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approach known for elliptically contoured distributions. On this basis, distri-
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extremely far tails as well as tail indices are discussed, and new parameters

of multivariate tail behavior are introduced.
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1 Introduction

Extreme value statistics are of interest not only in probability theory and mathemati-

cal statistics, but also in many fields of natural sciences and technique. While Fortin

and Clusel (2015) present numerous applications of extreme value statistics to physics,

Shibata (1994), Majumdar and Krapivsky (2002), and Castillo (2012) deal with appli-

cation to corrosion, computer science, and engineering, respectively. Furthermore, the

appearance of extreme value statistics in finance, insurance and actuarial science is dealt

with for instance in Embrechts, Klüppelberg, and Mikosch (1997) and Reiss and Thomas

(1997). For an application to reliability theory, see Müller and Richter (2015b). General

introductions into and surveys over the theory and practice of extreme value distribu-

tions are presented, among other, in David and Nagaraja (2003), Leadbetter, Lindgren,

and Rootzén (1983), Galambos (1987), Pfeifer (1989), Reiss (1989), Reiss, Haßmann,

and Thomas (1994), and Galambos, Lechner, and Simiu (1994).
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Distributions of extreme value statistics of independent and identically distributed

random variables (rvs) are already determined in Gumbel (1958). The case of correlated

rvs with a joint normal distribution is dealt with, i.a., in Gupta and Pillai (1965),

Nagaraja (1982) and Kella (1986).

The probability density functions (pdfs) of the maximum statistic and of linear com-

binations of order statistics of arbitrary absolutely continuous dependent rvs, with an

emphasis on elliptically contoured sample distributions, are considered in Arellano-Valle

and Genton (2008) and Arellano-Valle and Genton (2007). These considerations are

followed up in Jamalizadeh and Balakrishnan (2010) and some paper referred to there,

and further developed by representing the results with the help of skewed distributions.

Earlier results dealing with this relationship can be found in Loperfido (2002) where the

two-dimensional Gaussian case is considered. A geometric approach to bivariate and

multivariate skewed elliptically contoured distributions is presented in Günzel, Richter,

Scheutzow, Schicker, and Venz (2012) and Richter and Venz (2014), respectively, where

the measure-of-cone representation of these distributions is worked out.

In Müller and Richter (2015a), some steps of the development of the theory of

ln,p-symmetric distributions and their applications are reviewed. An emphasis of this

overview is on geometric measure representations and on a methodological study of their

applications to the derivation of exact statistical distributions if samples follow a joint

continuous ln,p-symmetric distribution. Such exact results extend those valid for multi-

variate spherically symmetric sample distributions. Notice that results on exact extreme

value distributions holding if the sample distribution is an arbitrary element of the larger

class of elliptically contoured distributions may be again further extended assuming a p-

generalized elliptically contoured sample distribution. The latter distributions appeared

already in Section 3.5 in Arellano-Valle and Richter (2012) and were studied from the

point of view of star-shaped distributions in Richter (2014) and from that of convex

and radially concave contoured distributions in Richter (2015a). All these distribution

classes provide more flexibility in modeling data. For more details, we refer to Section

2.

Skewed ln,p-symmetric distributions are introduced in Arellano-Valle and Richter

(2012) and applied to the maximum distribution of continuous l2,p-symmetrically dis-

tributed random vectors in Batún-Cutz, González-Farías, and Richter (2013). From a

certain point of view, the aim of the present paper is to extend this result to the finite

number n of dependent rvs following a joint continuous ln,p-symmetric distribution. To

this end, a geometric approach to skewed ln,p-symmetric distributions, following and

generalizing main ideas of the measure-of-cone representations from Richter and Venz

(2014) in the present situation, will be developed and, afterwards, used for the derivation

of extreme value distributions. From another point of view, our present results extend,
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although in a slightly different form, those derived in Müller and Richter (2015a) for

three or four dependent random variables to the case of an arbitrary finite number of

dependent rvs following a joint continuous ln,p-symmetric distribution. As an additional

result of the present paper it becomes obvious that the explicit representations of distri-

butions of extreme value statistics derived in the two earlier papers of the authors may

be considered as representations of skewed distributions being alternatives to the known

ones.

In order to represent maximum distributions in terms of skewed distributions, there

are two basic approaches. On the one hand, the authors of Batún-Cutz et al. (2013)

present a full-length proof of transforming the result on the maximum pdf from Müller

and Richter (2015b) directly into the language of skewed distributions. To this end, they

start from the Laplace and Gaussian cases, respectively, and extend the results, passing

the two-dimensional p-power exponential case, stepwise in quick succession to the l2,p-

symmetric case with an arbitrary density generator (dg). On the other hand, the authors

of Günzel et al. (2012) and Richter and Venz (2014) deduce a certain measure-of-cone

representation of skewed elliptically contoured distributions.

If one compares the numerous applications of geometric measure representation done

so far in the literature, one may distinguish between the direct and more advanced

applications. To roughly define these terms, direct applications deal with immediate

calculations of the so called intersection proportion function of a particular random event

under consideration, and more advanced applications deal with types of intersection

proportion functions being typical for whole classes of random events. While the small

sample studies in the earlier papers of the authors belong to the direct type of applications

of the geometric measure representation, the present paper deals with a more advanced

one in Section 5.2.

The rest of the present paper is organized as follows. In Section 2, general information

about the considered class of ln,p-symmetric distributions and the corresponding class of

skewed distributions are given. Based on the ln,p-symmetric model assumption, in Section

3, the cumulative distribution function (cdf) and the pdf of extreme value statistics for a

finite number of dependent rvs are considered. The density of the maximum is graphically

illustrated for several choices of dgs of the l3,p-symmetric sample distributions and for

certain values of the shape/ tail parameter p > 0. Studying the asymptotic behavior of

the pdf of the maximum statistic of the components of an n-dimensional p-generalized

Gaussian distributed random vector is another aim of Section 3. In Section 4.1, the

figures of the maximum pdf of three rvs following a joint l3,p-symmetric Pearson Type

VII or Kotz type distribution are discussed w.r.t. the heaviness of their tails. The

tail index and two new parameters describing the tail behavior of some ln,p-symmetric

distributions, and the centers of l3,5-symmetric Kotz type distributions are considered
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in Sections 4.2 and 4.3, respectively. In Section 5, first, a geometric measure-of-cone

representation of skewed ln,p-symmetric distributions is introduced leading afterwards to

an advanced geometric method of proof. Second, based upon this, the results of Section

3 are proved and the advanced geometric method of proof is concisely compared to the

direct one from Müller and Richter (2015a). In Section 6, some conclusions are drawn

from the results of the present paper. Appendix A provides density generators of and

some more basic facts on subclasses of ln,p-symmetric distributions. Appendix B deals

with the influence which parameters of density generators have onto the heaviness or

lightness of multivariate distribution tails.

2 Preliminaries

In this section, the model class of ln,p-symmetric distributions and the class of skewed ln,p-

symmetric distributions are introduced and some of their basic properties are recalled.

Throughout this paper, let p > 0 be arbitrary but fixed and let |x|p =
(

n
∑

k=1
|xk|p

)
1
p

,

x = (x1, . . . , xn)T ∈ R
n, denote the p-functional which is a norm if p ≥ 1 and, according to

Moszyńska and Richter (2012), an antinorm if p ∈ (0, 1). A function g : (0, ∞) → (0, ∞)

satisfying the assumption 0 < I(g) < ∞ is called a density generating function (dgf) of

an n-variate distribution where I(g) =
∞
∫

0
rn−1g(r) dr.

An random vector X : Ω → R
n defined on a probability space (Ω,A, P ) and having

the pdf

fX(x) =
g(|x|p)

ωn,p I(g)
, x ∈ R

n, (1)

is said to follow the continuous ln,p-symmetric distribution with dgf g where ωn,p =
(2Γ( 1

p))
n

pn−1Γ(n
p )

denotes the ln,p-generalized surface content of the ln,p-unit sphere Sn,p = {x ∈
R

n : |x|p = 1}, see Richter (2009).

Further, a dgf g of a continuous ln,p-symmetric distribution meeting the condition

I(g) = 1
ωn,p

is called dg of this distribution, and denoted by g(n). We denote the cdf and

the pdf of the corresponding distribution by Φg(n),p and ϕg(n),p, respectively, where

ϕg(n),p(x) = g(n)(|x|p), x ∈ R
n. (2)

For examples of dgs, for references to the literature on ln,p-symmetric distributions, as

well as for a discussion of a further aspect of notation, we refer to Müller and Richter

(2015a) and the Appendix A, respectively.

Remark 1. According to Richter (2009), an ln,p-symmetrically distributed random vector
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X with dg g(n) satisfies the stochastic representation

X
d
= R U (n)

p (3)

where U (n)
p is n-dimensional p-generalized uniformly distributed on the ln,p-unit sphere

Sn,p, R and U (n)
p are stochastically independent and R is a nonnegative random variable

with pdf

fR(r) = ωn,p rn−1g(n)(r), r > 0. (4)

Here and in what follows X
d
= Z and X ∼ Ψ means that the random vectors X and Z

follow the same distribution law and that the random vector X follows the distribution

law Φ, respectively. Moreover, let In be the n × n unit matrix and 0n the zero vector in

R
n.

Remark 2. The density of the nonnegative random variable Rp is a (g(n), p)-generalization

of the χ2-density,

f
χ

g(n),p
(y) =

ωn,p

p
y

n
p

−1
g(n)

(

y
1
p

)

=
y

n
p

−1
g(n)

(

y
1
p

)

∞
∫

0
ρ

n
p

−1
g(n)

(

ρ
1
p

)

dρ
, y > 0.

Having in mind the slight change of notation from Richter (2014) and Müller and Richter

(2015a), respectively, this distribution law was defined for arbitrary dgf g in Richter

(2009) having pdf

fχ
g,p(y) =

y
n
p

−1
g(y)

p
∞
∫

0
rn−1g(rp) dr

=
y

n
p

−1
g(y)

∞
∫

0
ρ

n
p

−1
g(ρ) dρ

, y > 0.

and was considered earlier in Richter (1991, 2007) for the particular cases p = 2 and

g(n) = g
(n)
P E, respectively.

Remark 3. Let X ∼ Φg(n),p. According to Arellano-Valle and Richter (2012), E(X) = 0n

if E(R) is finite and Cov(X) = E(XXT) = σ2
p,g(n)In if E(R2) is finite where σ2

p,g(n) =

τn,pE(R2) is called the univariate variance component and τn,p =
Γ( 3

p)Γ(n
p )

Γ( 1
p)Γ(n+2

p )
. Conse-

quently, the components of X are uncorrelated. The components of X are only indepen-

dent if g(n) = g
(n)
P E, see Remark 5 and Appendix A.

As announced in Section 1, now, we further discuss the connection between ln,p-

symmetric and standardized multivariate elliptically contoured (or spherical) distribu-

tions. As it is well known according to Cambanis, Huang, and Simons (1981), the

Euclidean stochastic representation of an n-dimensional with parameter vector µ ∈ R
n
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and nonnegative definite matrix Σ ∈ R
n×n having rank k elliptically contoured random

vector Z is given by

Z
d
= µ + R U (k)A (5)

where U (k) is uniformly distributed on the unit sphere in R
k ,R ≥ 0 is independent of U (k),

Σ = ATA is a rank factorization of Σ, and the cdf F of R is connected to the characteristic

generator φ of Z by φ(u) =
∞
∫

0
Ωk(r2u) dF (r), u ≥ 0, where Ωk denoted the characteristic

function of U (k). In contrast to (5), a non-Euclidean stochastic representation of Z is

given for regular Σ by

Z
d
= µ + R U (6)

where R and U are independent, R2 follows a g-generalized χ2-distribution which is

defined in Richter (1991), and U follows the ellipsoidal or |·| 1
a
-generalized uniform prob-

ability distribution introduced in Definition 3.2 in Richter (2013). A generalization of

(6) is given in Section 4.7 in Richter (2014) where p-generalized elliptically contoured

distributions are considered. Definition 8 in Section 4.4 of the same paper deals with a

stochastic representation of even more general star-shaped distributions.

It is well known that some elliptical distributions can be obtained as normal variance

mixtures. For the general case, see, e.g., McNeil, Frey, and Embrechts (2005), and for the

particular case of the multivariate skew-t distribution, see Demarta and McNeil (2005).

In Arslan and Genç (2003), a scale mixture expression of exponential power distributions

is given for a generalized-t distribution defined in McDonald and Newey (1988). A

general scale mixture of p-generalized normal distributions is dealt with in Section 3.3 in

Arellano-Valle and Richter (2012) including the special case of p-generalized Student-t

distribution.

For getting a first impression of the heaviness of the multivariate tails of ln,p-symmetric

distributions one may study typical values of the quantile function Qg(n),p : [0, 1] → R

w.r.t. the domain Bn,p =
{

x ∈ R
n : |x|p ≤ 1

}

defined by

Qg(n),p(q) = inf
{

r > 0: Φg(n),p (r Bn,p) ≥ q
}

, q ∈ [0, 1] . (7)

According to (3) and Remark 2,

Qg(n),p(q) = F −1
R (q), q ∈ [0, 1] .

where FR has the density (4). In Appendix B, the quantiles Qg(n),p(q) are computed for

several values of n, different dgs and q ∈ {0.9, 0.95, 0.99, 0.995, 0.999}.

According to the work of Loperfido (2002), Jamalizadeh and Balakrishnan (2010),

Batún-Cutz et al. (2013), and other authors, distributions of extreme value statistics
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are intrinsically connected with certain skewed versions derived from the considered

sample distributions. Skewed versions of ln,p-symmetric distributions are studied in

Arellano-Valle and Richter (2012). To follow these authors, let X =
(

X(1)T

, X(2)T
)

T

be a random vector having a continuous lk+m,p-symmetric distribution with dg g(k+m)

where X(1) : Ω → R
k and X(2) : Ω → R

m. We recall that, differing from (2), the density

of X was represented in Arellano-Valle and Richter (2012) as g(k+m)(|x|pp). Taking, here

and later, this minor change of notation into account, the dg g
(k)
(k+m) the dg of the marginal

distribution of X(1) in R
k satisfies

g
(k)
(k+m)(z) =

ωm,p

p

∞
∫

zp

(y − zp)
m
p

−1
g(k+m)( p

√
y) dy, z ∈ (0, ∞).

Furthermore, for Λ ∈ R
m×k, Γ = (Λ, −Im), and Σ = ΓΓT = Im + ΛΛT, the cdf of ΓX will

be denoted by F (2)
m,p

(

x; Σ, g
(m)
(k+m)

)

, x ∈ R
m. Moreover, for every x(1) ∈ R

k, the conditional

density of X(2) given X(1) = x(1) is

g(k+m)( p

√

|x(1)|pp + |x(2)|pp)

g
(k)
(k+m)(|x(1)|p)

= g
(m)

[|x(1)|p]
(|x(2)|p), x(2) ∈ R

m,

and the corresponding distribution law is Φ
g

(m)

[|x(1)|p]
,p

. Let Y be a random vector following

this distribution, Y ∼ Φ
g

(m)

[|x(1)|p]
,p

, then its cdf is

F (1)
m,p

(

x; g
(m)

[|x(1)|p]

)

=
∫

Rm
+

g
(m)

[|x(1)|p]

(

|x − u|p
)

du, x ∈ R
m.

A k-dimensional random vector Z having a pdf of the form

fZ(z) =
1

F
(2)
m,p(0m; Σ, g

(m)
(k+m))

g
(k)
(k+m)

(

|z|p
)

F (1)
m,p

(

Λz; g
(m)
[|z|p]

)

, z ∈ R
k, (8)

is said to follow the skewed lk,p-symmetric distribution SSk,m,p

(

Λ, g(k+m)
)

with dimen-

sionality parameter m, dg g(k+m) and skewness/ shape matrix-parameter Λ. Further,

the parameter k is called the co-dimensionality parameter and the cdf of Z is denoted

by Fk,m,p

(

·; Λ, g(k+m)
)

.

Notice that F (1)
m,p

(

x; g
(m)

[|x(1)|p]

)

=
∫

v<x
g

(m)

[|x(1)|p]
(|v|p) dv, and that F (2)

m,p

(

0m; Σ, g
(m)
(k+m)

)

=

2−m if Σ is diagonal. The following remark deals with the effects of interchanging columns

or rows in the matrix-parameter Λ and is proven in Section 5.1.

Remark 4. a) Let M1 be a k × k permutation matrix and Z ∼ SSk,m,p

(

Λ, g(k+m)
)

.

Then M1Z ∼ SSk,m,p

(

ΛMT

1 , g(k+m)
)

where ΛMT

1 arises from Λ by interchanging
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columns.

b) Let M2 be a m×m permutation matrix. Then for z ∈ R
k, Fk,m,p

(

z; M2Λ, g(k+m)
)

=

Fk,m,p

(

z; Λ, g(k+m)
)

, i.e. SSk,m,p

(

Λ, g(k+m)
)

= SSk,m,p

(

M2Λ, g(k+m)
)

where M2Λ

arises from Λ by interchanging rows.

According to Arellano-Valle and Richter (2012), skewed lk,p-symmetric distributions

are constructed via selection mechanisms from ln,p-symmetric distributions. Particularly,

if X(1) : Ω → R
k and X(2) : Ω → R

m are again two subvectors of a random vector X,

X ∼ Φg(k+m),p, then

L

(

X(1)

∣

∣

∣

∣

X(2) < ΛX(1)
)

= SSk,m,p

(

Λ, g(k+m)
)

(9)

where L(Y ) denotes the distribution law of the random vector Y . Therefore, part b)

of Remark 4 reflects the exchangeability of the components of an ln,p-symmetrically

distributed random vector within the skewed lk,p-symmetrical distributions.

3 Extreme value distributions for arbitrary finite

sample sizes

We recall that specific results for exact distributions of order statistics of up to three

and extreme value statistics up to four dependent rvs following a joint continuous ln,p-

symmetric distribution, n ∈ {2, 3, 4}, are proved in earlier papers of the authors by

directly applying the geometric measure representation of ln,p-symmetric distributions.

In Section 3.1, exact extreme value distributions are derived if an arbitrary finite num-

ber of dependent rvs follows a continuous ln,p-symmetric distribution. To this end, an

advanced geometric method of proof will be developed in Section 5 following main ideas

for geometrically representing skewed elliptically contoured distributions in Richter and

Venz (2014). In Section 3.2, our results are graphically visualized. On the one hand, fig-

ures of densities are drawn for the special case of jointly trivariate 3-generalized Gaussian

distributed rvs and, on the other hand, for the case of three dependent rvs following a

joint l3,p-symmetric Kotz type and a joint l3,p-symmetric Pearson Type VII distribution,

respectively. Another aim of this section is to provide an idea of the asymptotic behavior

of the maximum pdf for n-variate p-generalized Gaussian sample distribution as n tends

to infinity.
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3.1 Dimension and co-dimension representations

The results of this section reflect strong connections between skewed distributions and

distributions of extremes. Such type of connection can already be seen in Loperfido

(2002), Jamalizadeh and Balakrishnan (2010), and in papers of several other authors.

The present results are derived based upon the geometric measure representation in

Richter (2009). This representation applies directly if only small numbers of dependent

rvs are considered. In Batún-Cutz et al. (2013), the particular result on the maximum pdf

of two dependent rvs being jointly l2,p-symmetrically distributed is transformed directly

into the typical representation of skewed distributions. Here, we use the geometric

representation of ln,p-symmetric measures in a more advanced way. To be more concrete,

we derive from it a measure-of-cone representation of skewed lk,p-symmetric distributions

in Corollary 2, Section 5.

Let E(ν) denote the ν × (n − ν) matrix whose 1st column is 1ν = (1, . . . , 1)T ∈ R
ν and

whose remaining n − ν − 1 columns are ν-dimensional zero vectors.

Theorem 1. If X ∼ Φg(n),p, for every ν ∈ {1, . . . , n − 1}, the cdf Fn:n of the maximum

statistic of the components of X satisfies the representation

Fn:n(t) = (ν + 1)F (2)
ν,p

(

0ν ; Σ, g
(ν)
(n)

)

· Fn−ν,ν,p

(

t1n−ν ; E(ν), g(n)
)

, t ∈ R, (10)

where Σ = Iν + E(ν)E(ν)T

= Iν + 1ν1T

ν.

For arbitrary n ∈ N and p > 0, Theorem 1 provides numerous representations of the

cdf of the maximum statistic from ln,p-symmetrically distributed populations in terms

of skewed distributions. In particular, these are alternatives to that given in Theorem 1

in Müller and Richter (2015b) for n = 2 and Theorems 1 and 3 in Müller and Richter

(2015a) for n = 3 and n = 4, respectively. In the case of n = 2, the equivalence of these

two alternative representations is shown in Batún-Cutz et al. (2013) by direct integral

transformation. Furthermore, in the specific case p = 2 and ν = n − 1, the result of

Theorem 1 is covered by Theorem 7 in Jamalizadeh and Balakrishnan (2010).

Now, we briefly discuss the impact of the parameter ν ∈ {1, . . . , n − 1} in Theo-

rem 1. Recalling that Fn−ν,ν,p

(

t1n−ν ; E(ν), g(n)
)

is the cdf of SSn−ν,ν,p

(

E(ν), g(n)
)

and

considering the construction of skewed ln−ν,p-symmetric distributions via select mecha-

nisms again, X(1) and X(2) in equation (9) are real-valued (n − ν)- and ν-dimensional

subvectors of an ln,p-symmetrically with dg g(n) distributed random vector X, respec-

tively. Hence, the parameter ν defines the dimensionality of the conditioning subvec-

tor in equation (9) and, implicitly, the dimension of the skewed lk,p-symmetric dis-

tribution which is used to represent the maximum cdf in Theorem 1. Especially for

ν = 1, E(1) = e
(n−1)
1

T

where e
(n−1)
j denotes the jth unit vector of Rn−1, and the matrix
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I1 + 111
T

1 = (2) is diagonal. Thus, F
(2)
1,p

(

0; I1 + 111
T

1, g(1)
)

= 1
2

= 1
ν+1

and equation (10)

reads as Fn:n(t) = Fn−1,1,p

(

t1n−1; e
(n−1)
1

T

, g(n)

)

, t ∈ R. Therefore, maximum distribu-

tions for continuous ln,p-symmetric vectors may particularly be represented as skewed

ln−1,p-symmetric distributions. For all the other parameters ν ∈ {2, . . . , n−1}, the matrix

Iν + 1ν1T

ν is not diagonal. Due to this, the normalizing constant F (2)
ν,p

(

0ν ; Iν + 1ν1T

ν , g
(ν)
(n)

)

is not as easy to handle with as in the case ν = 1 and, in general, its exact value is

unknown. Nevertheless, all representations of the maximum cdf given in (10) are well

treatable since the corresponding maximum pdfs, see Corollary 1, do not depend on the

mentioned normalizing constant.

Vice versa, it may be sometimes of interest to read equation (10) in a reverse order,

meaning that for every ν ∈ {1, . . . , n − 1}, the cdf of Z, Z ∼ SSn−ν,ν,p(E(ν), g(n)), at the

particular argument t1n−ν , t ∈ R, satisfies

Fn−ν,ν,p

(

t1n−ν ; E(ν), g(n)
)

=
1

(ν + 1)F
(2)
ν,p

(

0ν ; Σ, g
(ν)
(n)

)Fn:n(t), t ∈ R, (11)

where Σ = Iν +1ν1T

ν and Fn:n denotes the cdf of the maximum statistic of the components

of X, X ∼ Φg(n),p.

Using the direct application of the geometric measure representation shortly discussed

in Section 1, the cdf Fn:n is already determined for n ∈ {2, 3, 4} in earlier papers of

the authors. Thus, by substituting Fn:n on the right hand side of equation (11) for n ∈
{2, 3, 4} by these previous representations, one gets alternative representations of the cdf

Fn−ν,ν,p

(

t1n−ν ; E
(ν)
i , g(n)

)

, t ∈ R, to that following from Section 2 as the componentwise

defined integral of the pdf of SSn−ν,ν,p(E
(ν)
i , g(n)) over the region {z ∈ R

n−ν : z < t1n−ν}.

Summarizing this section up to here, there are n − 1 equivalent possibilities of rep-

resenting the maximum cdf Fn:n using skewed distributions. This effect also occurs in

the representation of the maximum pdf fn:n as it can be seen in the following corollary

being proved in Section 5.2.

Corollary 1. Let X ∼ Φg(n),p. For every t ∈ R and ν ∈ {1, . . . , n − 2},

fn:n(t) = (ν + 1)(n − ν − 1)
∫

z∈D(t)

g
(n−ν)
(n) ( p

√

|t|p + |z|pp)F (1)
ν,p

(

z11ν ; g
(ν)

[ p
√

|t|p+|z|pp]

)

dz

+ (ν + 1)
∫

z∈D(t)

g
(n−ν)
(n) ( p

√

|t|p + |z|pp)F (1)
ν,p

(

t1ν ; g
(ν)

[ p
√

|t|p+|z|pp]

)

dz

where D(t) = {z ∈ R
n−ν−1 : z < t1n−ν−1}. Moreover,

fn:n(t) = n · g
(1)
(n)(|t|) · F

(1)
n−1,p

(

t1n−1; g
(n−1)
[|t|]

)

, t ∈ R. (12)

10



Using the general relation between maximum and minimum statistics if the sample

distribution is symmetric and continuous, and the functions provided by Theorem 1 and

Corollary 1, the minimum cdf and pdf of the components of X, X ∼ Φg(n),p, are given by

F1:n(t) = 1 − Fn:n(−t) and f1:n(t) = fn:n(−t), respectively. In particular, for ν = n − 1,

this yields

f1:n(t) = n · g(1)(|t|) · F
(1)
n−1,p

(

−t1n−1; g
(n−1)
[|t|]

)

, t ∈ R. (13)

In due consideration of the mentioned slight variation of notation for ln,p-symmetric

densities, formula (12) equals for n = 2 the result in Batún-Cutz et al. (2013). It is

worthwhile to note that the structure of our results on extremes of several dependent

variables in (12) and (13) is similar to that of the corresponding results of the pdf of

the maximum and the minimum statistic, respectively, of n independent and identically

distributed rvs, see David and Nagaraja (2003).

Remark 5. Let X be n-dimensional p-generalized Gaussian distributed, X ∼ Φ
g

(n)
P E

,p
with

g
(n)
P E(r) =





p
1− 1

p

2Γ
(

1
p

)





n

exp

{

−rp

p

}

, r > 0.

Further, let ϕp(t) = g
(1)
P E(|t|), t ∈ R, and Φp(t) =

t
∫

−∞
ϕp(s) ds, t ∈ R, denote the pdf and

the cdf of the one-dimensional marginal distribution, respectively. The pdfs (12) and

(13) of the extreme value statistics of the components of X simplify to

fn:n(t) = n · ϕp(t) · (Φp(t))n−1
, t ∈ R,

and

f1:n(t) = n · ϕp(t) · (1 − Φp(t))n−1
, t ∈ R,

respectively. Note that, in these specific cases, our representations (12) and (13) also

follow from David and Nagaraja (2003) since the components of p-generalized Gaussian

distributed random vectors are independent.

3.2 Visualization of the maximum density

In the present section, the pdf of the maximum statistic of dependent, jointly ln,p-

symmetrically distributed rvs is illustrated for some choices of the dg g(n) and the shape/

tail parameter p > 0. Figures 1-3 show the maximum pdf of the components of a

11



three-dimensional p-generalized Gaussian distributed random vector, i.e. choosing the

dg g
(3)
P E, accompanied by histogram plots of samples of sizes from 103 up to 2.5 × 105 for

p ∈
{

1
2
, 1, 3

}

. These Figures do not only demonstrate the numerical correctness of our

evaluations but it also indicate in a certain rough sense how large sample sizes should

be when simulating extreme value densities under non-standard model assumptions.

Figures 4 and 5 visualize the pdf of the maximum statistic of the components of l3,p-

generalized Kotz type and Pearson Type VII, respectively, distributed random vectors

for different values of the parameter p, p > 0. The definitions of the dgs g
(n)
Kt;M,β,γ and

g
(n)
P T 7;M,ν of these subclasses of the ln,p-symmetric distributions are given in the Appendix

A. Note that the present choice of the shape/ tail parameter p and of the parameters

appearing in the definitions of the dgs coincides with that in Figures 2 and 3 in Müller

and Richter (2015a). Thus, one can compare the graphs of the pdf of the maximum

statistics presented here with that of the median statistic drawn there.

Another aim of this section is to give a visual impression of the asymptotic behavior

of the pdf of the maximum statistic for increasing sample sizes. This will be done in

n-dimensional p-generalized normally distributed populations, i.e. in the case of inde-

pendent components. Using the dg g
(n)
P E and the four choices of the parameter p as in

Figures 4 and 5, the impact of an increasing sample size onto the shape of the maximum

pdf is reflected in Figure 6. Furthermore, in this figure, one can perceive the impact of

parameter p which is, on the one hand, a shape parameter and, on the other hand, a tail

parameter since the shape of the multivariate density level sets depends on it and the

tail pdf of the underlying random vector becomes lighter if p increases, respectively.

Note that the axes in Figures 4, 5 and 6 are scaled differently, and that both the

left and the right hand sides of Figures 4(a), 5(a), 5(b) and 6(a) show a black graph as

a respective benchmark. Moreover, note that illustrations of the minimum pdf can be

received if the graphs of the corresponding maximum pdfs are mirrored at the ordinate

axis.

4 Tails and centers of maximum distributions

In this section, we review some of the figures of Section 3.2 in detail. Moreover, we give

additional information on the tail index and on heaviness and on lightness of tails of

ln,p-symmetric distributions.

4.1 Light, heavy and extremely far tails

The influence that the parameter ν > 0 of an l3, 1
2
-symmetric Pearson Type VII distribu-

tion with parameter M = 13
2

has onto the heaviness of the tails of the median distribution

12
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Figure 1: Maximum pdf f3:3 and histogram for p = 1
2
, increasing sample sizes and dg

g
(3)
P E.
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Figure 2: Maximum pdf f3:3 and histogram for p = 1, increasing sample sizes and dg
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(3)
P E.
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Figure 3: Maximum pdf f3:3 and histogram for p = 3, increasing sample sizes and dg
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(3)
P E.
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Figure 4: Maximum pdf f3:3 for p ∈
{

1
2
, 1, 2, 3

}

, dg g
(3)
Kt;M,β,γ , and several choices of the

parameters M > 1 − 3
p
, β > 0, and γ > 0 (black dashed: the special case of trivariate

p-generalized Gaussian distribution).
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Figure 5: Maximum pdf f3:3 for p ∈
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, dg g
(3)
P T 7;M,ν , and several choices of the

parameters M > 3
p

and ν > 0.
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of three dependent rvs is discussed in Section 4 of Müller and Richter (2015a). In the

present section, first, an analog study for the case of the maximum distribution in such

populations is done. Second, we examine the heaviness of the tails of the maximum

distribution from other l3,p-symmetric sample distributions with respect to their param-

eters.
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Figure 6: Maximum pdf fn:n for different n and dg g
(n)
P E if p ∈

{

1
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}

.

Note that the graphs of the right hand side of Figure 5(a) convey the impression that

the visualized densities build a monotonically decreasing sequence of functions. The more

detailed views in Figure 7, however, show the regions of intersection between the black

and the green solid, the black and the green dashed, and the green solid and the green

dashed graphs, being approximately {−8; 52}, {−12; 81}, and {−23; 153}, respectively.
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Figure 7: Some detailed views on the graphs of the right hand side of Figure 5(a).

Correcting a potentially misleading impression coming from considering just the re-

stricted central part of the densities in Figure 5 thus makes it necessary to study the
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far tails of the same distributions. Particularly, Figure 7 emphasizes the increasing

heaviness of tails of the distribution of the maximum statistic of three dependent rvs

following a joint l3, 1
2
-symmetric distribution with dg g

(3)

P T 7; 13
2

,ν
if ν increases. The same

tendency can be seen in the case of l3,1-symmetric Pearson Type VII sample distribution

with constant parameter M = 7
2

and increasing parameter ν. In Table 1, the integral

A
p
M,ν(z1, z2) =

z2
∫

z1

f3:3(t) dt of the maximum pdf f3:3 over some asymmetric intervals [z1, z2]

is numerically computed for l3, 1
2
-symmetric Pearson Type VII distributed populations

with parameters (p, M) ∈
{(

1
2
, 13

2

)

,
(

1, 7
2

)}

and ν ∈ {1, 2, 3} to get a more detailed

numerical impression of the tendency of heaviness of tails.

A
p
M,ν(z1, z2)

z1 −1
2

−5
2

−15 −50 −500 −5 × 103 −104 −5 × 104

z2
3
2

10 100 103 104 105 5 × 105 106

p = 1
2

M =
13
2

ν = 1 0.1070 0.2704 0.5109 0.6968 0.8255 0.9011 0.9311 0.9443
ν = 2 0.0407 0.1407 0.3628 0.5849 0.7559 0.8607 0.9027 0.9213
ν = 3 0.0211 0.0858 0.2747 0.5071 0.7042 0.8300 0.8811 0.9037

p = 1

M =
7
2

ν = 1 0.2940 0.6461 0.8780 0.9569 0.9864 0.9957 0.9978 0.9986
ν = 2 0.1766 0.5252 0.8286 0.9391 0.9807 0.9939 0.9969 0.9981
ν = 3 0.1245 0.4458 0.7915 0.9255 0.9764 0.9925 0.9962 0.9976

Table 1: Heaviness of the extremely far reaching tails of maximum distribution in
jointly l3,p-symmetrically Pearson Type VII distributed populations with (p, M) ∈
{(

1
2
, 13

2

)

,
(

1, 7
2

)}

and ν ∈ {1, 2, 3}.

For the sake of comparison of heaviness of the tails of the median and the maximum

distribution, our present consideration is for the class of l3, 1
2
-symmetric Pearson Type

VII distributions with the same different values of ν > 0 and M = 13
2

as in Section

4 in Müller and Richter (2015a). Equally, interpreting the values in Table 1, one can

concentrate on one of Figures 5(c) and 5(d) and check the same effect of increase of

heaviness of tails if the parameter M > 3
p

is constant and the parameter ν > 0 increases.

According to Table 1, all the three cases in Figure 5(a) cover only a small part of the

entire probability mass. Therefore, the behavior of the graphs outside the considered

interval [−0.5; 1.5] is not clearly predictable. However, for the case of ν = 3, Figure 8

shows the pdf of the maximum statistic of rvs following a joint l3, 1
2
-symmetric distribution

with dg g
(3)

P T 7; 13
2

,3
over the interval [−200; 1000], suggesting a monotonically increasing

behavior over the negative real line and a monotonically decreasing one over the positive

real line. Note that only an extremely small proportion of probability mass generates a

peak of the density function close right to the zero point and that the overwhelming part

of probability mass is seemingly uniformly distributed on an extremely long interval.

Additionally, in Table 2, the integral A
p
M,1(z1, z2) is numerically evaluated for p = 2

and M ∈ {2, 4, 6} and p = 3 and M ∈
{

3
2
, 7

2
, 11

2

}

, respectively and several asymmetric

real intervals [z1, z2] where "≈ 1" denotes the case that the value of A
p
M,1(z1, z2) rounded
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Figure 8: Maximum pdf f3:3 for dg g
(3)

P T 7; 13
2

,3
over the interval [−200; 1000].

to the sixth decimal place equals 1. These values emphasize a decreasing heaviness of

the tails of the maximum distribution in jointly l3,p-symmetrically Pearson Type VII

distributed samples if the parameter M > 3
p

increases and the parameter ν > 0 is

constant.

A
p
M,1(z1, z2)

z1 = −1
4

z1 = −1
2

z1 = −3
4

z1 = −1 z1 = −3
2

z1 = −2 z1 = −3
z2 = 1 z2 = 3

2
z2 = 2 z2 = 5

2
z2 = 9

2
z2 = 6 z2 = 9

p = 2
M = 2 0.389589 0.539507 0.636473 0.701791 0.823962 0.866781 0.910605
M = 4 0.867520 0.964969 0.988921 0.995823 0.999661 0.999914 0.999988
M = 6 0.963251 0.996455 0.999557 0.999925 0.999999 ≈ 1

p = 3
M = 3

2
0.492762 0.681533 0.785176 0.844627 0.932018 0.955714 0.975857

M = 7
2

0.900511 0.985822 0.997757 0.999554 0.999984 0.999998 ≈ 1
M = 11

2
0.965001 0.997886 0.999897 0.999994 ≈ 1

Table 2: Heaviness of the tails of maximum distribution in jointly l3,p-
symmetrically Pearson Type VII distributed populations with (p, M) ∈
{

(2, 2) , (2, 4) , (2, 6) ,
(

3, 3
2

)

,
(

3, 7
2

)

,
(

3, 11
2

)}

and ν = 1.

Finally, Table 3, shows different heaviness of the tails of the distribution of the max-

imum statistic of three jointly l3,1-symmetric Kotz type distributed rvs for the choices

of parameters from Figure 4(b) by numerically computing the integral BM,β,γ(z1, z2) =
z2
∫

z1

f3:3(t) dt of the maximum pdf in such populations. This suggests that the heaviness of

the tails of the maximum distribution decreases if either γ or β increases and increases

if M increases where, in each of the cases, the other two parameters are constant.

4.2 Tail indices

While the tail of the distribution of the univariate maximum statistic in jointly l3,p-

symmetrically Pearson Type VII or Kotz type distributed samples is explored in Section
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BM,β,γ(z1, z2)
z1 = −0.1 z1 = −0.15 z1 = −0.2 z1 = −0.35 z1 = −0.5 z1 = −1
z2 = 0.5 z2 = 0.75 z2 = 1 z2 = 1.5 z2 = 2 z2 = 3.5

M = 1, β = 1, γ = 1 0.245620 0.365919 0.474857 0.657514 0.782533 0.949161
M = 2, β = 2, γ = 2 0.649731 0.859058 0.950510 0.996536 0.999853 ≈ 1
M = 2, β = 2, γ = 5 0.777509 0.954045 0.991331 0.999968 ≈ 1
M = 2, β = 2, γ = 10 0.780351 0.961325 0.992789 0.999999 ≈ 1
M = 2, β = 5, γ = 2 0.880293 0.977946 0.995712 0.999962 ≈ 1
M = 2, β = 10, γ = 2 0.970380 0.997038 0.999646 ≈ 1
M = 5, β = 2, γ = 2 0.456971 0.703103 0.865723 0.984454 0.998985 ≈ 1
M = 10, β = 2, γ = 2 0.312513 0.507916 0.702702 0.935478 0.992512 ≈ 1

Table 3: Heaviness of the tails of maximum distribution in jointly l3,p-symmetrically
Kotz type distributed populations for p = 1 and the choices of parameters M > 1 − 3

p
,

β > 0 and γ > 0 from Figure 4(b).

4.1, here, we consider the tail of the multivariate ln,p-symmetric distribution itself. To

this end, we restrict our considerations to Pearson Type VII, Pearson Type II, and Kotz

type distributions, see Appendix A. We determine the tail index of regularly varying

distributions in Section 4.2.1 and study the multivariate tail behavior for light tails and

bounded supports in Sections 4.2.2-4.2.3, respectively.

4.2.1 Heavy Tails

Let us call a random variable regularly varying with tail index α > 0 w.r.t. the p-

functional |·|p, p > 0, if there exist a positive constant α and a probability law S on the

Borel-σ-field Bn ∩ Sn,p of subsets of the |·|p-unit sphere such that for every x > 0

xαµz

(

·; |·|p
)

⇒ S as z → ∞

where the symbol ⇒ means weak convergence, and

µz

(

M ; |·|p
)

=
P

(

|X|p > xz , X
|X|p

∈ M

)

P
(

|X|p > z
) , M ∈ Bn ∩ Sn,p.

Furthermore, S is called the spectral measure w.r.t. |·|p. Note that this complies with

the common notion of a regularly varying distribution w.r.t. the p-norm if p ≥ 1.

Now, let X ∼ Φg(n),p with dg g(n). Thus, because of the stochastic representation (3),

µz

(

M ; |·|p
)

=
P
(

R > xz , U (n)
p ∈ M

)

P (R > z)
, M ∈ Bn ∩ Sn,p,
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with R and U (n)
p being independent. If

lim
z→∞

P (R > xz)

P (R > z)
= x−α, x > 0,

i.e., according to the notion in Resnick (1987), if the survival function of the univariate

random variable R is regularly varying at ∞ with index −α, then the n-dimensional

p-generalized uniform distribution on Sn,p is the spectral measure of Φg(n),p w.r.t. |·|p,

S(M) = P
(

U (n)
p ∈ M

)

, M ∈ Bn ∩ Sn,p.

Example 1. In the particular case g(n) = g
(n)
P T 7;M,ν with M > n

p
and ν > 0, the application

of L’Hôpital’s rule yields

lim
z→∞

P (R > xz)

P (R > z)
= lim

z→∞

∞
∫

xz
rn−1g

(n)
P T 7;M,ν(r) dr

∞
∫

z
rn−1g

(n)
P T 7;M,ν(r) dr

= x−(Mp−n), x > 0.

Consequently, the ln,p-symmetric Pearson Type VII distribution with parameters M > n
p

and ν > 0 has tail index Mp − n. In the case n = 2 and p ≥ 1, this result is already

covered by Example 6 in Richter (2015b).

Remark 6. If g(n) = g
(n)
Kt;M,β,γ with M > 1 − n

p
, β > 0 and γ > 0, then

lim
z→∞

P (R > xz)

P (R > z)
= xn+p(M−1) lim

z→∞
e−β(xpγ−1)zpγ

=























∞ , 0 < x < 1

1 , x = 1

0 , x > 1

.

Hence, the tail index of ln,p-symmetric Kotz type distribution does not exist.

4.2.2 Light Tails

Adopting de Haan’s notion of Γ-variation, see Resnick (1987) and original references

cited therein, let us call a random vector Γ-varying w.r.t. the p-functional |·|p, p > 0,

if there exist a positive function f and a probability law S on Bn ∩ Sn,p such that for

every x ∈ R

exµΓ
z

(

·; |·|p
)

⇒ S as z → ∞

where

µΓ
z

(

M ; |·|p
)

=
P

(

|X|p > z + xf(z) , X
|X|p

∈ M

)

P
(

|X|p > z
) , M ∈ Bn ∩ Sn,p.
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Here, f is called an auxiliary function. If X ∼ Φg(n),p then

µΓ
z

(

M ; |·|p
)

=
P (R > z + xf(z))

P (R > z)
P
(

U (n)
p ∈ M

)

and hence S is the p-generalized uniform distribution on the Borel-σ-field over Sn,p if

lim
z→∞

P (R > z + xf(z))

P (R > z)
= e−x, x ∈ R,

i.e. the survival function of the univariate p-radius variable R of X is Γ-varying with

auxiliary function f .

Example 2. We consider the special case of an ln,p-symmetric Kotz type distribution with

parameters M > 1− n
p
, β > 0 and γ > 0, i.e. g(n) = g

(n)
Kt;M,β,γ , and denote the pdf and the

cdf of the Radius variable R by fKt and FKt, respectively. For f(z) = 1
βγp zpγ−1 , z > 0,

and for every x ∈ R, from of the asymptotic equivalence relations

1 − FKt(r) ∼ fKt(r)

βγp rpγ−1
as r → ∞

and lim
z→∞

−β (z + xf(z))pγ + βzpγ = −x, it follows that

lim
z→∞

1 − FKt (z + xf(z))

1 − FKt (z)
= e−x.

Thus, a random vector following an ln,p-symmetric Kotz type distribution with parame-

ters M > 1 − n
p
, β > 0 and γ > 0 is Γ-varying w.r.t. the p-functional and with auxiliary

function f(z) = z1−pγ

βγp
, z > 0.

Remark 7. For a random vector being ln,p-symmetrically Pearson Type II distributed

with parameter ν > 0 one can verify neither the property of regular variation nor that of

Γ-variation w.r.t. the p-functional, p > 0, since the support of pdf of the corresponding

radius variable is bounded.

4.2.3 Bounded supports

Let X be an ln,p-symmetrically contoured random vector such that the distribution of

|X|p has a bounded support, and let us denote the right endpoint of if by xE. If there

exist a positive constant α and a probability law S on Bn ∩ Sn,p such that for every

x > 0

xαµb
z

(

·; |·|p
)

⇒ S as z → ∞

22



where

µb
z

(

M ; |·|p
)

=
P

(

|X|p > xE − 1
xz

, X
|X|p

∈ M

)

P
(

|X|p > xE − 1
z

) , M ∈ Bn ∩ Sn,p,

then we call the random vector X bounded regularly varying with tail index α > 0 w.r.t.

|·|p, p > 0. In this case,

µb
zΓ
(

·; |·|p
)

=
P
(

R > xE − 1
xz

)

P
(

R > xE − 1
z

) P
(

U (n)
p ∈ ·

)

and S is the n-dimensional p-generalized uniform measure on Sn,p if for every x > 0

lim
z→∞

P
(

R > xE − 1
xz

)

P
(

R > xE − 1
z

) = x−α,

i.e. if the survival function of the univariate random variable 1
xE−R

is regularly varying

at ∞ with index −α.

Example 3. In the special case g(n) = g
(n)
P T 2;ν with ν > 0, on the one hand, xE = 1 and,

on the other hand,

lim
z→∞

P
(

R > 1 − 1
xz

)

P
(

R > 1 − 1
z

) =
1

x
lim

z→∞





(

1 − 1
xz

1 − 1
z

)n−1




1 −
(

1 − 1
xz

)p

1 −
(

1 − 1
z

)p





ν

 = x−(ν+1)

for all x > 0. Therefore, the ln,p-symmetric Pearson Type II distribution with parameter

ν > 0 or a random vector following that distribution is bounded regularly varying with

tail index ν + 1 w.r.t. |·|p.

4.3 Light and heavy distribution centers

While extremely long concentration intervals and extremely far tails of probability dis-

tributions were studied in Sections 4.1 and 4.2, here the focus is on the centers of l3,5-

symmetric Kotz type distributions for certain choices of parameters.

Nevertheless, it is worthwhile to mention that ln,p-symmetric Kotz type distributions

have relatively light tails caused by the exponential part of their dgs. The monomial

part of the dg ensures that the heaviness of the distribution center can be modeled

with the help of the parameter M . It can be seen from Figure 9(a), that the choice of

M = 1 is the decisive factor to have a heavy distribution center. Standard examples of

this distributional type are power exponential and, particularly, Gaussian and Laplace

distributions, and their ln,p-generalizations. Additionally, in the case M = 1, Figure 9(a)

shows that the parameter β > 0 controls mainly the height and the parameter γ > 0
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mainly the decay behavior of the dg. In the case M = 2, the parameter β as well as

γ regulate the height of the dg. Furthermore, they induce a shift of the probability

mass. The effect of these choices of parameters on the shape of the pdf of the maximum

distribution of three dependent rvs following a joint l3,5-symmetric Kotz type distribution

can be seen in Figure 9(b). Finally, one can compare Figure 9(b) with Figure 4 to get

an impression of the impact of a further increase of the parameter p.

5 Proofs

5.1 Measure-of-cone representations of skewed lk,p-symmetric

distributions

An initial step of the proof of Theorem 1 deals with deriving a representation of the

cdfs of skewed lk,p-symmetric distributions with dimensionality parameter m in terms of

specific ln,p-symmetric measures of cones by analogy to what was done in Richter and

Venz (2014) for skewed elliptically contoured distributions with dimensionality parameter

m = 1. Afterwards, this measure-of-cone representation is used to prove Remark 4.

Let a random vector Z follow the skewed lk,p-symmetric distribution with dimension-

ality parameter m, dg g(k+m), and matrix-parameter Λ ∈ R
m×k, and let e

(n)
j , j = 1, . . . , n,

still denote the jth standard unit vector of Rn. For arbitrary z ∈ R
k, we consider the

cone

A0(z) = Cm (a0,1, . . . , a0,m, a1, . . . , ak; z)

=

(

m
⋂

l=1

{

x ∈ R
k+m : aT

0,lx < 0
}

)

∩
(

k
⋂

i=1

{

x ∈ R
k+m : aT

i x < zi

}

)
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(a) The dg g
(3)
Kt;M,β,γ for certain parameters M > 1 − 3

5 , β > 0 and γ > 0.
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(b) The pdf of the maximum statistic for the same parameters as in Figure 9(a).

Figure 9: The l3,5-symmetric Kotz type sample distribution.

where the quantities a0,l = −ΓTe
(m)
l , l = 1, . . . , m, ai = e

(k+m)
i , i = 1, . . . , k, and Γ =

(Λ, −Im) are as in Section 2. This cone generalizes that in Richter and Venz (2014)

where the case m = 1 is dealt with. Note that A0(z) has its vertex at (zT, (Λz)T)
T

.

Furthermore, A0(z) is the intersection of k + m half spaces, m of whom containing the

origin in its boundary.

Lemma 1 (A specific measure-of-cone representation of the cdf Fk,m,p

(

·; Λ, g(k+m)
)

).

If Z ∼ SSk,m,p

(

Λ, g(k+m)
)

, then the cdf of Z allows the representation

Fk,m,p

(

z; Λ, g(k+m)
)

=
1

F
(2)
m,p

(

0m; Im + ΛΛT, g
(m)
(k+m)

) Φg(k+m),p(A0(z)), z ∈ R
k,

where F (2)
m,p

(

·; Im + ΛΛT, g
(m)
(k+m)

)

is the normalizing constant from (8).

Proof. Let Cm,p = 1

F
(2)
m,p

(

0m;Im+ΛΛT,g
(m)

(k+m)

) . Then

Fk,m,p

(

z; Λ, g(k+m)
)

= Cm,p

z
∫

−∞

g
(k)
(k+m)

(

|ζ|p
)

F (1)
m,p

(

Λζ; g
(m)
[|ζ|p]

)

dζ

= Cm,p

z
∫

−∞

g
(k)
(k+m)

(

|ζ|p
)

∫

Rm
+

g
(m)
[|ζ|p]

(

|Λζ − ξ|p
)

dξ dζ

= Cm,p

z
∫

−∞

∫

Rm
+

g(k+m)
(

p

√

|ζ|pp + |Λζ − ξ|pp
)

dξ dζ, z ∈ R
k,

where the integral
z
∫

−∞
h(ζ) dζ, z ∈ R

k, is defined as a k-fold one. Further, using the

notation X =
(

X(1), X(2)
)

T

where the vectors X(1) and X(2) take their values in R
k and
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R
m, respectively,

Fk,m,p

(

z; Λ, g(k+m)
)

= Cm,p

z
∫

−∞

∫

Rm
+

ϕg(k+m),p (ζ, Λζ − ξ) dξ dζ

= Cm,p · P (X(1) < z, X(2) < ΛX(1)), z ∈ R
k.

Here, ϕg(k+m),p is the pdf of X, and

{

(

x(1), x(2)
)

T ∈ R
k+m : x(1) < z, x(2) < Λx(1)

}

=
{

x =
(

x(1), x(2)
)

T ∈ R
k+m : x(1) < z, −Γx < 0

}

=
{

x ∈ R
k+m : e

(k+m)
i

T

x < zi, i = 1, . . . , k,
(

−ΓTe
(m)
l

)

T

x < 0, l = 1, . . . , m

}

= A0(z).

Thus,

Fk,m,p

(

z; Λ, g(k+m)
)

= Cm,p · P (X(1) < z, X(2) < ΛX(1))

= Cm,p · P (X ∈ A0(z))

= Cm,p · Φg(k+m),p(A0(z)), z ∈ R
k.

Note that Theorem 1 in Richter and Venz (2014) follows from Lemma 1 for m = 1

and p = 2.

Let Op denote the ln,p-generalized surface content on Bn ∩ Sn,p and Fp : (0, ∞) →
[0, ∞) the ln,p-sphere intersection-proportion function (ipf) defined by

r 7→ Fp (A, r) =
Op

(

1
r
A ∩ Sn,p

)

Op (Sn,p)
=

Op

(

1
r
A ∩ Sn,p

)

ωn,p

, A ∈ Bn. (14)

According to Richter (2009), but with suitably adapted notations as in Richter (2014,

2015a) and Müller and Richter (2015a), for arbitrary p > 0 and n ∈ N, the continuous

ln,p-symmetric distribution Φg(n),p with dg g(n) satisfies the geometric measure represen-

tation

Φg(n),p (A) =
1

I
(

g(n)
)

∞
∫

0

Fp(A, r) rn−1 g(n)(r) dr, A ∈ Bn. (15)

Note that this formula was first proved for p = 2 and g(n) = g
(n)
P E in Richter (1985), and

for p = 2 and arbitrary dgf g in Richter (1991).

Using formula (15) and the symmetry of both Op and the ln,p-unit sphere Sn,p, the

following lemma provides some invariance properties of the ln,p-symmetric probability
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measure.

Lemma 2. The ln,p-symmetric probability measure Φg(n),p is permutation and sign in-

variant.

Proof. Let σ : {1, . . . , n} → {1, . . . , n} be a permutation defined by i 7→ σ(i), i =

1, . . . , n, and M the corresponding permutation matrix, i.e. M =
(

e
(n)
σ(1)e

(n)
σ(2) · · · e

(n)
σ(n)

)

.

Since permutation matrices are orthogonal matrices, M is invertible and M−1 = MT.

Further, let X ∼ Φg(n),p. By the geometric measure representation,

P (MX ∈ A) = Φg(n),p(MTA) =
1

I
(

g(n)
)

∞
∫

0

Fp

(

MTA, r
)

rn−1 g(n)(r) dr, A ∈ Bn,

where, because of MTSn,p = Sn,p and Op (MTA ∩ Sn,p(r)) = Op (MT(A ∩ Sn,p(r))) =

Op (A ∩ Sn,p(r)), the ipf satisfies Fp (MTA, r) = Fp (A, r), A ∈ Bn. Thus,

P (MX ∈ A) = Φg(n),p(A) = P (X ∈ A), A ∈ Bn.

Let D be an n × n sign matrix, i.e. D = diag{d1, . . . , dn} with di ∈ {1, −1}, i =

1, . . . , n. D is an orthogonal matrix and, by analogous considerations as before,

P (DX ∈ A) = P (X ∈ DA) = Φg(n),p(DA) = Φg(n),p(A) = P (X ∈ A), A ∈ Bn.

Consequently, Φg(n),p is a member of the class SI of sign invariant distributions,

considered in Arellano-Valle and del Pino (2004). Note that one can prove Lemma 2

alternatively without using formula (15), starting from Φg(n),p(A) =
∫

A

ϕg(n),p(x) dx =
∫

A

g(n)(|x|p) dx and using the invariance properties of the p-functional | · |p.

Next, we are going to generalize the specific measure-of-cone representation formula

for the cdf of a skewed lk,p-symmetrically distributed random vector given in Lemma

1. Doing this, first, a class of cones is introduced and, then, the permutation and sign

invariance of the measure Φg(k+m),p is basically utilized. We recall that the invariance

of Φg(n),2 with respect to all orthogonal transformations was used to construct general

geometric measure representations for n = 2 in Günzel et al. (2012) and for arbitrary n

in Richter and Venz (2014).

Let Λ: Rk → R
m be a matrix with entries Λj,i, j = 1, . . . , m, i = 1, . . . , k. Further,

let I = {i1, . . . , ik} ⊂ {1, . . . , k + m} denote a set of indices with |I| = k and D a

(k + m) × (k + m) sign matrix. Moreover, let VI,D(Λ; z) = D · (v1, . . . , vk+m)T with

vil
= zl for l = 1, . . . , k and vjν

= (Λz)ν =
k
∑

l=1
Λν,lzl for jν ∈ {1, . . . , k + m}\I and
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ν = 1, . . . , m. For every z ∈ R
k, we define a cone with vertex at VI,D(Λ; z) by

CI,D(Λ; z) = {Dx ∈ R
k+m : xil

< zl, l = 1, . . . , k

xjν
<

k
∑

l=1

Λν,lxil
, jν ∈ {1, . . . , k + m}\I, ν = 1, . . . , m}.

From here on, the collection of such cones will be denoted by Ck,m(Λ; z). Particularly,

A0(z) = C{1,...,k},Ik+m
(Λ; z) is an element from the class Ck,m(Λ; z) of cones. Consequently,

Ck,m(Λ; z) = {MDA0(z) : M ∈ Πk+m, D ∈ Sk+m} where Πn and Sn denote the sets of

n × n permutation and sign matrices, respectively.

Corollary 2 (A general measure-of-cone representation of the cdf Fk,m,p

(

·; Λ, g(k+m)
)

).

The skewed distribution in Lemma 1 allows each of the representations

Fk,m,p

(

z; Λ, g(k+m)
)

=
1

F
(2)
m,p

(

0m; Im + ΛΛT, g
(m)
(k+m)

) Φg(k+m),p

(

C{i1,...,ik},D (Λ; z)
)

, z ∈ R
k,

where C{i1,...,ik},D(Λ; z) is an arbitrary element of the class Ck,m(Λ; z).

Proof. By definition of Ck,m(Λ; z), there is a permutation matrix M such that

C{i1,...,ik},D(Λ; z) = M · C{1,...,k},D(Λ; z) = M · D · A0(z).

Then M defines a permutation σ with σ(l) = il, l = 1, . . . , k, and σ(k+1), . . . , σ(k+m) ∈
{1, . . . , k + m}\{i1, . . . , ik} so that the bijectivity of σ is ensured. By Lemma 1 and

Lemma 2, and with Cm,p = 1

F
(2)
m,p

(

0m;Im+ΛΛT,g
(m)

(k+m)

) as in the proof of Lemma 1,

Fk,m,p

(

z; Λ, g(k+m)
)

= Cm,p · Φg(k+m),p (A0(z))

= Cm,p · Φg(k+m),p (M · D · A0(z))

= Cm,p · Φg(k+m),p

(

C{i1,...,ik},D (Λ; z)
)

, z ∈ R
k.

Proof of Remark 4. Initializing the proof of part a), let M1 be a k×k permutation matrix

and Z ∼ SSk,m,p

(

Λ, g(k+m)
)

. Since |M1ξ|p = |ξ|p, ξ ∈ R
k, and | det(M1)| = 1,

P (M1Z < z) = P (Z < MT

1 z) =

MT

1z
∫

−∞

fZ(ζ) dζ =

z
∫

−∞

fZ(MTξ) dξ

=
1

F
(2)
m,p

(

0m; Im + Λ1ΛT

1, g
(m)
(k+m)

)

z
∫

−∞

g
(k)
(k+m)

(

|ξ|p
)

F (1)
m,p

(

Λ1ξ; g
(m)
[|ξ|p]

)

dξ,
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z ∈ R
k, where Λ1 = ΛMT

1 . Thus, M1Z ∼ SSk,m,p

(

ΛMT

1 , g(k+m)
)

.

To start the proof of part b), let M2 be a m × m permutation matrix in R
m and

Z ∼ SSk,m,p

(

M2Λ, g(k+m)
)

. As in the proof of Lemma 1, but with X =
(

X(1), X(2)
)

T ∼
Φg(k+m),p,

Fk,m,p

(

z; M2Λ, g(k+m)
)

=
P (X(1) < z, X(2) < M2ΛX(1))

F
(2)
m,p

(

0m; Im + (M2Λ)(M2Λ)T
, g

(m)
(k+m)

) , z ∈ R
k.

Note that

{

(

x(1), x(2)
)

T ∈ R
k+m : x(1) < z, x(2) < M2Λx(1)

}

=
{

(

x(1), x(2)
)

T ∈ R
k+m : x(1) < z, MT

2 x(2) < Λx(1)
}

=
{

(

x(1), M2x̃
(2)
)

T ∈ R
k+m : x(1) < z, x̃(2) < Λx(1)

}

= M̃2 · A0(z)

with M̃2 = diag [Ik, M2] ∈ R
(k+m)×(k+m) being a permutation matrix. The set A1(z) =

M̃2 · A0(z) is an element of the class Ck,m(Λ; z). By Lemma 2,

P (X(1) < z, X(2) < M2ΛX(1)) = P (X ∈ A1(z)) = P (X ∈ A0(z)).

Additionally, let Γ = (Λ, −Im) and Γ1 = (M2Λ, −Im), then

F (2)
m,p

(

0m; Im + (M2Λ)(M2Λ)T
, g

(m)
(k+m)

)

= P (Γ1X < 0(m))

=
∫

{

x=(x(1),x(2))
T

∈Rk+m : M2Λx(1)<x(2)

}

g(k+m)
(

|x|p
)

dx

=
∫

{

y=(y(1),y(2))
T

∈Rk+m : Λy(1)<y(2)

}

g(k+m)
(

∣

∣

∣M̃2y
∣

∣

∣

p

)

dy = P (ΓX < 0(m))

= F (2)
m,p

(

0m; Im + ΛΛT, g
(m)
(k+m)

)

.

Finally,

Fk,m,p

(

z; M2Λ, g(k+m)
)

=
1

F
(2)
m,p

(

0m; Im + (M2Λ)(M2Λ)T
, g

(m)
(k+m)

)P (X ∈ A1(z))

=
1

F
(2)
m,p

(

0m; Im + ΛΛT, g
(m)
(k+m)

)P (X ∈ A0(z))

= Fk,m,p

(

z; Λ, g(k+m)
)

, z ∈ R
k.
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5.2 Applying the advanced geometric method to extremes

We recall that advanced applications of the geometric measure representation (15) make

use of types of intersection percentage functions (14) being valid for whole classes of

random events. The classes of events considered here are cones generated by intersecting

half spaces. In this section, the measure-of-cone representations from Corollary 2 are

mainly used to prove Theorem 1 which, in turn, is basic to establish Corollary 1 and

Remark 5. Moreover, the direct and the advanced geometric methods considered in this

paper are briefly compared.

Let An
n(t) =

{

(x1, . . . , xn)T ∈ R
n : x1 < t, . . . , xn < t

}

, t ∈ R, be a sublevel set gener-

ated by the maximum statistic of an n-dimensional random vector X = (X1, . . . , Xn)T.

Then,

P
(

max{X1, . . . , Xn} < t
)

= P
(

X ∈ An
n(t)

)

, t ∈ R.

Moreover, illustrations of the set An
n(t) may be found in the two earlier papers of the

authors for n ∈ {2, 3}.

Proof of Theorem 1. Let ν ∈ {1, . . . , n − 1} be fixed. Further, let B̃
(1)
1,0(t) = {x ∈

R
2 : x1 < t, x2 < x1} and B̃

(1)
1,1(t) = {x ∈ R

2 : x2 < t, x1 ≤ x2}. Then A2
2(t) =

B̃
(1)
1,0(t) ∪ B̃

(1)
1,1(t) is a disjoint decomposition of the cone A2

2(t) with vertex at (t, t)T,

see Figure 10. Similarly, on the one hand, one has that A3
3(t) = B

(1)
2 (t) ∪ B̃

(1)
2,1(t) where

Figure 10: Disjoint decomposition of A2
2(t) for t > 0.

B
(1)
2 (t) = {x1 < t, x2 < t, x3 < x2} and B̃

(1)
2,1(t) = {x1 < t, x3 < t, x2 ≤ x3}. On the other

hand, using this and the decomposition of A2
2(t) again,

A3
3(t) = {x1 < t, x2 < t, x3 < x2} ∪ {x1 < t, x3 < t, x2 ≤ x3}

= {x1 < t, x2 < x1, x3 < x2} ∪ {x1 < t, x3 < x1, x2 ≤ x3} ∪ B̃
(2)
1,1(t) ∪ B̃

(2)
1,2(t)

= {x1 < t, (x2, x3)T ∈ A2
2(x1)} ∪ B̃

(2)
1,1(t) ∪ B̃

(2)
1,2(t)

30



= B
(2)
1 (t) ∪ B̃

(2)
1,1(t) ∪ B̃

(2)
1,2(t)

where, for every i ∈ {1, . . . , n − ν}, B
(ν)
i (t) = B̃

(ν)
i,0 (t) and B̃

(ν)
i,j (t) = {x ∈ R

n : xi+j <

t, xl1 ≤ xi+j, ∀ l1 ∈ [i, i + j]\{i + j}, xl2 < xi+j, ∀ l2 ∈ [i + j, i + ν]\{i + j}, xl3 <

t, ∀ l3 ∈ Ii,ν}, j = 0, 1, . . . , ν, are cones with vertices at (t, . . . , t)T ∈ R
n and where

[i, i + j] = {i, . . . , i + j} and Ii,ν = [1, n]\[i, i + ν]. Further, one can inductively prove the

following disjoint decomposition

An
n(t) = B

(ν)
i (t) ∪ B̃

(ν)
i,1 (t) ∪ B̃

(ν)
i,2 (t) ∪ · · · ∪ B̃

(ν)
i,ν (t)

into ν + 1 cones so that each of them, which is an intersection of n half spaces from R
n,

contains the origin in the boundary of ν of its n intersecting half spaces. In the spherical

case p = 2, this idea, that at least one hyperplane contains the origin, arises in Günzel

et al. (2012) for n = 2, and in Richter and Venz (2014) for an arbitrary n. Indicating

the topological interior of the set A ⊆ R
n by int(A),

int
(

B̃
(ν)
i,j (t)

)

= int
(

Mi,j · B
(ν)
i (t)

)

, j = 1, . . . , ν,

i.e. one can transform each of the cones B̃
(ν)
i,j (t), j = 1, . . . , ν, by permutation into the

cone B
(ν)
i (t), where the matrix Mi,j ∈ R

n×n defines the transposition σi,j with σi,j(i) = j,

σi,j(j) = i and σi,j(l) = l for all l ∈ [1, n]\{i, j}. By Lemma 2, for every i ∈ {1, . . . , n−ν},

the maximum cdf Fn:n of the components of a continuous ln,p-symmetrically distributed

random vector X with dg g(n) satisfies

Fn:n(t) = P (X ∈ An
n(t)) =Φg(n),p(An

n(t))

=Φg(n),p

(

B
(ν)
i (t)

)

+
ν
∑

j=1

Φg(n),p

(

Mi,jB
(ν)
i (t)

)

=(ν + 1) Φg(n),p

(

B
(ν)
i (t)

)

, t ∈ R.

Further,

B
(ν)
i (t) ∈ Cn−ν,ν

(

E
(ν)
i ; t1n−ν

)

where 1n−ν = (1, . . . , 1)T ∈ R
n−ν and E

(ν)
i ∈ R

ν×(n−ν) is a matrix whose ith column is

1ν and all the others are ν-dimensional zero vectors. Then, Corollary 2 implies for every

ν ∈ {1, . . . , n − 1} and i ∈ {1, . . . , n − ν} that

Fn:n(t) = (ν +1)F (2)
ν,p

(

0ν ; Iν + E
(ν)
i E

(ν)
i

T

, g
(ν)
(n)

)

·Fn−ν,ν,p

(

t1n−ν ; E
(ν)
i , g(n)

)

, t ∈ R. (16)

Furthermore, on the one hand, Iν + E
(ν)
i E

(ν)
i

T

= Iν + 1ν1T

ν for every i ∈ {1. . . . , n − ν}.
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On the other hand, as the above cdf Fn−ν,ν,p( · ; E
(ν)
i , g(n)) is evaluated at a point whose

components are all equal to each other, Remark 4 a) yields

Fn−ν,ν,p(t1n−ν ; E
(ν)
i1

, g(n)) = P (Z < t1n−ν) = P (Z < MT

i1,i2
t1n−ν)

= P (Mi1,i2Z < t1n−ν) = Fn−ν,ν,p(t1n−ν ; E
(ν)
i2

, g(n)),

for every i1, i2 ∈ {1, . . . , n − ν}, where Z ∼ SSn−ν,ν,p(E
(ν)
i1

, g(n)) and the matrix Mi1,i2 ∈
R

(n−ν)×(n−ν) is the transposition matrix as before. Hence, without any loss of generality,

the parameter i in (16) can be chosen as i = 1.

The possibility of choosing (without any loss of generality) i = 1 in equation (16)

may equivalently be established making use of the exchangeability of the components of

an ln,p-symmetrically distributed random vector directly. Indeed, since Iν + E
(ν)
i E

(ν)
i

T

=

Iν + 1ν1T

ν , the impact of the parameter i onto the cdf Fn−ν,ν,p

(

t1n−ν ; E
(ν)
i , g(n)

)

, t ∈ R,

is confined to the matrix E
(ν)
i . Now, considering the construction formula (9) of the

corresponding distribution, for and X(2) =
(

Xjn−ν+1 , . . . , Xjn

)

T : Ω → R
ν , the parameter

i ∈ {1, . . . , n − ν} in equation (16) regulates which component of X(1) is used in the

condition X(2) < ΛX(1) since

SSn−ν,ν,p

(

E
(ν)
i , g(n)

)

= L

(

X(1)

∣

∣

∣

∣

X(2) < Xji
1n−ν

)

where X(1) =
(

Xj1 , . . . , Xjn−ν

)

T

: Ω → R
n−ν and X(2) : Ω → R

ν are subvectors of X =

(X1, . . . , Xn), X ∼ Φg(n),p. By evaluating the cdf of SSn−ν,ν,p

(

E
(ν)
i , g(n)

)

at a point whose

components equal each other and using the exchangeability of the components of X(1),

the alternative proof of choosing i = 1 without loss of generality is finished.

Summarizing the methods used in the present paper and that used in Müller and

Richter (2015a), there were two ways of applying the geometric measure representation

(15) to get exact distribution formulae: the direct and the advanced one. The latter opens

the possibility to turn over to considering conditional distributions and their densities.

Following the first approach and using the permutation and sign invariance from Lemma

2 and the disjoint decompositions of An
n(t) given in the proof of Theorem 1, for every

ν ∈ {1, . . . , n − 1} results of the form

Fn:n(t) = (ν + 1)

∞
∫

0

f̃ν(t, r) rn−1 g(n)(r) dr

can be achieved where f̃ν(t, r) = Op

([

1
r
B

(ν)
j (t)

]

∩ Sn,p

)

, j = 1, . . . , n − ν. The case

ν = 0 covers formula (1) in Müller and Richter (2015a) with k = n and f = f̃0, if

B(0) = An
n(t) is considered as the zero-fold decomposition of An

n(t). Furthermore, details
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of computing f̃ν are provided in the same paper. If the structure of f̃ν and of the

argument
[

1
r
B

(ν)
j (t)

]

∩ Sn,p of Op, respectively, will be too involved, the second approach

is preferred here which arises from a combination of the methods studied in Arellano-

Valle and Richter (2012) and Richter and Venz (2014). This advanced geometric method

of using the measure-of-cone representations from Corollary 2 is more effective than the

direct application of geometric measure representation (15). In the case of the exact

distribution of the maximum statistic, the second approach results in Theorem 1.

Remark 8. Let Z(n) be an n-dimensional random vector with pdf fZ(n) . Then, for every

t ∈ R, d
dt

(

P (Z(1) < t)
)

= fZ(1)(t), and, if n ≥ 2,

d

dt
P
(

Z(n) < t1n

)

= Dn(fZ(n) , t)

where

Dn(fZ(n) , t)

=
n
∑

i=1

∫

D
(n)
i

(t)

fZ(n)(z1, . . . , zi−1, t, zi+1, . . . , zn) dz

=
n
∑

i=1

t
∫

−∞

· · ·
t
∫

−∞

t
∫

−∞

· · ·
t
∫

−∞

fZ(n)(z1, . . . , zi−1, t, zi+1, . . . , zn) dz1 · · · dzi−1 dzi+1 · · · dzn

and D
(n)
i (t) = {z = (z1, . . . , zi−1, zi+1, . . . , zn)T ∈ R

n−1 : z < t1n−1}, i = 1, . . . , n.

Sketch of proof. If n = 2, the Leibniz integral rule applies,

d

dt
P
(

Z(2) < t12

)

=
d

dt

t
∫

−∞

t
∫

−∞

fZ(2)(z1, z2) dz1 dz2

=

t
∫

−∞

d

dt





t
∫

−∞

fZ(2)(z1, z2) dz1



 dz2 +

t
∫

−∞

fZ(2)(z1, t) dz1

=

t
∫

−∞

fZ(2)(t, z2) dz2 +

t
∫

−∞

fZ(2)(z1, t) dz1 = D2(fZ(2) , t), t ∈ R.

In the other cases, the assertion follows by induction with respect to n.

Proof of Corollary 1. According to Theorem 1 and Remark 8, and with the random

vector Z ∼ SSn−ν,ν,p

(

E(ν), g(n)
)

,

fn:n(t) =(ν + 1)F (2)
ν,p

(

0ν ; Iν + E(ν)E(ν)T

, g
(ν)
(n)

)

· d

dt
P (Z < t1n−ν)

=(ν + 1)F (2)
ν,p

(

0ν ; Iν + 1ν1T

ν , g
(ν)
(n)

)

· Dn−ν(fZ , t)
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=(ν + 1)
n−ν
∑

j=2

∫

D
(n−ν)
j

(t)

g
(n−ν)
(n)

(

∣

∣

∣z(j)

∣

∣

∣

p

)

F (1)
ν,p

(

z11ν ; g
(ν)
[|z(j)|p]

)

dz

+ (ν + 1)
∫

D
(n−ν)
1 (t)

g
(n−ν)
(n)

(

∣

∣

∣z(1)

∣

∣

∣

p

)

F (1)
ν,p

(

t1ν ; g
(ν)
[|z(1)|p]

)

dz

for ν ∈ {1, . . . , n − 2}, where z(j) = (z1, . . . , zj−1, t, zj+1, . . . , zn−ν)T and

D
(n−ν)
j (t) = {z = (z1, . . . , zi−1, zi+1, . . . , zn−ν) ∈ R

n−ν−1 : zT < t1n−ν−1}.

Let Ml,j ∈ R
(n−ν)×(n−ν) be the matrix defining the transposition σ : {1, . . . , n − ν} →

{1, . . . , n − ν} with σ(l) = j, σ(j) = l and σ(κ) = κ for all κ ∈ {1, . . . , n − ν}\{l, j}.

Using this notation, because of
∣

∣

∣z(j)

∣

∣

∣

p
=
∣

∣

∣Ml,jz(l)

∣

∣

∣

p
and |det(Ml,j)| = 1, any two integrals

being summands of the above sum with summation index j from {2, . . . , n − ν} can be

transformed into each other. Because of this, one can also choose j = n − ν without any

loss of generality. Then,

fn:n(t) =(ν + 1)(n − ν − 1)
∫

D
(n−ν)
n−ν (t)

g
(n−ν)
(n)

(

∣

∣

∣z(n−ν)

∣

∣

∣

p

)

F (1)
ν,p

(

z11ν ; g
(ν)
[|z(n−ν)|p]

)

dz

+ (ν + 1)
∫

D
(n−ν)
1 (t)

g
(n−ν)
(n)

(

∣

∣

∣z(1)

∣

∣

∣

p

)

F (1)
ν,p

(

t1ν ; g
(ν)
[|z(1)|p]

)

dz

=(ν + 1)(n − ν − 1)
∫

z∈D(t)

g
(n−ν)
(n)

(

p

√

|t|p + |z|pp
)

F (1)
ν,p

(

z11ν ; g
(ν)

[ p
√

|t|p+|z|pp]

)

dz

+ (ν + 1)
∫

z∈D(t)

g
(n−ν)
(n)

(

p

√

|t|p + |z|pp
)

F (1)
ν,p

(

t1ν ; g
(ν)

[ p
√

|t|p+|z|pp]

)

dz

for every ν ∈ {1, . . . , n − 2} where D(t) = D
(n−ν)
n−ν (t) = {z ∈ R

n−ν−1 : z < t1n−ν−1}. The

case ν = n − 1 can be dealt with in an analogous way.

Proof of Remark 5. If ν ∈ {1, . . . , n − 1} and a = |y|p with y ∈ R
n−ν , it follows from

Fubini’s theorem that

F (1)
ν,p

(

x; gP E
(ν)
[a]

)

=
∫

Rν
+

gP E
(ν)
[a]

(

|x − v|p
)

dv =
∫

Rν
+

g
(ν)
P E(|x − v|p) dv

=

x1
∫

−∞

· · ·
xν
∫

−∞





ν
∏

j=1

g
(1)
P E(|ṽj|p)



 dṽν · · · dṽ1 =
ν
∏

j=1

Φp(xj), x ∈ R
ν .

Using this and Fubini’s theorem again, Corollary 1 leads to

fn:n(t) = (ν + 1)ϕp(t) (Φp(t))n−1
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+ (ν + 1)(n − ν − 1)ϕp(t) (Φp(t))n−ν−2

t
∫

−∞

ϕp(s) (Φp(s))ν
ds, t ∈ R,

for every ν ∈ {1, . . . , n − 2}, and to

fn:n(t) = nϕp(t) (Φp(t))n−1
, t ∈ R,

for ν = n−1. Because of
t
∫

−∞
ϕp(s) (Φp(s))ν

ds = 1
ν+1

(Φp(t))ν+1, the first n−2 representa-

tions can be transformed into the claimed form whereby the parameter ν ∈ {1, . . . , n−2}
does not further have any influence onto these results.

6 Discussion

In the present paper, we continue our studies on exact distributions of order statistics

under non-standard model assumptions, and provide some new results on it. The depen-

dence of the variables considered here is caused in the interplay of the dg and the shape/

tail parameter of the multivariate sample distribution. As in the most known spherical

case p = 2, the uncorrelatedness of the considered rvs leads to their independence if and

only if the dg of the sample vector distribution is that of the p-generalized multivariate

Gaussian distribution. Because of the possible arbitrary choice of p, p > 0, our consider-

ations are not restricted to sample vector densities being convex contoured as in Richter

(2015b) but include cases where density level sets are radially concave w.r.t. the stan-

dard fan in R
n, see Richter (2014, 2015a). We have established an advanced geometric

method using measure-of-cone representations for deriving extreme value distributions

of jointly continuous ln,p-symmetrically distributed dependent rvs.
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A Subclasses of ln,p-symmetric distributions

Let us recall that the well known class of spherical distributions is a subclass of the family

of ln,p-symmetric distributions. Moreover, if a random vector X follows an ln,p-symmetric

distribution then it allows the stochastic representation (3) where the variable R follows

the density (4). In this Appendix, the dg g(n) attains values from the set of functions
{

g
(n)
Kt;M,β,γ , g

(n)
P E;γ, g

(n)
P E, g

(n)
P T 7;M,ν , g

(n)
St;ν , g

(n)
C , g

(n)
P T 2;ν

}

explained below and the corresponding
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generalized radius variable R will be denoted by RKt;M,β,γ , RP E;γ, RP E, RP T 7;M,ν , RSt;ν ,

RC , and RP T 2;ν , respectively.

A.1 The ln,p-symmetric Kotz type distribution

According to Müller and Richter (2015a) and references cited therein, the continuous

ln,p-symmetrically distribution with dg

g
(n)
Kt;M,β,γ(r) =





p

2Γ
(

1
p

)





n
γβ

n+p(M−1)
pγ Γ

(

n
p

)

Γ
(

n+p(M−1)
pγ

) rp(M−1) exp{−βrpγ}, r > 0.

is called ln,p-symmetric Kotz type distribution with parameters M > 1 − n
p
, β > 0 and

γ > 0. In addition, one may establish that both the first and the second moment of this

distribution, cf. Remark 3 in the present paper, exist for all choices of the parameters

where the expectation of the corresponding radius variable R
(n)
Kt;M,β,γ is

E (RKt;M,β,γ) =

∞
∫

0

rn g
(n)
Kt;M,β,γ(r) dr =





p

2Γ
(

1
p

)





n
Γ
(

n
p

)

Γ
(

n+1+p(M−1)
pγ

)

pβ
1

pγ Γ
(

n+p(M−1)
pγ

)

and univariate variance component satisfies

σ2

p,g
(n)
Kt;M,β,γ

= τn,pE

(

R2
Kt;M,β,γ

)

= β
− 2

pγ

Γ
(

3
p

)

Γ
(

n
p

)

Γ
(

n+2+p(M−1)
pγ

)

Γ
(

1
p

)

Γ
(

n+2
p

)

Γ
(

n+p(M−1)
pγ

)

with τn,p from Remark 3. Specializing the ln,p-symmetric Kotz type distribution by

the parameter choice M = 1 and β = 1
p

yields the ln,p-symmetric power exponential

distribution with parameter γ > 0 having dg g
(n)
P E;γ with

g
(n)
P E;γ(r) =





p

2Γ
(

1
p

)





n
γΓ

(

n
p

)

p
n

pγ Γ
(

n
pγ

) exp{−rpγ

p
}, r > 0,

i.e. g
(n)
P E;γ = g

(n)

Kt;1, 1
p

,γ
. Therefore, the first and the second order moments of this distribu-

tion exist for all γ > 0 since

E (RP E;γ) =





p

2Γ
(

1
p

)





n
Γ
(

n
p

)

Γ
(

n+1
pγ

)

p
1− 1

pγ Γ
(

n
pγ

) and σ2

p,g
(n)
P E;γ

= p
2

pγ

Γ
(

3
p

)

Γ
(

1
p

) .

Another important special case of this distribution is the n-dimensional p-power expo-

nential or p-generalized Gaussian or p-generalized Laplace distribution. Its dg is denoted
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by gP E and satisfies

g
(n)
P E(r) =





p
1− 1

p

2Γ
(

1
p

)





n

exp

{

−rp

p

}

, r > 0,

i.e., g
(n)
P E = g

(n)
P E;1. Furthermore, the first two moments of this distribution exist where

E (RP E) =
p

n−1+ 1
p

(

2Γ
(

1
p

))n Γ

(

n + 1

pγ

)

and σ2

p,g
(n)
P E

= p
2
p

Γ
(

3
p

)

Γ
(

1
p

) ,

and the components of an ln,p-symmetrically distributed random vector with dg g(n) are

not only uncorrelated but also independent if and only if g(n) = g
(n)
P E.

A.2 The ln,p-symmetric Pearson Type VII distribution

Another important subclass of the continuous ln,p-symmetric distributions are the ln,p-

symmetric Pearson Type VII distributions with parameters M > n
p

and ν > 0 whose

dgs g
(n)
P T 7;M,ν satisfy

g
(n)
P T 7;M,ν(r) =





p

2Γ
(

1
p

)





n

Γ(M)

ν
n
p Γ
(

M − n
p

)

(

1 +
rp

ν

)−M

, r > 0.

Furthermore, the first moment of this distribution exists for all M > n+1
p

and ν > 0 and

the second one exists for all M > n+2
p

and ν > 0 where

E (RP T 7;M,ν) =





p

2Γ
(

1
p

)





n
ν

1
p Γ
(

n+1
p

)

Γ
(

M − n+1
p

)

pΓ
(

M − n
p

)

and univariate variance component satisfies the representation

σ2

p,g
(n)
P T 7;M,ν

= ν
2
p

Γ
(

3
p

)

Γ
(

M − n+2
p

)

Γ
(

1
p

)

Γ
(

M − n
p

) .

In the sequel, we consider two well known special cases of this distribution. First, an ln,p-

symmetric Pearson Type VII distribution with parameters M = n+ν
p

and ν > 0 is called

ln,p-symmetric Student -t distribution with parameter ν > 0. Hence, its dg satisfies

g
(n)
St,ν(r) = g

(n)

P T 7; n+ν
p

,ν
(r) =





p

2Γ
(

1
p

)





n
Γ(n+ν

p
)

ν
n
p Γ
(

ν
p

)

(

1 +
rp

ν

)− n+ν
p

, r > 0,
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and the first two moments exist for all ν > 1 and ν > 2, respectively, with

E (RSt;ν) =





p

2Γ
(

1
p

)





n
ν

1
p Γ
(

n+1
p

)

Γ
(

ν−1
p

)

pΓ
(

ν
p

)

and univariate variance component

σ2

p,g
(n)
St,ν

= ν
2
p

Γ
(

3
p

)

Γ
(

ν−2
p

)

Γ
(

1
p

)

Γ
(

ν
p

) .

Second, an ln,p-symmetric Student-t distribution with parameter ν = 1 is called ln,p-

symmetric Cauchy distribution having the dg

g
(n)
C (r) = g

(n)
St;1(r) =





p

2Γ
(

1
p

)





n
Γ(n+1

p
)

Γ
(

1
p

) (1 + rp)− n+1
p , r > 0,

In particular, both the first and the second order moments of this distribution do not

exist.

A.3 The ln,p-symmetric Pearson Type II distribution

Let 1A(t) =











1 if t ∈ A

0 otherwise
denote the indicator function of the set A. The third

subclass mentioned here is the class of ln,p-symmetric Pearson Type II distributions with

parameter ν > 0 having the dg

g
(n)
P T 2;ν(r) =





p

2Γ
(

1
p

)





n
Γ
(

n
p

+ ν + 1
)

Γ(ν + 1)
(1 − rp)ν

1(0,1)(r), r > 0,

and finite first and second order moments for all parameters ν > 0,

E (RP T 2;ν) =





p

2Γ
(

1
p

)





n
Γ
(

n+1
p

)

Γ
(

n
p

+ ν + 1
)

pΓ
(

n+1
p

+ ν + 1
)

as well as the univariate variance component

σ2

p,g
(n)
P T 2;ν

=
Γ
(

3
p

)

Γ
(

n
p

+ ν + 1
)

Γ
(

1
p

)

Γ
(

n+2
p

+ ν + 1
) .
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B Tables for domain quantiles of ln,p-symmetric dis-

tributions w.r.t. the ln,p-unit ball

Here, we compute values of the quantile function Qg(n),p at the points q ∈ {0.9, 0.95, 0.99,

0.995, 0.999}, see (7), for parameters p ∈
{

1
2
, 1, 3

}

and n ∈ {1, 2, 3} as well as for dgs g
(n)
P E;γ

with γ ∈
{

1, 3
2
, 2
}

, g
(n)
St;ν with ν ∈

{

1, 3
2
, 2
}

, and g
(n)
P T 2;ν with ν ∈

{

1, 3
2
, 2
}

. Remember that

the ln,p-symmetric power exponential distribution with parameter γ = 1 is the n-variate

p-generalized Gaussian distribution and that the ln,p-symmetric Student-t distribution

with parameter ν = 1 is the ln,p-symmetric Cauchy distribution.

Qg(n),p q = 0.9 q = 0.95 q = 0.99 q = 0.995 q = 0.999

g(n) = g
(n)
P E;1

n = 1 3.78248 5.62606 11.01693 13.80171 21.31398
n = 2 11.15822 15.02980 25.22610 30.12625 42.65553
n = 3 21.50489 27.63098 42.95809 50.05392 67.68966

g(n) = g
(n)

P E; 3
2

n = 1 1.61086 2.20110 3.69584 4.38556 6.07842
n = 2 3.26265 4.12764 6.17533 7.07797 9.22476
n = 3 4.99340 6.09025 8.60135 9.68196 12.20816

g(n) = g
(n)
P E;2

n = 1 1.15129 1.49787 2.30259 2.64916 3.45388
n = 2 1.94486 2.37193 3.31918 3.71506 4.61671
n = 3 2.66116 3.14790 4.20298 4.63690 5.61444

g(n) = g
(n)
St;1

n = 1 16.86950 40.80952 255.26532 536.13094 2855.38783
n = 2 62.56620 145.97687 876.02844 1823.62826 9602.50605
n = 3 136.57617 314.53687 1859.40003 3858.15678 20230.91278

g(n) = g
(n)

St; 3
2

n = 1 10.11725 20.55423 83.69141 144.66148 480.64167
n = 2 35.59401 68.78394 262.54702 446.54143 1448.61431
n = 3 75.93661 143.99535 536.15393 906.18318 2912.37601

g(n) = g
(n)
St;2

n = 1 7.87603 14.72912 49.08511 77.53031 207.11770
n = 2 26.81891 47.28216 145.38910 224.75442 580.38026
n = 3 56.33814 97.05830 289.00536 442.88157 1127.84875

g(n) = g
(n)
P T 2;1

n = 1 0.64674 0.74762 0.88566 0.91891 0.96360
n = 2 0.78813 0.85296 0.93570 0.95476 0.97990
n = 3 0.84857 0.89610 0.95518 0.96856 0.98609

g(n) = g
(n)

P T 2; 3
2

n = 1 0.54458 0.64958 0.81202 0.85678 0.92418
n = 2 0.70954 0.78354 0.88875 0.91614 0.95628
n = 3 0.78664 0.84311 0.92077 0.94053 0.96919

g(n) = g
(n)
P T 2;2

n = 1 0.46177 0.56460 0.73811 0.79053 0.87602
n = 2 0.63854 0.71714 0.83772 0.87183 0.92560
n = 3 0.72786 0.79012 0.88202 0.90732 0.94664

Table 4: q-domain quantiles of Φg(n),p w.r.t. Bn,p are computed for q ∈
{0.9, 0.95, 0.99, 0.995, 0.999}, p = 1

2
and for several dgs.
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Qg(n),p q = 0.9 q = 0.95 q = 0.99 q = 0.995 q = 0.999

g(n) = g
(n)
P E;1

n = 1 2.30259 2.99573 4.60517 5.29832 6.90776
n = 2 3.88972 4.74386 6.63835 7.43013 9.23341
n = 3 5.32232 6.29579 8.40595 9.27379 11.22887

g(n) = g
(n)

P E; 3
2

n = 1 1.42029 1.74719 2.42300 2.70017 3.28786
n = 2 2.01472 2.35508 3.05171 3.32429 3.91365
n = 3 2.47331 2.82329 3.53216 3.80771 4.40124

g(n) = g
(n)
P E;2

n = 1 1.16309 1.38590 1.82139 1.98487 2.32675
n = 2 1.51743 1.73082 2.14597 2.30181 2.62826
n = 3 1.76796 1.97671 2.38169 2.53359 2.85186

g(n) = g
(n)
St;1

n = 1 9.00000 19.00000 99.00000 198.00000 999.00000
n = 2 18.48683 38.49359 198.49874 398.49937 1998.49987
n = 3 27.97659 57.98860 297.99777 597.99889 2997.99978

g(n) = g
(n)

St; 3
2

n = 1 5.46238 9.55209 30.81652 49.79928 148.50000
n = 2 10.68529 18.23436 57.41980 92.38924 274.20073
n = 3 15.85419 26.82194 83.73197 134.51540 398.54241

g(n) = g
(n)
St;2

n = 1 4.32456 6.94427 18.00000 26.28427 61.24555
n = 2 8.21450 12.77647 31.95405 46.30900 106.87166
n = 3 12.02925 18.48940 45.62059 65.92374 151.57507

g(n) = g
(n)
P T 2;1

n = 1 0.68377 0.77639 0.90000 0.92929 0.96838
n = 2 0.80420 0.86465 0.94110 0.95860 0.981630
n = 3 0.85744 0.90239 0.95800 0.97056 0.98698

g(n) = g
(n)

P T 2; 3
2

n = 1 0.60190 0.69829 0.84151 0.87989 0.93690
n = 2 0.73796 0.80597 0.90112 0.92562 0.96134
n = 3 0.80336 0.85591 0.92757 0.94570 0.97191

g(n) = g
(n)
P T 2;2

n = 1 0.53584 0.63160 0.78456 0.82900 0.90000
n = 2 0.67954 0.75140 0.85913 0.88912 0.93596
n = 3 0.75336 0.81074 0.89436 0.91717 0.95245

Table 5: q-domain quantiles of Φg(n),p w.r.t. Bn,p are computed for q ∈
{0.9, 0.95, 0.99, 0.995, 0.999}, p = 1 and for several dgs.
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