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1 Introduction

Asymptotic relative efficiency of one test with respect to (w.r.t.) another is ex-
tensively studied in the literature. For an introduction and overview we refer
to Nikitin [1]. Several notions of efficiency may be distinguished w.r.t. how the
probabilities of first and second kind test errors behave in the case of increasing
sample sizes. Roughly spoken, studies of Pitman type are dealing with situations
where both kinds of probabilities of test errors stabilize asymptotically at some
fixed positive levels while studies of different other types take into consideration
that both error probabilities are tending to zero or that one of them stabilizes
asymptotically at a positive value and the other one tends to zero. Moreover, one
may take into account different speeds of convergence of the two error probabili-
ties.

The present study deals with specific situations where probabilities of both
error types are tending to zero not faster than at a certain moderate speed.

Note that there are different notions of large and moderate deviations in
the literature of probability theory and mathematical statistics. Zons of large
deviations concerned here are often called to be of the so called Linnik type, and
the speed at which error probabilities are tending to zero is controlled here by a
so called Osipov condition.

Second type error probabilities of a test depend on the alternatives taken under
consideration. While local asymptotic normality theory is in case of sample size
n concerned with differences of parameters under the hypothesis and under the
alternative being of the type C/

√
n, here we are dealing with such differences of

the type d(n)/
√
n where d(n) → ∞ and d(n)/

√
n → 0 as n → ∞. Alternatives

of the latter type will be called moderate local alternatives.
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Numerous statistical and probabilistic results have been derived for such situ-
ations, see Inglot and Ledwina [2], [3], Kallenberg [4],[5], Kallenberg and Ledwina
[6], Ledwina, Inglot and Kallenberg [7], Richter [8], [9], [10] and Wood [11].

The notion of probabilities of moderate deviations partly used in those papers
should be distinguished from that used for deviations in logarithmic zones, e.g.,
in Amosova [12] and Richter [13], [8], [14] for the one and multi-dimensional case,
respectively.

Recent extensions of related considerations to martingale sample schemes are
to be found in Fan, Grama and Liu [15].

The paper is organized as follows. Section 2.1 provides an introduction to
skewness-kurtosis adjustments of the classical asymptotic Gauss test following
Richter [10], and a comparison to the well known Cornish-Fisher expansion. The
equivalence of tests in the sense of Pitman is discussed in Section 2.2. The main
result of this paper concerning skewness-kurtosis higher order equivalent decisions
between a hypothesis and a moderate-local alternative is derived then in Section
3.

2 Preliminaries

2.1 Skewness-kurtosis adjusted asymptotic Gauss test

Let X1, ..., Xn be independent and identically as X distributed random variables
with the common distribution law from a shift family of distributions, Pµ =
P (· −µ), where the expectation equals µ, µ ∈ R, and the variance is σ2. Assume
we are interested in deciding between a producer’s hypothesis and a customer’s
apprehension,

H0 : µ ≤ µ0 versus H1,n : µ ≥ µ1,n where µ1,n > µ0. (1)

The test partners are aware of the general circumstance that the values of the
power function of a test are only larger than a reasonable bound if the argument
of the function is chosen sufficiently far from those arguments representing the
null hypothesis. They agree therefore to use a test reflecting this situation from
the very beginning. The size of the gap between µ0 and µ1,n depends on what
the customer may be willing to tolerate in a given practical situation, both w.r.t.
the absolute value of µ1,n−µ0 and w.r.t. the costs, expressed through the sample
size n.

It is well known that the statistic Tn =
√
n X̄n−µ

σ
where X̄n stands for the

sample mean is asymptotically for n → ∞ standard normally distributed, Tn ∼
AN(0, 1). Hence,

Pµ(Tn > z1−α)→ α, n→∞,

and under the n−1/2-local non-true parameter assumption,

µ1,n = µ+
σ√
n

(z1−α − zβ),
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i.e. if one assumes that a sample is drawn with a shift of location or with an error
in the variable, then

Pµ1,n(Tn ≤ z1−α) = Pµ1,n(
√
n
X̄n − µ1,n

σ
≤ zβ)→ β as n→∞,

where zq denotes the quantile of order q of the standard Gaussian distribution,
and α, β are from the interval (0, 1/2). Thus, the first and second type error prob-
abilities of the decision rule d̂0 of the asymptotic Gauss test satisfy the asymptotic
relations

Pµ0(d̂0 rejects H0 )→ α and Pµ1,n(d̂0 not rejects H0 )→ β as n→∞.

Refinements of d̂0 and of these two asymptotic relations where α = α(n)→ 0 and
β = β(n) → 0 as n → ∞ were proved in Richter [10] under suitable additional
assumptions.

It is often said that a random variable X satisfies the Linnik condition of order
γ, 0 < γ < 1/2, if

Eµ exp{|X − µ|
4γ

2γ+1} <∞. (2)

This condition and far reaching consequences from it for probabilities of large
deviations have been studied in Ibragimov and Linnik [16](for a more general
condition see Linnik [17]) and a subsequent series of papers by many authors of
whom we refer here to Nagajev [18] and Richter [19] where condition (2) was
fundamentally generalized in two steps.

Two sequences of probabilities, (α(n))n=1,2,... and (β(n))n=1,2,..., are said to
satisfy an Osipov-type condition of order γ if

nγ exp{n
2γ

2
} ·min{α(n), β(n)} → ∞, n→∞. (3)

This condition was originally introduced in Osipov [20] for considering large de-
viations of multivariate random vectors. Several consequences following from (3)
for probabilities of moderate and large deviations in finite dimensions have been
studied, e.g., in Richter [13], [8], [21].

Condition (3) means that neither α(n) nor β(n) tends to zero as fast as or
even faster than n−γ exp{−n2γ/2}, i.e.

min{α(n), β(n)} � n−γ exp{−n2γ/2}, n→∞.

On using Gaussian quantiles this condition may be written

max{z1−α(n), z1−β(n)} = o(nγ), n→∞

where o(.) stands for the small Landau symbol. Note that large Gaussian quan-
tiles satisfy the asymptotic representation

z1−α =
√
−2 lnα− ln | lnα| − ln(4π) · (1 +O

(
ln | lnα|
(lnα)2

)
), α→ +0,
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see Ittrich, Krause and Richter [22] and Richter [10].
Skewness-kurtosis adjustments of the asymptotic Gauss test make use of the

following quantities. The first and second kind (or order) adjusted asymptotic
Gaussian quantiles are defined by

z1−α(n)(1) = z1−α(n) +
g1

6
√
n
z2

1−α(n) (4)

and

z1−α(n)(2) = z1−α(n)(1) +
3g2 − 4g2

1

72n
z3

1−α(n), (5)

respectively. Here, g1 = E(X−E(X))3

σ3/2 and g2 = E(X−E(X))4

σ4 − 3 are skewness and
kurtosis of X, respectively. Similarly, first and second kind modified non-true
moderate local parameter choices are

µ1,n(1) = µ1,n +
σg1

6n
(z2

1−α(n) − z2
β(n))

and

µ1,n(2) = µ1,n(1) +
σ(3g2 − 4g2

1)

72n3/2
(z3

1−α(n) − z3
β(n)),

respectively. The first and second kind adjusted decision rules d̂s of the one-sided
asymptotic Gauss test determine to reject H0 if Tn,0 > z1−α(n)(s) for s = 1 or

s = 2, respectively, where Tn,0 =
√
n X̄n−µ0

σ
.

Let us recall that if two functions f, g satisfy the asymptotic relation lim
n→∞

f(n)
g(n)

=

1 then this asymptotic equivalence will be written f(n) ∼ g(n), n→∞.
It was proved in Richter [10] that if the conditions (2) and (3) are satisfied

for a certain γ,

γ ∈
(

s

2s+ 4
,
s+ 1

2s+ 6

]
where s ∈ {1, 2} (6)

then the error probabilities of the adjusted decisions satisfy

Pµ0(d̂s rejects H0 ) ∼ α(n) and Pµ1,n(s)(d̂s not rejects H0 ) ∼ β(n), n→∞. (7)

These results have been equivalently reformulated in Richter [10] with the
help of the first and second kind adjusted asymptotically Gaussian test statistics

Tn(1) = Tn,0 −
g1

6
√
n
T 2
n,0 and Tn(2) = Tn(1)− 3g2 − 8g2

1

72n
T 3
n,0,

respectively. The hypothesis H0 will be rejected according to decision rule d̂s if
Tn(s) > z1−α(n), and the first and second kind error probabilities of this decision
still behave as in (7).

Similar consequences for testing H0 : µ > µ0 or H0 : µ = µ0, as well as for
constructing confidence intervals, are omitted here.

The material of this section surveys the condensed content of the basic ’testing-
part’ of what was presented by the author at the Conference of European Statis-
tics Stakeholders, Rome 2014, see Abstracts of Communication, p. 90, and
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Richter [10] where, however, the equivalent ’language’ of confidence estimation
is used. The advanced ’testing-part’ of this talk is presented in Section 3 of the
present paper.

Remark 2.1. From a formal point of view, the first and second kind adjusted
asymptotic Gaussian quantiles defined in (4) and (5), respectively, have the same
analytical structure as the coefficients of a Cornish-Fisher quantile-expansion
(CFE), see Fisher and Cornish [23] and Bolschev and Smirnov [24]. However,
CFE is valid for fixed or stabilizing values of α while the relations in (4) and (5)
apply to the case α(n)→ 0 as n→∞. Taking this into account, the large devia-
tion results in their form presented here through a new light onto the CFE. Note
that the CFE itself is based upon an Edgeworth type expansion of a correspond-
ing cumulative distribution function. Theoretical and numerical comparisons of
normal and large deviation approximations for tail probabilities were presented in
Field and Ronchetti [25], Fu,Len and Peng [26], Ittrich, Krause and Richter [22]
and Jensen [27].

2.2 Pitman equivalent tests

In production process control, assume two methods are available for measuring the
dimension µ of a workpiece which is serially made on a machine. In general, either
methods work at different levels of costs and precision, the latter being expressed
in terms of variances of measurements, σ2

1 and σ2
2. One may be interested then in

knowing for which sample size n2 = n2(n1) the second method works as good as
the first one works for sample size n1. For comparing the two methods of process
control being based upon the two methods of measuring a workpiece one may
compare both first and second kind error probabilities when dealing with problem
(1) where we are given now the i.i.d. samples Si = {X(i)

1 , ..., X
(i)
ni }, i = 1, 2

satisfying X
(i)
j ∼ P (i)(µ, σ2

i ), j = 1, ..., ni with P (i)(µ, σ2
i ) = P

(i)
µ = P (i)(.− µ) for

any probability distribution law from a family having shift parameter equal to
expectation µ, and variance σ2

i , i = 1, 2. Throughout what follows in the present

paper all statistics built on using the random variables X
(i)
j , as well as quantiles

of their distribution functions, will be indicated by an upper subscript (i), and
their higher order moments and semi-invariants as well as corresponding sample
sizes will be indicated by the (possibly second) lower index i.

In this sense, d̂
(i)
0 denotes the decision function based upon the asymptotically

Gaussian statistic T
(i)
ni evaluated for sample Si of size ni, i = 1, 2.

We recall that Pitman’s strategy of defining equivalence of two tests is one of
several such strategies which are commonly formulated for rather general tests,
see, e.g., in Nikitin [1]. We restrict our consideration here, however, to pairs of

tests based upon the statistics T
(i)
ni being the suitably centered and normalized

means of the i.i.d.-samples Si, i = 1, 2.
Two such test sequences based upon samples of sizes n1, n2 where n2 =

n2(n1)→∞ as n1 →∞ and decisions

d̂
(i)
0 = { reject H0 if T (i)

ni
> z1−α}, i = 1, 2
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are called asymptotically (α, β)-Pitman equivalent for deciding the problem (1)
with

µ1,n1 = µ0 +
d
√
n1

, d > 0 (8)

if
P (i)
µ1,n1

(d̂
(i)
0 not rejects H0)→ β, n1 →∞, i = 1, 2. (9)

We shall refer to this as first order equivalence of decisions d̂
(1)
0 and d̂

(2)
0 . Note

that here
P (i)
µ0

(d̂
(i)
0 rejects H0)→ α, n1 →∞, i = 1, 2, (10)

and α and β are assumed to belong to the interval (0, 1/2).
It turns out that asymptotic (α, β)-Pitman equivalence holds if

n2(n1)

n1

→ σ2
2

σ2
1

, n1 →∞. (11)

3 Higher order equivalences

Let us assume throughout this section that as before n2 = n2(n1) → ∞ as
n1 →∞ but, differently from Section 2, first and second type error probabilities
are tending now to zero, and

µ
(i)
1,ni

= µ0 +
di(ni)√
ni

with di(ni)→∞,
di(ni)√
ni
→ 0 as n1 →∞.

The latter assumption means that, for n1 → ∞, the sequences of alternative
moderate local non-true parameters are tending not as fast to µ0 as before.

Let the first and second order adjusted decision functions d̂
(i)
s be defined as to

decide between
H0 : µ ≤ µ0 and H

(i)
1,ni

(s) : µ ≥ µ
(i)
1,ni

(s) (12)

by rejecting H0 if T
(i)
ni (s) > z

(i)
1−α(n1)(s), s ∈ {1, 2}, i ∈ {1, 2}. For a discussion of

the meaning and the size of the gap between µ0 and µ
(i)
1,ni

(s), we refer to what

was said just following (1). We recall that the moderate local alternatives µ
(i)
1,ni

(s)
allow according to Section 2 the representation

µ
(i)
1,ni

(s) = µ0 + σi

s+1∑
k=1

b
(i)
k−2

zk1−α(n1) − zkβ(n1)
√
ni
k

where b
(i)
−1 = 1, b

(i)
0 = g1,i/6 and b

(i)
1 = (3g2,i− 4g1,i)/72. Note that the sizes of the

first and second kind error probabilities α(.) and β(.), respectively, are chosen
independently of i, i ∈ {1, 2}.
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Definition 3.1. The decisions d̂
(i)
s , i = 1, 2 are said to be asymptotically moderate

locally equivalent of order s+ 1, s ∈ {1, 2} for deciding the problem (12) with

µ
(1)
1,n1

(s) = µ
(2)
1,n2(n1)(s) (13)

if, for n2(n1)→∞ as n1 →∞,

P (1)
µ0

(d̂(1)
s rejects H0) ∼ P (2)

µ0
(d̂(2)
s rejects H0) ∼ α(n1)→ 0

and

P
(1)

µ
(1)
1,n1

(s)
(d̂(1)
s not rejects H0) ∼ P

(2)

µ
(1)
1,n1

(s)
(d̂(2)
s not rejects H0) ∼ β(n1)

where α(n1), β(n1) satisfy the Osipov type condition (3) with γ chosen according
to (6).

Theorem 3.1. Let X
(1)
1 and X

(2)
1 satisfy the Linnik condition (2) for one and

the same γ = γ(s) fulfilling (6). Moreover, let α(n1), β(n1) satisfy the Osipov
condition (3) for the same γ = γ(s), and assume that

n2(n1)

n1

=
σ2

2

σ2
1

+ o(1)
1

max{z1−α(n1),−zβ(n1)}2
, n1 →∞. (14)

If in the case s = 1 skewness g1,1 and g1,2 of X(1) and X(2), respectively, satisfy

g1,2

g1,1

=
σ2

σ1

, (15)

and if in the case s = 2 additionally the corresponding kurtosis values satisfy

g2,2

g2,1

=
σ2

2

σ2
1

(16)

then d̂
(1)
s and d̂

(2)
s are equivalent of order s+ 1, s ∈ {1, 2}, respectively.

Proof. The proof of the first property of Definition 3.1 follows directly from the
results in Richter [10], see Section 2.1. We recall that if condition (3) is satisfied
then x = z1−α(n) = o(nγ), n → ∞ for γ ∈

(
1
6
, 3

10

]
, and if (2) is satisfied then,

according to Nagajev [18] and Petrov [28],

Pµ(Tn > x) ∼ fn,s(x), x→∞ (17)

where

fn,s(x) = f (X)
n,s (x) =

1√
2πx

exp

{
−x

2

2
+

x3

√
n

s−1∑
k=0

ak

(
x√
n

)k}

and s is an integer satisfying (6), i.e. s = 1 if γ ∈
(

1
6
, 1

4

]
and s = 2 if γ ∈

(
1
4
, 3

10

]
.

Here, the constants a0 = g1
6
, a1 =

g2−3g21
24

depend on skewness g1 and kurtosis g2

of X.
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Thus, according to the construction of the skewness-kurtosis adjusted quan-
tiles z

(i)
1−α(n1)(s) and moderate local alternatives µ

(i)
1,ni

(s), i ∈ {1, 2}, s ∈ {1, 2},

P
(i)
µ1,ni (s)

(
T (i)
ni
≤ z

(i)
1−α(n1)(s)

)
∼ β(n1), n1 →∞. (18)

Hence, for proving the second property of Definition 3.1 it remains to show that
one can replace µ

(2)
1,n2(n1)(s) with µ

(1)
1,n1

(s) in (18) if there holds i = 2.

As a consequence of (17), and in accordance with the proof of Theorems 1
and 2 in Richter [10],

P
(2)

µ
(2)
1,n2(n1)

(s)

(
T (2)
n2
≤ z

(2)
1−α(n1)(s)

)
∼ fn2,s

(
z

(2)
1−α(n1)(s)− ξ2

)
where fn2,s = f

(
X

(2)
1

)
n2,s , ξ2 =

√
n2

(
µ

(2)
1,n2(n1)(s)− µ0

)
/σ2, and

P
(2)

µ
(1)
1,n1

(s)

(
T (2)
n2
≤ z

(2)
1−α(n1)(s)

)
∼ fn2,s

(
z

(2)
1−α(n1)(s)− ξ1

)
,

ξ1 =
√
n2

(
µ

(1)
1,n1

(s)− µ0

)
/σ2.

It remains therefore to show that

fn2,s

(
z

(2)
1−α(n1)(s)− ξ1 + [ξ1 − ξ2]

)
∼ fn2,s

(
z

(2)
1−α(n1)(s)− ξ1

)
.

Equivalently, we prove that

fn2,s(hs + ks) ∼ fn2,s(hs) (19)

with
hs = z

(2)
1−α(n1)(s)−

√
n2

(
µ

(1)
1,n1

(s)− µ0

)
/σ2

and
ks = ξ1 − ξ2 =

√
n2

(
µ

(1)
1,n1

(s)− µ(2)
1,n2

(s)
)
/σ2.

According to Lemma 3.1 below, for proving (19) it is sufficient to prove that
ks = o (h−1

s ). Note that

h0 = z1−α(n1) −
√
n2

σ2

(
µ0 +

σ1(z1−α(n1) − zβ(n1))√
n1

− µ0

)

= z1−α(n1)

(
1−

√
n2

n1

σ1

σ2

)
+

√
n2

n1

σ1

σ2

zβ(n1)

and

k0 =

√
n2

σ2

(
σ1√
n1

− σ2√
n2

)
(z1−α(n1) − zβ(n1))

=

(√
n2

n1

σ1

σ2

− 1

)
(z1−α(n1) − zβ(n1)).
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By (14), z1−α(n1)

(
1−

√
n2

n1

σ1
σ2

)
= o

(
1

max

)
,
√

n2

n1

σ1
σ2
→ 1 and zβ(n1) → −∞ as

n1 →∞ where max = max{z1−α(n1), −zβ(n1)}. It follows, symbolically, that

h0k0 =

[
O(max)o

(
1

max2

)
+O(max)

] [
o

(
1

max2

)
O(max)

]
,

thus h0k0 = o(1) as n1 →∞. Moreover,

h1 = h0 +
g1,2z

2
1−α(n1)

6
√
n2

−
√
n2σ1g1,1

σ26n1

[
z2

1−α(n1) − z2
β(n1)

]
= h0 +

g1,2z
2
1−α(n1)

6
√
n2

(
1− σ2g1,1σ

2
1n2

σ1g1,2σ2
2n1

)
+
z2
β(n1)g1,1σ1

√
n2

6
√
n1σ2
√
n1

g1,1

and

k1 = k0 +

√
n2

σ2

(
σ1g1,1

6n1

− σ2g1,2

6n2

)(
z2

1−α(n1) − z2
β(n1)

)
= k0 +

g1,1
√
n2σ1

6
√
n1
√
n1σ2

(
1− σ2

2n1σ1g1,2

σ2
1n2σ2g1,1

)(
z2

1−α(n1) − z2
β(n1)

)
.

If s = 1 then because of (15) and (14),
σ2g1,1σ2

1n2

σ1g1,2σ2
2n1

= 1 + o
(

1
max2

)
and

zβ(n1)g1,1

6
√
n1

=

o
(
n
−1/4
1

)
, thus h1k1 = o(1). Similarly, on using (16) and (14), in the case s = 2,

h2k2 = o(1).

Lemma 3.1. If %n,s(x) = o
(

1
x

)
, x→∞ then fn,s(x+%n,s(x)) ∼ fn,s(x), x→∞

Proof. Let z = x+ %n,s(x), then

fn,s(z) =
1√
2πz

exp

{
−z

2

2
+

z3

√
n

s−1∑
k=0

ak

(
z√
n

)k}

=
1√

2πx (1 + %n,s(x)/x)

exp

{
−x

2(1 + %n,s(x)/x)2

2
+
x3(1 + %n,s(x)/x)3

√
n

s−1∑
k=0

ak

(
x√
n

)k
(1 + %n,s(x)/x)k

}
∼ fn,s(x) if (i) x2 %n,s(x)

x
→ 0, (ii) x3√

n

%n,s(x)

x
→ 0 and (iii) x4

n

%n,s(x)

x
→ 0. Note that

assumption (i) is a stronger one than (ii) and (iii), and that it is fulfilled under
the assumptions of Lemma 3.1.
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