

r
,

p
√

2t

r

]

, ϕ ∈ (ϕa,3(ρ), ϕb,3(ρ))

})

∪K2,p

(

t

r

)

.
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(a) G
([

1

r
A3

3(t)
]

∩ S+

3,p

)

(b) G
([

1

r
A3

3(t)
]

∩ S−

3,p

)

Figure 8: The sets in case 2.3.

Case 2.4: Let r ∈ [ p
√

3t,∞), i.e. the range of r for this case begins when the point
1
r

(t, t, t) is on the l3,p-unit sphere. Unless for r = p
√

3t, every ray Ri(t) has precisely

one point of intersection with S3,p which is denoted by Qi, i ∈ {1, 2, 3}. Then Q1 =
(

−1
r

p
√
rp − 2tp, 1

r
t, 1
r
t
)

, Q2 =
(

1
r
t,−1

r
p
√
rp − 2tp, 1

r
t
)

, and Q3 =
(

1
r
t, 1
r
t,−1

r
p
√
rp − 2tp

)

.

Let Q′
i = G (Qi), i ∈ {1, 2, 3}, and let the angle α(ρ) be defined as before. Figure 9

illustrates that the sets G
([

1
r
A3

3(t)
]

∩ S+
3,p

)

and G
([

1
r
A3

3(t)
]

∩ S−
3,p

)

can be represented

as

(a) G
([

1

r
A3

3(t)
]

∩ S+

3,p

)

(b) G
([

1

r
A3

3(t)
]

∩ S−

3,p

)

Figure 9: The sets in case 2.4.
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G
([

1

r
A3

3(t)
]

∩ S+
3,p

)

= SPHp

({

(ρ, ϕ) : ρ ∈
(

1

r
p
√
rp − tp, 1

]

, ϕ ∈ (ϕa,4(ρ), ϕb,4(ρ))
})

and

G
([

1

r
A3

3(t)
]

∩ S−
3,p

)

= SPHp

({

(ρ, ϕ) : ρ ∈
[

1

r
t, 1
]

, ϕ ∈ (ϕa,4(ρ), ϕb,4(ρ))
})

∪ SPHp

({

(ρ, ϕ) : ρ ∈
[

1

r
t,

1

r
p
√

2t
]

, ϕ ∈ (ϕa,3(ρ), ϕb,3(ρ))
})

∪K2,p

(

1

r
t
)

.

5.4 Maximum pdfs as derivatives of parameter integrals

In this section, we establish the pdf of the maximum statistic in the case of three depen-

dent rvs, see Corollary 1, taking the derivative of the parameter integral representation

of the corresponding cdf given in Theorem 1.

Proof of Corollary 1. Case 1: Let t < 0. Using the notation P (t, r) = r2g(r)f(t, r),

function f from Theorem 1, and the Leibniz integral rule,

f3:3(t) =

∞
∫

p
√

3|t|

r2g(r)
∂f

∂t
(t, r) dr + 3

3
p t2g(

p
√

3|t|)f(t,
p
√

3|t|).

Note that f(t, p
√

3|t|) = 0 and, because of αt,r
( p

√
2|t|
r

)

= π
4
,

∂f

∂t
(t, r) =

1
r

p
√
rp−(−t)p

∫

p√2|t|
r

ρ (1 − ρp)
1−p

p









∂

∂t

3π
2

−αt,r(ρ)
∫

π+αt,r(ρ)

dϕ

N2
p (ϕ)









dρ

+ rp−3 (rp − |t|p)
2−p

p

3π
2

−βt,r
∫

π+βt,r

dϕ

N2
p (ϕ)

.

Therefore, in the case (t, r) ∈ (−∞, 0) ×
(

p
√

3|t|,∞
)

, it follows that ∂f
∂t

(t, r) = k(t, r).

Case 2: Let t > 0. Let f1, f2, f3, and f4 denote the restrictions of f (w.r.t. the

variable r) to the intervals (0, t), [t, p
√

2t), [ p
√

2t, p
√

3t), and [ p
√

3t,∞), respectively, and
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let

Pi(t, r) = r2g(r)fi(t, r) and Si(t) =

∞
∫

0

Pi(t, r) dr

for i = 1, . . . , 4. In this part of the proof, the four summands S1(t), . . . , S4(t) are

considered separately. Note that αt,r
(

1
r

p
√

2t
)

= π
4

and lim
ρց 1

r
t
αt,r(ρ) = π

2
. We consider

γ1 = αt, p
√

2t(ρ) = arctan
(

1
p
√

2ρp−1

)

and γ2 = αt, p
√

3t(ρ) = arctan
(

1
p
√

3ρp−1

)

. The first

summand satisfies
dS1

dt
(t) = ω3,pt

2g(t),

and the second summand fulfills

dS2

dt
(t) =

p
√

2t
∫

t

r2g(r)
∂f2

∂t
(t, r) dr +

p
√

2 P2(t,
p
√

2t) − P2(t, t).

Further, P2(t, t) = ω3,pt
2g(t),

P2(t,
p
√

2t) = 2
2
p t2g(

p
√

2t)









ω3,p

(

1 − 2− 2+p

p

)

− 8

1
∫

p
√

1
2

π−γ1
∫

π
2

ρ (1 − ρp)
1−p

p

(Np(ϕ))2 dϕ dρ









,

and

∂f2

∂t
(t, r) = ω3,p

tp−1

r2
(rp − tp)

2−p

p + 8

1
∫

1
r
t

ρ (1 − ρp)
1−p

p α′
t,r(ρ)N

−2
p (π − αt,r(ρ)) dρ

= ω3,p
tp−1

r2
(rp − tp)

2−p

p + 4kρ,6(
t

r
, 1).

Taking the derivative of the fourth summand yields

dS4

dt
(t) =

∞
∫

p
√

3t

r2g(r)
∂f4

∂t
(t, r) dr − p

√
3 P4(t,

p
√

3t)

where

P4(t,
p
√

3t) = 3
2
p t2g(

p
√

3t)



 ω3,p
1

2

(

1

3

)
2
p

+

1
∫

p
√

2
3

3π
2

+γ2
∫

π−γ2

ρ (1 − ρp)
1−p

p

(Np(ϕ))2 dϕ dρ

+

1
∫

p
√

1
3

3π
2

+γ2
∫

π−γ2

ρ (1 − ρp)
1−p

p

(Np(ϕ))2 dϕ dρ+

p
√

2
3

∫

p
√

1
3

γ2
∫

π
2

−γ2

ρ (1 − ρp)
1−p

p

(Np(ϕ))2 dϕ dρ



 .
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The partial derivative ∂f4

∂t
satisfies the representation

∂f4

∂t
(t, r) = ω3,p

1

r2
t− rp−3t (rp − tp)

1−p

p 2π(p) + kρ,4(
1

r
p
√
rp − tp, 1)

+ kρ,4(
t

r
, 1) + kρ,3(

t

r
,

p
√

2t

r
)

+ kψ(π − βt,r,
3π

2
+ βt,r)

where kρ and kψ are introduced in Corollary 1.

The third summand S3 satisfies

dS3

dt
(t) =

p
√

3t
∫

p
√

2t

r2g(r)
∂f3

∂t
(t, r) dr +

p
√

3 P3(t,
p
√

3t) − p
√

2 P3(t,
p
√

2t)

where P3(t, p
√

2t) = P2(t,
p
√

2t) and P3(t, p
√

3t) = P4(t,
p
√

3t). With

f̃3(t, r) =

1
r

p
√

2t
∫

1
r

p
√
rp−tp

αt,r(ρ)
∫

π
2

−αt,r(ρ)

ρ (1 − ρp)
1−p

p

(Np(ϕ))2 dϕ dρ,

it follows f3 = f4 + f̃3 and ∂f3

∂t
= ∂f4

∂t
+ ∂f̃3

∂t
, where

∂f̃3

∂t
(t, r) = kρ,3(

1

r
p
√
rp − tp,

p
√

2t

r
) + kψ(

π

2
− βt,r, βt,r).

Summarizing all intermediate results, the corollary follows from

f3:3(t) =
dS1

dt
(t) +

dS2

dt
(t) +

dS3

dt
(t) +

dS4

dt
(t).

5.5 Median for n = 3 and Maximum for n = 4

Following the same line as in the last two sections, we prove here the representations of

the cdf and the pdf of the median in the case of three dependent rvs, and the cdf of the

maximum in the case of four dependent rvs. This proves Theorem 2, Corollary 2 and

Theorem 3. Here, calculations will not be given as detailed as in the preceding sections.

Proof of Theorem 2. In an analogous manner as in the proof of Theorem 1, we use

equation (4) for the median statistic in the case of n = 3 and represent the sets

G
([

1
r
A3

2(t)
]

∩ S−
3,p

)

and G
([

1
r
A3

2(t)
]

∩ S−
3,p

)

, given in Lemma 2 for k = 2 and n = 3,

for an arbitrary r ∈ (0,∞) using l2,p-spherical coordinates. In order to do this, if t ≤ 0,
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the cases to be distinguished are r ∈ (0, p
√

2|t|], r ∈ ( p
√

2|t|, p
√

3|t|], and r ∈ ( p
√

3|t|,∞).

In the first case,
[

1
r
A3

2(t)
]

∩ S
−(+)
3,p = ∅. In the other two cases, the gray-colored sets

shown in Figures 10 have to be considered. Here, in contrast to the proof of Theorem 1,

but again without loss of generality, figures are drawn for p = 3
2
.

If t > 0, the different cases are r ∈ (0, p
√

2t], r ∈ ( p
√

2t, p
√

3t], and r ∈ ( p
√

3t,∞). In

the first case,
[

1
r
A3

2(t)
]

∩ S
−(+)
3,p = S

−(+)
3,p , and the sets G

([

1
r
A3

2(t)
]

∩ S
−(+)
3,p

)

in the other

cases are shown in Figure 11. Note that there is a helpful symmetry relation between

the cases t ≤ 0 and t > 0.

Proof of Corollary 2. Taking the derivative of F2:3(t) directly yields the pdf f2:3(t).

Proof of Theorem 3. With the help of equation (4), for n = 4 and the maximum statistic,

this proof follows analogously to that of Theorem 1 or 2. The sets G
([

1
r
A4

4(t)
]

∩ S−
4,p

)

and G
([

1
r
A4

4(t)
]

∩ S−
4,p

)

given in Cartesian coordinates by Lemma 2 need to be expressed

using l3,p-spherical coordinates. To this end, we consider the separate cases r ∈ (0, p
√

4|t|]
and r ∈ ( p

√
4|t|,∞), if t ≤ 0, and r ∈ (0, t), r ∈ [t, p

√
2t), r ∈ [ p

√
2t, p

√
3t), r ∈ [ p

√
3t, p

√
4t),

and r ∈ [ p
√

4t,∞), if t > 0.

6 Discussion

In Müller and Richter (2015), the exact extreme value distributions of the components of

l2,p-symmetrically distributed random vectors are derived explicitly. A reformulation in

terms of skewed distributions was proved in Batún-Cutz et al. (2013). In the present pa-

per, assuming again the model class of continuous ln,p-symmetric distributions, the exact

distributions of order statistics for three dependent and of extreme value statistics for

four rvs are derived applying the geometric measure representation from Richter (2009)

(a) r ∈ ( p
√

2|t|, p
√

3|t|] (b) r ∈ ( p
√

2|t|, p
√

3|t|]
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directly. In contrast to other applications of this geometric method, results and proofs

in the case of order statistics become increasingly involved if the dimension increases.

This explains the need of finding a more advanced method to make use of the geometric

measure representation in higher dimensions. In the spherical case p = 2, such a method

was developed for n = 2 in Günzel et al. (2012) and, generalizing this, for arbitrary n in

Richter and Venz (2014). We hope to report a p-generalization of this method in another

paper.
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(c) r ∈ ( p
√

3|t|, ∞) (d) r ∈ ( p
√

3|t|, ∞)

Figure 10: The sets G
([

1
r
A3

2(t)
]

∩ S+
3,p

)

, on the left hand side, and G
([

1
r
A3

2(t)
]

∩ S−
3,p

)

,
on the right hand side, if t ≤ 0.

30



(a) r ∈ ( p
√

2t,
p
√

3t] (b) r ∈ ( p
√

2t,
p
√

3t]

(c) r ∈ ( p
√

3t, ∞) (d) r ∈ ( p
√

3t, ∞)

Figure 11: The sets G
([

1
r
A3

2(t)
]

∩ S+
3,p

)

, on the left hand side, and G
([

1
r
A3

2(t)
]

∩ S−
3,p

)

,
on the right hand side, if t > 0.
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