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Abstract First and second kind modifications of usual confidence intervals for es-
timating the expectation and of usual local alternative parameter choices are intro-
duced in a way such that the asymptotic behavior of the true non-covering proba-
bilities and the covering probabilities under the modified local non-true parameter
assumption can be asymptotically exactly controlled. The orders of convergence to
zero of both types of probabilities are assumed to be suitably bounded below accord-
ing to an Osipov-type condition and the sample distribution is assumed to satisfy a
corresponding tail condition due to Linnik. Analogous considerations are presented
for the power function when testing a hypothesis concerning the expectation both
under the assumption of a true hypothesis as well as under a modified local alter-
native. A limit theorem for large deviations by S.V. Nagajev/ V.V. Petrov applies to
prove the results. Applications are given for exponential families.
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nik condition, Osipov-type condition, skewness-kurtosis adjusted decisions, order
of significance, error probabilities of first and second kind, exponential family, large
deviations

1 Introduction

Asymptotic normality of the distribution of the suitably centered and normalized
arithmetic mean of i.i.d. random variables is one of the best studied and most of-
ten exploited facts in asymptotic statistics. It is supplemented in local asymptotic
normality theory by limit theorems for the corresponding distributions under the
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assumption that the mean is shifted of order n−1/2. There are many successful sim-
ulations and real applications of both types of central limit theorems, and one may
ask for a more detailed explanation of this success. The present note is aimed to
present such additional theoretical explanation under certain circumstances. More-
over, the note is aimed to stimulate both analogous consideration in more general
situations and checking the new results by simulation. Furthermore, based upon the
results presented here, it might become attractive to search for additional explana-
tion to various known simulation results in the area of asymptotic normality which
is, however, behind the scope of the present note.

Based upon Nagajev’s and Petrov’s large deviation result in [5] and [4], skewness-
kurtosis modifications of usual confidence intervals for estimating the expectation
and of usual local alternative parameter choices are introduced here in a way such
that the asymptotic behavior of the true non-covering probabilities and the covering
probabilities under the modified local non-true parameter assumption can be exactly
controlled. The orders of convergence to zero of both types of probabilities are suit-
ably bounded below by assuming an Osipov-type condition, see [6], and the sample
distribution is assumed to satisfy a corresponding Linnik condition, see [3] and [4].

Analogous considerations are presented for the power function when testing a
hypothesis concerning the expectation both under the assumption of a true hypoth-
esis and under a local alternative. Finally, applications are given for exponential
families.

A concrete situation where the results of this paper apply is the case sensitive
preparing of the machine settings of a machine tool. In this case, second and higher
order moments of the manipulated variable do not change from one adjustment to
another one and may be considered to be known over time.

It might be another aspect of stimulating further research if one asks for the
derivation of limit theorems in the future being close to those in [5] and [4] but
where higher order moments are estimated.

Let X1, ...,Xn be i.i.d. random variables with the common distribution law from
a shift family of distributions, Pµ(A) = P(A− µ),A ∈ B, where B denotes the
Borel σ -field on the real line, the expectation equals µ, µ ∈ R, and the variance is
σ2. It is well known that Tn =

√
n(X̄n− µ)/σ is asymptotically standard normally

distributed, Tn ∼ AN(0,1). Hence, Pµ(Tn > z1−α)→ α , and under the local non-
true parameter assumption, µ1,n = µ + σ√

n (z1−α − zβ ), i.e. if one assumes that a
sample is drawn with a shift of location (or with an error in the variable), then
Pµ1,n(Tn ≤ z1−α) = Pµ1,n(

√
n X̄n−µ1,n

σ
≤ zβ )→ β as n → ∞, where zq denotes the

quantile of order q of the standard Gaussian distribution.
Let ACIu = [X̄n− σ√

n z1−α ,∞) denote the upper asymptotic confidence interval
for µ where the true non-covering probabilities satisfy the asymptotic relation

Pµ(ACIu does not cover µ)→ α, n→ ∞.

Because Pµ1,n(X̄n− σ√
n z1−α < µ) = Pµ1,n(

√
n X̄n−µ1,n

σ
≤ zβ ), the covering probabili-

ties under n−1/2-locally chosen non-true parameters satisfy
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Pµ1,n(ACIu covers µ)→ β , n→ ∞.

The aim of this note is to prove refinements of the latter two asymptotic relations
where α = α(n)→ 0 and β = β (n)→ 0 as n→ ∞, and to prove similar results for
two-sided confidence intervals and for the power function when testing correspond-
ing hypotheses.

2 Expectation estimation

2.1 First and second kind adjusted one-sided confidence intervals

According to [3] and [4], it is said that a random variable X satisfies the Linnik
condition of order γ,0 < γ < 1/2, if

Eµ exp{|X−µ|
4γ

2γ+1 }< ∞. (1)

Let us define the first kind (or first order) adjusted asymptotic Gaussian quantile by

z1−α(n)(1) = z1−α(n)+
g1

6
√

n
z2

1−α(n)

where g1 = E(X−E(X))3/σ3/2 is the skewness of X . Moreover, let the first kind
(order) adjusted upper asymptotic confidence interval for µ be defined by

ACIu(1) = [X̄n−
σ√

n
z1−α(n)(1),∞)

and denote a first kind modified non-true local parameter choice by

µ1,n(1) = µ1,n +
σg1

6n
(z2

1−α(n)− z2
β (n)).

Let us say that the probabilities α(n) and β (n) satisfy an Osipov-type condition of
order γ if

nγ exp{n2γ

2
} ·min{α(n),β (n)}→ ∞, n→ ∞. (2)

This condition means that neither α(n) nor β (n) tend to zero as fast as or even
faster than n−γ exp{−n2γ/2}, i.e. min{α(n),β (n)} � n−γ exp{−n2γ/2}, and that
max{z1−α(n),z1−β (n)}= o(nγ),n→ ∞. Here, o(.) stands for the small Landau sym-
bol.

If two functions f ,g satisfy the relation lim
n→∞

f (n)/g(n) = 1 then this asymptotic

equivalence will be expressed as f (n)∼ g(n),n→ ∞.

Theorem 1. If α(n) ↓ 0, β (n) ↓ 0 as n→ ∞ and conditions (1) and (2) are satisfied
for γ ∈ ( 1

6 ,
1
4 ] then
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Pµ(ACIu(1) does not cover µ)∼ α(n), n→ ∞

and
Pµ1,n(1)(ACIu(1) covers µ)∼ β (n), n→ ∞.

Let us define the second kind adjusted asymptotic Gaussian quantile

z1−α(n)(2) = z1−α(n)(1)+
3g2−4g2

1
72n

z3
1−α(n)

where g2 = E(X−E(X))4/σ4− 3 is the kurtosis of X , the second kind adjusted
upper asymptotic confidence interval for µ

ACIu(2) = [X̄n−
σ√

n
z1−α(n)(2),∞),

and a second kind modified non-true local parameter choice

µ1,n(2) = µ1,n(1)+
σ(3g2−4g2

1)

72n3/2 (z3
1−α(n)− z3

β (n)).

Theorem 2. If α(n) ↓ 0, β (n) ↓ 0 as n→ ∞ and conditions (1) and (2) are satisfied
for γ ∈ ( 1

4 ,
3
10 ] then

Pµ(ACIu(2) does not cover µ)∼ α(n), n→ ∞

and
Pµ1,n(2)(ACIu(2) covers µ)∼ β (n), n→ ∞.

Remark 1. Under the same assumptions, analogous results are true for lower asymp-
totic confidence intervals, i.e. for ACIl(s) = (−∞, X̄n +

σ√
n z−1−α

(s)),s = 1,2 :

Pµ(ACIl(s) does not cover µ)∼ α(n)

and
P

µ
−
1,n(s)

(ACIl(s) covers µ)∼ β (n), n→ ∞.

Here, z−1−α
(s) means the quantity z1−α(s) where g1 is replaced by−g1,s = 1,2, and

µ
−
1,n(s) = µ− σ√

n
(z1−α−zβ )+

σg1

6n
(z2

1−α−z2
β
)− σ(3g2−4g2

1)

72n3/2 (z3
1−α−z3

β
)I{2}(s).

Remark 2. In many situations where limit theorems are considered as they were
in Section 1, the additional assumptions (1) and (2) may, possibly unnoticed, be
fulfilled. In such situations, Theorems 1 and 2, together with the following theorem,
give more insight into the asymptotic relations stated in Section 1.

Theorem 3. Large Gaussian quantiles satisfy the asymptotic representation
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z1−α =
√
−2lnα− ln | lnα|− ln(4π) · (1+O

(
ln | lnα|
(lnα)2

)
),α →+0.

Note that O(.) means the big Landau symbol.

2.2 Two-sided confidence intervals

For s ∈ {1,2},α > 0, put L(s;α) = X̄n− σ√
n z1−α(s) and R(s;α) = X̄n +

σ√
n z−1−α

(s).
Further, let αi(n)> 0, i = 1,2,α1(n)+α2(n)< 1, and

ACI(s;α1(n),α2(n)) = [L(s;α1(n)),R(s;α2(n))].

If conditions (1) and (2) are fulfilled then Pµ((−∞,L(s;α1(n))) covers µ)∼ α1(n)
and Pµ((R(s;α2(n)),∞) covers µ)∼ α2(n) as n→ ∞.

With more detailed notation µ1,n(s) = µ1,n(s;α,β ) and µ
−
1,n(s) = µ

−
1,n(s;α,β ),

Pµ1,n(s;α1(n),β1(n))((L(s;α1(n)),∞) covers µ)∼ β1(n),
P

µ
−
1,n(s;α2(n),β2(n))

((−∞,R(s;α2(n))) covers µ)∼ β2(n),n→ ∞.

The following corollary has thus been proved.

Corollary 1. If α1(n) ↓ 0, α2(n) ↓ 0 as n→ ∞ and conditions (1) and (2) are sat-
isfied for γ ∈ ( 1

6 ,
1
4 ] if s = 1 and for γ ∈ ( 1

4 ,
3
10 ] if s = 2, and with (α(n),β (n)) =

(α1(n),α2(n)), then

Pµ(ACI(s;α1(n),α2(n)) does not cover µ)∼ (α1(n)+α2(n)), n→ ∞.

Moreover,

max
ν∈{µ1,n(s;α1(n),β1(n)),µ

−
1,n(s;α2(n),β2(n))}

Pν(ACI(s) covers µ)≤max{β1(n),β2(n)}.

3 Testing

3.1 Adjusted quantiles

Let us consider the problem of testing the hypothesis H0 : µ ≤ µ0 versus the alterna-
tive HA : µ > µ0. The first and second kind adjusted decision rules of the one-sided
asymptotic Gauss test suggest to reject H0 if Tn,0 > z1−α(n)(s) for s = 1 or s = 2,
respectively, where Tn,0 =

√
n(X̄n−µ0)/σ . Because

Pµ0(re ject H0) = Pµ0(ACIu(s) does not cover µ0),
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it follows from Theorems 1 and 2 that under the conditions given there the (sequence
of) probabilities of an error of first kind satisfy the asymptotic relation

Pµ0(re ject H0)∼ α(n),n→ ∞.

Concerning the power function of this test, because

Pµ1,n(s)(do not re ject H0) = Pµ1,n(s)(ACIu(s) covers µ0),

it follows under the same assumptions that the probabilities of a second kind error
in the case that the sequence of the modified local parameters is (µ1,n(s))n=1,2,...,
satisfy

Pµ1,n(s)(do not re ject H0)∼ β (n),n→ ∞.

Similar consequences for testing H1 : µ > µ0 or H2 : µ 6= µ0 are omitted, here.

3.2 Adjusted statistics

Let Tn(1) = Tn− g1
6
√

n T 2
n and Tn(2) = Tn(1)−

3g2−8g2
1

72n T 3
n be the first and second kind

adjusted asymptotically Gaussian statistics, respectively, where Tn =
√

n
σ
(X̄n−µ).

Theorem 4. If the conditions (1) and (2) are satisfied for a certain γ ∈ ( s
2s+4 ,

s+1
2s+6 ]

where s ∈ {1,2} then

Pµ0(Tn(s)> z1−α(n))∼ α(n), n→ ∞

and
Pµ1,n(s)(Tn(s)≤ z1−α(n))∼ β (n), n→ ∞.

Clearly, the results of this theorem apply to both hypothesis testing and confi-
dence estimation in a similar way as described in the preceding sections.

The material of the present paper is part of a talk presented by the author at
the Conference of European Statistics Stakeholders, Rome 2014, see Abstracts of
Communication, p.90, and arXiv:1504.02553. A more advanced ’testing-part’ of
this talk is presented in [8] and deals with higher order comparisons of statistical
tests.

4 Application to exponential families

Let ν denote a σ -finite measure and assume that the distribution Pϑ has the
Radon-Nikodym density dPϑ

dν
(x) = eϑx∫

eϑxν(dx) = eϑx−B(ϑ), say. For basics on ex-
ponential families we refer to Brown [1]. We assume that X(ϑ) ∼ Pϑ and X1 =
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X(ϑ)−EX(ϑ) + µ ∼ P̃µ where ϑ is known and µ is unknown. In the product-
shift-experiment [Rn,Bn, {P̃×n

µ , µ ∈ R}], expectation estimation and testing may
be done as in Sections 2 and 3, respectively, where g1 = B

′′′
(ϑ)/(B

′′
(ϑ))3/2 and g2

allows a similar representation.
Another problem which can be dealt with is to test the hypothesis H0 : ϑ ≤ ϑ0

versus the alternative H1n : ϑ ≥ ϑ1n if one assumes that the expectation function
ϑ → B′(ϑ) = Eϑ X is strongly monotonous. For this case, we finally present just the
following particular result which applies to both estimating and testing.

Proposition 1. If conditions (1) and (2) are satisfied for γ ∈ ( 1
6 ,

1
4 ] then

P×n
ϑ0

(
√

n
Xn−B′(ϑ0)√

B′′(ϑ0)
> z1−α(n)+

B′′′(ϑ0)

6
√

n(B′′(ϑ0))3/2 z2
1−α(n))∼ α(n),n → ∞.

5 Sketch of proofs

Proof of Theorems 1 and 2. If condition (2) is satisfied then x= z1−α(n) = o(nγ),n→
∞ for γ ∈ ( 1

6 ,
3
10 ], and if (1) then, according to [5] and [4], Pµ(Tn > x)∼ f (X)

n,s (x),x→

∞ where f (X)
n,s (x) = 1√

2πx
exp{− x2

2 + x3
√

n

s−1
∑

k=0
ak(

x√
n )

k} and s is an integer satisfy-

ing s
2(s+2) < γ ≤ s+1

2(s+3) , i.e. s = 1 if γ ∈ ( 1
6 ,

1
4 ] and s = 2 if γ ∈ ( 1

4 ,
3

10 ]. Here,

the constants a0 = g1
6 , a1 =

g2−3g2
1

24 are due to the skewness g1 and kurtosis g2 of

X . Note that g1x2

6
√

n = o(x) because x= o(n1/2), thus x+ g1x2

6
√

n = o(nγ), and Pµ(Tn >

x+ g1x2

6
√

n )∼ fn,1(x+
g1x2

6
√

n ). Hence, Pµ(Tn > x+ g1x2

6
√

n )∼ 1−Φ(x). Similarly, Pµ(Tn >

z1−α(n)(s))∼ α(n), s = 1,2. Further, Pµ1,n(s)(Tn ≤ z1−α(n)(s))

=Pµ1,n(s)(

√
n

σ
(X̄n−µ1,n(s))< z1−α(n)(s)−

√
n

σ
(µ1,n(s)−µ))=P0(

√
n

σ
X̄n < zβ (n)(s)).

The latter equality holds because {Pµ ,µ ∈ (−∞,∞)} is assumed to be a shift family.
It follows that Pµ1,n(s)(Tn ≤ z1−α(n)(s))

= P0(

√
n

σ
(−X̄n)≥ z1−β (n)+

−g1

6
√

n
z2

1−β (n)+ I{2}(s)
3g2−4g2

1
72n

z3
1−β (n)).

Note that −g1,g2 are skewness and kurtosis of −X1. Thus,

Pµ1,n(s)(Tn ≤ z1−α(n)(s))∼ f (−X)
n,s (z1−β (n)(s))∼ β (n),n→ ∞.

Because Pµ(ACIu does not cover µ) = Pµ(Tn > z1−α(n)(s)) and
Pµ1,n(s)(ACIu covers µ) = Pµ1,n(s)(Tn ≤ z1−α(n)(s)), the theorems are proved.
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Proof of Remark 1. The first statement of the remark follows from

Pµ(µ > X̄n +σz−1−α(n)/
√

n) = Pµ(
√

n(−X̄n +µ)/σ > z−1−α(n))

and the second one from

P
µ
−
1,n(s)

(µ < X̄n +σz−1−α(n)/
√

n) = P0(X̄n > µ−µ
−
1,n(s)−σz−1−α(n)/

√
n)

= P0(
√

nX̄n/σ > z1−β (n)(s)).

Proof of Theorem 3. We start from the well known relations

α = 1−Φ(z1−α) = (1+O(
1

z2
1−α

))
1√

2πz1−α

e−
z2
1−α

2 , α → 0.

The solution to the approximative quantile equation α = 1√
2πx

e−
x2
2 will be denoted

by x = x1−α . Let us put

xe
x2
2 =

1√
2πα

=: y. (3)

If x≥ 1 then it follows from (3) that y≥ e
x2
2 , hence x2 ≤ ln(y2). It follows again

from (3) that y2 ≤ ln(y2)ex2
, thus x2 ≥ ln( y2

lny2 ). After one more such step,

ln(
y2

lny2 )≤ x2 ≤ ln[
y2

ln( y2

lny2 )
].

The theorem now follows from

x2 = {lny2− ln2− ln lny}{1+O(
ln lny
(lny2)2 )},y→ ∞.

Let us remark that the inverse of the function w→ wew is called the Lambert W
function. An asymptotic representation of the solution of (3) as y→∞ can therefore
be derived from the more general representation (4.19) of W in [2] if one reads (3)
as wew = y2. Our derivation of the particular result needed here, however, is much
more elementary than the general one given in the paper just mentioned.

Proof of Theorem 4. Recognize that if gn,s(x) = o( 1
x ),x→ ∞ then f (+/−)(X)

n,s (x+

gn,s(x))∼ f (+/−)(X)
n,s (x),x→ ∞. Let us restrict to the case s = 1. According to [4],

Pµ0(Tn(1)> z1−α(n))∼ Pµ0(
3
√

n
g1

> Tn(1)> z1−α(n)).
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The function f (1)n (t) = t − g1t2

6
√

n has a positive derivative, f (1)
′

n (t) = 1− g1t
3
√

n > 0,

if g1t < 3
√

n. Denoting there the inverse function of f (1)n by f (1)
−1

n , it follows

f (1)
−1

n (x) = x+ g1x2

6
√

n +O( x3

n ) and f (1)n ( f (1)
−1

n (x)) = x+o( 1
x ). Thus,

Pµo(Tn(1)> z1−α(n))∼ Pµo(Tn > z1−α(n)(1))∼ α(n).

Moreover, Pµ1n(1;α(n),β (n))(Tn(1)≤ z1−α(n))=Pµ1n(1;α(n),β (n))(Tn≤ ( f (1)n )−1(z1−α(n)))

=Pµ1n(1;α(n),β (n))(
√

n Xn−µ1n(1)
σ

≤ z1−α(n)(1)+
z2
1−α(n)g1

6
√

n +O(
z3
1−α(n)

n )−
√

n µ1n(1)−µ0
σ

)∼

f (−X)
n,1 (−zβ (n)(1)+O(

z3
1−α(n)

n ))∼ 1−Φ(z1−β (n)) = β (n).

Proof of Proposition 1. Because

Pµ0( re ject H0) = Pµ0(ACIu(1) does not cover µ0)

it follows by Theorem 1 that

Pµ0(re ject H0) = Pµ0(X̄n−
σ√

n
z1−α(1)> µ0) = Pµ0(

√
n

X̄n−µ0

σ
> z1−α(1)).

With Pµ0 =P×n
ϑ0

,µ0 =B′(ϑ0),σ
2 =B′′(ϑ0) and B′′′(ϑ0)/(B′′(ϑ0))

3/2 = g1, the proof
of Proposition 1 is finished.
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