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Abstract

Exact distributions of generalized Chi-square and Fisher statistics are used to
derive confidence intervals and significance tests for inferring on one or two scal-
ing parameters, respectively, under non-standard assumptions w.r.t. the multivari-
ate sample distribution. The latter may have convex or radially concave density
level sets and heavy or light distribution centers and tails. Independent and ln,p-
dependent sample variables are considered.

Keywords: estimating and testing scaling parameters, non-standard model assumptions, gen-
eralized Chi-square and Fisher distributions, heavy and light distribution tails, heavy and light
distribution centers, independence sampling, dependence sampling

1 Introduction

The well known Chi-square and Fisher distributions were introduced already a long time ago in
[12], [22] and [7, 9, 10], respectively. Since then, methods of statistical inference on variances
are extensively studied under various aspects in numerous papers, see e.g. [24], [19], [38] and
the recent survey in [3], for only to mention a few of them.

It is often natural to assume that expectations are unknown and thus to additionally be
estimated when studying variances. In some cases, however, it may be reasonable to assume
that expectations are known. Assume, for example, a company produces tubes of a certain
norm length. The production dependent deviations from this length may according to [4], p.
162 be considered as normally distributed with expectation zero and unknown variance. If the
company indicates to customers a certain variance of tube length then one might be interested
in proving this.

The successful fulfillment of manufacturing orders requires according to [11] machine tools
with high thermal stability. Rapidly changing operating conditions for machine tools, however,
may lead to unknown variances of technical features having a known expectation and make it
difficult to constantly ensure accuracy in production processes.

Moreover, comparing in another situation instrumental accuracy by measuring a certain
standard several times with two gages may generate random samples having the same known
mean and unknown variances which one might be interested then to compare with each other.
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If in such situations independent random variables X1, ..., Xn and Y1, ..., Ym follow Gaus-
sian laws with known expectations µ1, µ2 and unknown standard deviations σ1, σ2, respectively,
then, with σ̂2

1 = 1
n

∑n
1 (Xi − µ1)2 being the maximum likelihood estimator of the variance σ2

1,

n( σ̂1σ1 )2 follows a Chi-square density with n d.f., and n(σ̂1/σ1)2

m(σ̂2/σ2)2
follows Fisher’s F -distribution

with (n,m) d.f..
The aim of the present paper is to allow more general distributions of the sample vector, and
to study exact distributions of generalized Chi-square and Fisher statistics being based upon
the maximum likelihood estimators of the model’s scaling parameters. The multivariate sam-
ple distributions considered to this end are convex or radially concave contoured. These two
distribution classes are subclasses of the family of star-shaped distributions.

The paper is organized as follows. Star-shaped distributions are introduced in Section 2. A
one sample non-standard scaling model for i.i.d. power exponentially distributed random vari-
ables and a certain extension of it are introduced in Section 3.1. Confidence estimation of and
significance testing of hypotheses on the scaling parameter are discussed in Sections 3.2 and 3.3,
respectively. A two sample non-standard scaling parameter model ist studied then in Section
3.4 where estimation and testing are dealt with. A brief comparison of norms and antinorms,
generating convex or radially concave level sets of the multivariate sample distribution, respec-
tively, is given in the Appendix.
Finally, we remark that an introduction to non-standard models and exact distribution theory
is given in [30, 32]. For closely related studies on expectations and variances based upon ln,p-
norms and goodness of fitting using ln,p-norms for data sets that follow a power exponential
distribution, we refer to [16]-[18]. For a comparison of the variances of two dependent random
variables, see [39].

2 Star-shaped sample distributions

2.1 The general class

The most general non-standard distributions of the multivariate sample vector we are considering
in the present paper are star-shaped distributions. More specific distributions are ln,p-symmetric
and p-generalized elliptically contoured distributions considered, e.g., in [30] and [32], respec-
tively. Let K ⊂ Rn denote a star body with the origin being an inner point, and let S be
its topological boundary which will be called a star sphere. The Minkowski functional of K is
defined by hK(x) = inf{λ > 0 : x ∈ λK}, x ∈ Rn and satisfies hK(x) = 1, x ∈ S. Assume that a
random vector X defined on a probability space (Ω,A, P ) allows the stochastic representation

X
d
= R · US

where R is a non-negative random variable and US follows independently of R the S-generalized
uniform distribution ωS on S. Then X is called origin-including star-shaped distributed. Note

that X
d
= Y means that X and Y follow the same distribution law, and

ωS(A) =
OS(A)

OS(S)
, A ∈ BS = Bn ∩ S

where Bn denotes the Borel σ-field in Rn and OS the star generalized surface content measure
on BS . If µ stands for the Lebesgue measure on Bn and CPC(A) = {x ∈ Rn : x/hK(x) ∈ A} is
the central projection cone generated by A ∈ BS then the star generalized surface content of A
is formally defined for a particular class of star spheres S in [27] and under the weak technical
Assumption 1 for general star spheres in [32] by

OS(A) = f ′A(1) (1)
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where

f ′A(r) =
d

dr
fA(r), fA(r) = µ(sector(A, r)), sector(A, r) = CPC(A) ∩K(r)

and K(r) = r ·K = {(rx1, ..., rxn)T ∈ Rn : (x1, ..., xn)T ∈ K}. Integral, or differential geometric,
characterizations of OS which can equivalently be taken as a definition of OS are given for
particular classes of star bodies in [28, 31] and for arbitrary two-dimensional convex star bodies
in [34]. Note that, e.g., the well known ([27]) ln,p-generalized (non-Euclidean) surface content of
the ln,p-unit sphere,

ωn,p =
2nΓ(1

p)n

pnΓ(np )
, p > 0,

is equal to the Euclidean surface content, if and only if p = 2.
There are widespread miss-understandings w.r.t. this circumstance in the literature. The reader
should be aware that there is some literature where formulas are derived which are called surface
content and uniform distribution, respectively, however neither defining in advance the notion
of surface content nor referring to literature where such definition is given.

The star generalized surface measure on the boundary of n-dimensional convex or radially
concave star bodies is dealt with under different aspects in [33, 35, 36]. A general result in [36]
says that

OS(A) =

∫
G(A)

ĥK̂(N(x))dx

where
K̂ = {λx : x ∈ Grad(S), 0 ≤ λ ≤ 1} , Grad(S) = {∇hK(x), x ∈ S}

and
ĥK̂(t) = inf{λ > 0 : t ∈ λK̂}, t ∈ pos K̂

is a certain modification of the Minkowski functional of K̂. Here, pos x = {λx : λ ≥ 0}, x ∈ Rn
and pos M =

⋃
x∈M

pos x.

If X is origin-including star-shaped distributed and ν ∈ st(K) where st(K) denotes the
set of all points w.r.t. which K is star-shaped then X − ν is also origin-including star-shaped
distributed. If, however, ν does not belong to st(K) then X − ν will be called just star-shaped
distributed. The first of these two cases is dealt with in [32], Section 5.1 where non-concentric
elliptically contoured distributions are introduced. Both cases are considered when studying non-
central Chi-square distributions in [14]. For a density having non-concentric circular contours
with centers on a straight line, see [2].

Example Let a = (a1, ..., an)T ∈ Rn be a vector having positive components, p ≥ 1, and

K = {x ∈ Rn : (
n∑
i=1
|xiai |

p)1/p ≤ 1}. Then, according to [32], the star-generalized surface content

measure on the boundary S of K is

OS(A) = an

∫
G(A)

d(x1, ..., xn−1)

(1−
n∑
i=1
|xiai |

p)1−1/p

, A ∈ BS . (2)

The special case p = 2 has been dealt with in [31].
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2.2 Norm contoured distributions

Note that a symmetric convex star body having the origin as an inner point can always be
generated by a norm, hK(.) = ||.||, and that according to [35]

OS(A) =

∫
G(A)

||N(x)||∗dx, A ∈ BS (3)

where G(A) = {ϑ ∈ Rn−1 : ∃ η = η(ϑ) s.t. (ϑT , η(ϑ)T )T ∈ A } and ||.||∗ denotes the norm dual
to ||.|| and N(ϑ) = (∇η(θ),−1)T is the outer normal vector to S at (ϑT , η(ϑ))T . If K is the star
body from the Example in Section 2.1 then (3) takes the specific form (2).
Let us emphasize that the star generalized surface content of an arbitrary measurable subset A
of the star sphere S is a sum of integrals, in general. If S+ and S−, however, denote upper and
lower half spheres of the norm sphere S, and K∗ = {y ∈ Rn : ||y||∗ ≤ 1}, then

OS(A) =

∫
G(A∩S+)

hK∗(N(x))dx+

∫
G(A∩S−)

hK∗(N(x))dx, A ∈ BS

where
G(A ∩ S+(−)) = {ϑ ∈ Rn−1 : ∃ η = η(ϑ) s.t. (ϑT , ηT )T ∈ A ∩ S+(−)}.

For simplicity, and in accordance with Definition 1, Lemma 1 and Corollary 1 in [32], however,
OS(A) will be represented throughout this paper symbolically by a single integral.
Finally note that formula (1) applies whenever it is possible to evaluate the volume of a convex
body. W.r.t. this research area we refer, e.g., to [23]. and a discussion on page 11 in [29].
Note that K∗ is always a symmetric convex star body and defines therefore a metric geometry
in the sense of [5].

2.3 Antinorm contoured distributions

If K is radially concave w.r.t. a fan F = {C1, C2, ...} and belongs to the particular class AN1
of star bodies introduced in [35] then its Minkowski functional is an antinorm, hK(.) =- . -. For
the notion of antinorm, we refer to [20] and the Appendix. Let

hFK(u) =
∑
i

ICi(u) inf{uT y : y ∈ S ∩ Ci}, u ∈ Rn

be the anti-support function of K w.r.t. F and

Ko = {λ(u)u : 0 ≤ λ(u)hFK(u) ≤ 1, u ∈ S(n−1)
E }

the anti-polar set of K where S
(n−1)
E denotes the Euclidean unit sphere in Rn then according to

[35]

OS(A) =

∫
G(A)

hKo(N(x))dx (4)

where N(x) is the inner normal vector to S at x ∈ S.
Example Let the antinorm ball and sphere K and S, respectively, be formally defined as in

the preceding example but with p ∈ (0, 1], and let a still be a vector with positive components.
Then the S-generalized surface content measure OS satisfies representation (2). Notice, however,
that we are evaluating star generalized surface contents of subsets of antinorm spheres, here,
while star generalized surface contents of subsets of norm spheres are considered in the preceding
example. Notice that 1− 1/p > 0 if p > 1 and 1− 1/p < 0 if 0 < p < 1.
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2.4 Continuous distributions

Let a function g : [0,∞) → [0,∞) satisfy the assumptions 0 < I(g) < ∞ where I(g) =
∞∫
0

rn−1g(r)dr. Such function is called a density generating function (dgf). A dgf can be

used modeling light or heavy distribution centers and tails. Moreover, it allows even model-
ing complete level distributions. Well known examples are the power-exponential dgf gPE(r) =
exp{− rp

p }, Kotz type dgf gK(r) = rM−1e−βr
γ
, β, γ > 0, 2M + n > 2 and Pearson-VII-type dgf

gPT7(r) = (1 + r
m)−M ,M > n/2,m > 0 where I(gPE) = pn/p−1Γ(n/p), I(gK) = Γ((n+M−1)/γ)

γβ(n+M−1)/γ

and I(gPT7) = mnB(M − n, n), respectively. Student- and Cauchy-type dgf’s are special cases
of gPT7.

If the star-shaped distributed random vector X has a probability density (p.d.), ϕg,K,ν say,
then

ϕg,K,ν(x) = C(g,K)g(hK(x− ν)), x ∈ Rn.

Densities of this type have been considered in [2] and [8]. Here,

C(g,K) = 1/(I(g)OS(S)), (5)

and the p.d. of the generating variate R is

f(r) = I(0,∞)(r)r
n−1g(r).

The corresponding probability distribution allows the geometric measure representation

Φg,K,ν(B) =
1

I(g)

∞∫
0

rn−1g(r)FS(B, r)dr, B ∈ Bn (6)

where

FS(B, r) = ωS([
1

r
(B − ν)] ∩ S), r > 0

denotes the intersection proportion function (ipf) of the set B.
If K is the Euclidean unit ball then K∗ = K and OS is the Euclidean surface content

measure. In this case, representation (6) has been considered already in [25, 26]. For specific
non-Euclidean cases, (6) has been considered in [27, 28, 31, 32].

Surveys of different types of applications of formula (6) are given for n = 2 in [34] and for
arbitrary n in [30, 32]. For two elementary applications, see Section 2.6.

2.5 Building subclasses and class extensions

Building subclasses of distributions by modeling R. Let us denote the probability law of
the generating variate R by PR, and let ν be a σ-finite measure on the Borel σ-field B(1) (or its
restriction to the positive real line) such that PR is absolutely continuous w.r.t. ν. If ν is the

Lebesgue measure on B(1) then dPR

dν (r) = f(r) is the p.d. considered in Section 2.4. In Sections

2.2 and 2.3, PR can be chosen as the distribution of any non-negative random variable thus dPR

dν
being a mixture of an absolutely continuous, a discrete and a singular component, in general.

Extending distribution classes by restricting U . We emphasize for the rest of this
section that S circumscribes the origin as in inner point. Let M be a measurable subset of the
star sphere S. We call a random vector UM star-generalized uniformly distributed on M (or
the M-restriction of U) if UM follows the distribution law

PUM(A) =
OS(A)

OS(M)
, A ∈ BS ∩M.
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Note that US
d
= U and that pos M is not an absorbing set unless for M = S.

For an example of an M-restriction of U occuring in depth-based classification for distribu-
tions with non-convex support, we refer to [13].

We call
DS(M) = {L{R · UM}, R is a non-negative random variable }

where L(Y ) means the distribution law of Y the class of directionally M-out-of-S restricted
distributions and

DS = {DS(M) :M is a measurable subset of the star sphere S }

the class of directionally out-of-S restricted distributions. Finally,

D = {DS : S is a star sphere }

is called the class of directionally out-of a star sphere restricted distributions in Rn.

2.6 Two elementary types of applications of formula (6)

The ipf is the indicator function of an interval. Assume that the random vector X
follows the continuous star-shaped distribution law Φg,K,ν , and let the statistic T : Rn → [0,∞)
be defined by T (x) = hK(x− ν). The ipf of the set B(t) = {x ∈ Rn : T (x) < t} allows then the
representation

FS(B(t), r) =
OS([1

r (B(t)− ν)] ∩ S)

OS(S)
=

{
1 r ∈ I(t)

0 elsewhere

where S is still the boundary of K and I(t) is the particular interval [0, t). It follows from (6)
that

P (T (X) < t) = Φg,K,ν({x ∈ Rn : hK(x− ν) < t}) =
1

I(g)OS(S)

∞∫
0

rn−1g(r)I[0,t)dr.

Now, a density formula can be derived from the representation

P (T (X) < t) =
1

I(g)OS(S)

∫
I(t)

rn−1g(r)dr.

Similar results hold for arbitrary intervals I(t). For a specific application of the present type we
refer to the calculation of generalized Chi-square densities.

The ipf is constant. Let FB(t)(r) = C(t) where C(t) ∈ (0, 1) does not depend on r. Then
it follows from (6) that P (T < t) = C(t), and T is called a g-robust statistic. For specific such
applications we refer to the geometric derivation of generalized Student and Fisher distributions.
The notion of robustness considered here was studied already in [6] for elliptically contoured
distributions.

Several other types of sets for which the ipf has been calculated already in the past can be
found in some of author’s papers surveyed in [30, 32].
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3 Inference on scaling parameters

3.1 The power exponential sample distribution

A basic scaling parameter model. Let the i.i.d. random variables X1, ..., Xn follow the
power exponential (or p-generalized Gaussian or p-generalized Laplace) density fp(.;µ, σ), where
p > 0 and EX1 = µ are known, and

fp(x;µ, σ) =
Cp
σ

exp{−|x− µ|
p

pσp
}, −∞ < x <∞. (7)

Note that Cp = p1−1/p/(2Γ(1/p)) and V (X1) = σ2Γ(3
p)/Γ(1

p). Let X0 follow the p.d. of the
standardized p-generalized normal distribution, fp(.; 0, 1). Then X1 satisfies the representation

X1
d
= µ+ σX0. The quantity σ is called a scaling parameter.
Norm and antinorm contoured sample distributions. The density of the sample

vector X = (X1, ..., Xn) is

n∏
i=1

fp(xi;µ, σ) =
Cnp
σn

exp{−
n∑
i=1

|xi − µ|p

pσp
}, x = (x1, ..., xn) ∈ Rn.

The density super level sets {x ∈ Rn :
n∏
i=1

fp(xi;µ, σ) ≥ t}, t > 0 are generated by the functional

x→ |x|p =

(
n∑
i=1

|xi|p
)1/p

which is a norm if p ≥ 1 and an antinorm if 0 < p ≤ 1. Here, K = Bp = {x ∈ Rn : |x|p ≤ 1}.
For getting a more concrete idea of the shape of this density let us recall that the boundaries

of the two-dimensional density super level sets are the star circles

{(x1, x2)T ∈ R2 : |x1|p + |x2|p = rp}, r > 0.

The star discs circumscribed by these p-circles are convex if p ≥ 1 and radially concave if
0 < p ≤ 1. For the latter notion, we refer to [20]. Similar properties hold in the case of arbitrary
finite dimension.

In the geometric measure representation (6), the star generalized surface content measure
allows for every p > 0 and every measurable subset A of the upper (or lower) half of the star
sphere S the representation

OS(A) =

∫
G(A)

(1−
n−1∑

1

|xi|p)(1−p)/pdx (8)

for p ≥ 1 and p ∈ (0, 1] being each time a special case of (3) and (4), respectively.

Extended scaling parameter model. Let now X1, ..., Xn be i.i.d. random variables
following the densities

fp(x;µi, σ
2a2
i ) =

Cp
σai

exp{−|x− µi|
p

p(σai)p
}, x ∈ R, i = 1, ..., n (9)

where EXi = µi ∈ R, p > 0, ai > 0 are known, and σ > 0 is unknown. Note that

V(Xi) = σ2a2
i

Γ(3/p)

Γ(1/p)

and that Xi allows the representation

Xi
d
= µi + σaiX0

where X0 has the p.d. fp(.; 0, 1, 1) and σ is a common scaling parameter.
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3.2 Inference on a single scaling parameter

Basic scaling parameter model. The maximum likelihood estimator of σ in the model (7)
is the sufficient statistic

σ̂ = mle(σ) = (
1

n

n∑
i=1

|Xi − µ|p)1/p.

Note that
E(σ̂p) = σp and V(σ̂p) =

p

n
σ2p,

σ̂p thus being an unbiased and consistent estimator for σp. The distribution of σ̂ can be derived,
e.g., on using formula (6) with the help of formula (8). The result follows below from the
consideration for the extended scaling parameter model (9).
In the sense of Section 2.6, it is an elementary problem to evaluate the S-generalized surface
content of subsets of S according to (8) in the present case because we are dealing here with a
set the ipf of which is just the indicator function of an interval. This way it is proved (within
a more general framework) in [28] (and with a slight modification already in [27]) that n(σ̂/σ)p

follows the χp-(or p-generalized χ2- ) distribution with n d.f., n(σ̂/σ)p ∼ χp(n) where Y ∼ Q
means that the random variable Y follows the probability distribution Q. The p.d. of the χp(n)
distribution is according to [27, 28]

fn,p(t) =
tn/p−1e−t/p

pn/pΓ(n/p)
I(0,∞)(t). (10)

Although assigning in its derivation the number ωn,p the Euclidean interpretation instead of
the right non-Euclidean one, density (10) was derived later again in [17]. For a considerable
generalization of this density, see (14) below and [28]. We denote the quantile of order q ∈ (0, 1)
of the χp(n) distribution by χpq(n). Thus, by definition P (n(σ̂/σ)p < χpq(n)) = q. Note that the
χp(n) distribution is a particular Gamma distribution having parameters n

p and 1
p . The quantiles

of this distribution can therefore be computed using the inverse Gamma function being available
in standard software.
Confidence intervals for σp. The random intervals

[
|X − µ1n|pp
χp1−α1

(n)
,
|X − µ1n|pp
χpα2(n)

], [
|X − µ1n|pp
χp1−α(n)

,∞) and (−∞, |X − µ1n|pp
χpα(n)

] (11)

are level 1−α two-sided, and one-sided upper and lower confidence intervals for σp, respectively,
with α = α1 + α2 in the two-sided case, and where 1n = (1, ..., 1)T ∈ Rn. If p = 2 then χpq(n)
is the common quantile of order q of the Chi-square distribution with n d.f., χ2

q(n). The case
p = 1 is dealt with in [15], formula (2.6.112), where, however, 2/χ2

1−α/2(2n) is used instead of

1/χ1
1−α/2(n). Tables of quantiles χpq(n) are given in the Appendix for several values of n, p and

q.
Significance testing. If one wants to test the hypothesis H0 : σ = σ0 versus the two-sided

alternative HA : σ 6= σ0 then the decision rule of a level-α significance test is defined as to reject
H0 if

n∑
i=1

∣∣∣∣Xi − µ
σ0

∣∣∣∣p ∈ (−∞, χpα2
(n))

⋃
(χp1−α1

(n),∞), (12)

where α = α1 + α2, 0 < αi < 1/2, i = 1, 2. Tests for one-sided hypotheses are analogously
constructed.

Extended scaling parameter model. In the model (9), the maximum likelihood estima-
tor of the common scaling parameter σ is

mle(σ) = σ̂ =
1

n1/p
|X − ν|a,p
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where ν = (µ1, ..., µn)T and

|x|a,p = (

n∑
i=1

|xi
ai
|p)1/p,x ∈ Rn.

The p.d. of X is called a p-generalized axes aligned elliptically contoured density having the
contour defining star body K = Ba,p = {x ∈ Rn : |x|a,p ≤ 1}, see [32]. This density, as well as σ̂
allow functional representations

fX(x) =
Cnp

σna1 · ... · an
gPE(hσBa,p(x− ν)), x ∈ Rn

and

σ̂ =
1

n1/p
hBa,p(X − ν).

For the derivation of the density of n( σ̂σ )p, we start from the equation

P (n(
σ̂

σ
)p < t) = ΦgPE ,Ba,p,0n(t1/pBa,p).

We recall that the intersections B ∩ Sa,p(r), r > 0, where Sa,p(r) = rSa,p and S = Sa,p is the
boundary of K = Ba,p are called sometimes the ’indivisibles’ of a set B.
The geometric disintegration method behind formula (6) divides integration into first an inte-
gration on a part of a generalized sphere and second an integration w.r.t. r :

P (n(
σ̂

σ
)p < t) =

1

I(gPE)

∞∫
0

rn−1gPE(r)FSa,p(t
1/pBa,p, r)dr

where according to Section 2.6

FSa,p(t
1/pBa,p, r) = I[0,t1/p](r).

Thus

P (n(
σ̂

σ
)p < t) =

1

I(gPE)

t1/p∫
0

rn−1gPE(r)dr, t > 0.

Note that this result does not depend on a = (a1, ..., an)T . Finally,

n(
σ̂

σ
)p ∼ χp(n).

If one replaces the functional |.|pp by |.|pa,p in the definitions of the intervals (11) then the new
intervals are confidence intervals for σp in the extended scaling parameter model (9).

3.3 The p-generalized Student’s sample distribution and beyond

We study here the distribution of the statistic n
(
σ̂
σ

)p
if the distribution of the sample vector

X = (X1, ..., Xn)T is not the n-dimensional power exponential one but any other element of
the family of ln,p-symmetric distributions. Before doing this, let us recall that one of the most
famous non-normal spherically contoured distributions is the Student’s t-distribution because
of its heavy tails and the remarkable property that all its marginal distributions have a density
generating function of the same known type. Moreover, note that the components of a spherically
contoured vector are uncorrelated but not independent unless in the Gaussian case. All these
properties hold also true for the p-generalized Student’s t-distribution with f degrees of freedom
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which was studied for dimension one in [27] and for arbitrary finite dimension n in [1]. In the
latter case, the dgf may be chosen as

gSt(n,p,f)(r) =

(
1 +

rp

f

)− f+n
p

, r > 0,

and the density of X is

tn,p(x; f) = Dn,p,f

(
1 +
|x|pp
f

)− f+n
p

, x ∈ Rn,

where Dn,p,f =
( p
2

)nΓ(n+f
p

)

Γ( f
p

)(Γ( 1
p

))nfn/p
. It follows that the density of the statistic n

(
σ̂
σ

)p
is then

fχn,gSt,p(t) =
t
n
p
−1

f
n
pB(np ,

f
p )
(

1 + tp

f

) f+n
p

, t ∈ R. (13)

If, however, the density of the sample vector X is an arbitrary ln,p-symmetric one having
dgf g,

f(x) = C(g, p)g(|x|p), x ∈ Rn,

then, according to [28],

fχn,g,p(t) =
t
n
p
−1
g(t)

pIn,g,p
, t ∈ R, (14)

where In,g,p =
∞∫
0

rn−1g(rp)dr.

This density can be considered as a (p, g)-generalization of the classical Chi-square den-
sity with n d.f., or as a g-generalization of the p-generalized Chi-square density fn,p in (10).
We denote the quantile of order q of the χpg(n)-distribution by χpg;q(n), 0 < q < 1, that is
χpg;q(n)(χpg;q(n)) = q. Note that χpgPE ;q(n) = χpq(n).

Let a random variable following density (14) be denoted by Rp. Note that tables of quantiles
of the distribution of R are recently provided in [21] for n ∈ {1, 2, 3}, p ∈ {1

2 , 1, 3} different dgfs
g of power-exponential and Student’s type as well of Pearson type 2.

3.4 Inference for generalized sample distributions

If the sample vector X is distributed according to an ln,p-symmetric distribution, see e.g. [28],
with a dgf g being different from the power exponential one, g 6= gPE , then X1, ..., Xn are not
further independent. In this case of ln,p-dependent observation variables, it is possible to study
decision rules for exact inference on scaling parameters as before. Confidence and significance
levels of the analogously defined estimators and tests, however, change in dependence of the
actual shape of g. It is an immediate consequence from the equation

P (χpg,α2
(n) < n

(
σ̂

σ

)p
< χpg,1−α1

(n)) = 1− α1 − α2

that the level-α confidence intervals in (11) extend to the present g-generalized case if all quan-
tiles χpq(n) are replaced with χpg;q(n). Similarly, the same replacement of quantiles g-generalizes
the level-α tests considered in (12).
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3.5 The ratio of two scaling parameters

Let X1, ..., Xn and Y1, ..., Ym be completely independent random variables with

Xi having p.d. fp(.;µ1, σ1), i = 1, ..., n and Yi having p.d. fp(.;µ2, σ2), i = 1, ...,m

where p > 0 and the expectations µ1, µ2 are known and the scaling parameters σ1, σ2 are
unknown. With the notation X = (X1, ..., Xn)T , Y = (Y1, ..., Ym)T , the n + m-dimensional
random vector (XTY T )T follows the distribution Φg,K,ν where the dgf is the power exponential
one, g(r) = gPE(r) = I(0,∞)(r) exp{− rp

p }, the star body K is the p-generalized ellipsoid

K = Bp,σ1,σ2 = {(xT yT )T ∈ Rn+m : |(xT yT )T |p,σ1,σ2 ≤ 1},

and the shift vector ν is (µ11Tnµ21Tm)T ∈ Rn+m. Here,

|(xT yT )T |p,σ1,σ2 = (
|x|pp
σp1

+
|y|pp
σp2

)1/p, (xT yT )T ∈ Rn+m.

Let, in accordance with Section 3.2,

σ̂p1 =
1

n
|X − µ11n|pp, σ̂p2 =

1

m
|Y − µ21m|pp, (15)

and put

T =
(σ̂1/σ1)p

(σ̂2/σ2)p
.

Note that, for t > 0,

P (T < t) = ΦgPE ,Bp;σ1,σ2 ,ν
({(xT yT )T ∈ Rn+m :

|x−µ11n
σ1
|pp

|y−µ21m
σ2
|pp
<

n

m
t})

= ΦgPE ,Bp;1,1,0(Cn,m;p(t))

where

Cn,m;p(t) = {(xT yT )T ∈ Rn+m :
|x|pp
|y|pp

<
n

m
t}

denotes a cone in Rn+m. The ipf of this cone is studied in [28]. It is shown there that Cn,m;p(t)
belongs to the second elementary type of sets considered in Section 2.6, thus

P (T < t) = FSa,σ1,σ2 (Cn,m;p(t)), t > 0

does not depend on the dgf g. To be specific,

FSa,σ1,σ2 (Cn,m;p(t)) =
p

B(np ,
m
p )

π/2∫
arccot(( n

m
t)1/p)

(cosϕ)n−1(sinϕ)m−1

((cosϕ)p + (sinϕ)p)n/p
dϕ.

Hence, the p.d. of T is

fn,m;p(t) =
(n/m)n/ptn/p−1

B(n/p,m/p)(1 + nt/m)(n+m)/p
I(0,∞)(t).

The distribution law of T , denoted by Fn,m(p), is called in [28] the p-generalized Fisher distri-
bution with (n,m) d.f.. Finally, it turns out that

T =
mσp2 |X − µ11n|pp
nσp1 |Y − µ21m|pp

∼ Fn,m(p).

11



Let us denote the q’th order quantile of the p-generalized Fisher distribution having (n,m) d.f.
by Fn,m;q(p), q ∈ (0, 1).
Confidence intervals. Two-sided, possibly asymmetric, and one-sided upper and lower

confidence intervals for
σp1
σp2

are, correspongdingly,

ξ[
1

Fn,m;1−α1(p)
,

1

Fn,m;α2(p)
], ξ[

1

Fn,m;1−α(p)
,∞) and ξ(−∞, 1

Fn,m;α(p)
]

where ξ[e, f ] = {ξ · s : e ≤ s ≤ f} and

ξ =
m|X − µ11n|pp
n|Y − µ21m|pp

.

Significance test. For deciding

H0 : σ1 = σ2 vs. HA : σ1 6= σ2 (16)

we use the distribution of T if H0 is true to construct a level α significance test. In this case,

T = m
n
|X−µ11n|pp
|Y−µ21m|pp

. Reject H0 if T < Fn,m;α2(p) or if T > Fn,m;1−α1(p), respectively, where

α1 > 0, α2 > 0, α1 + α2 = α < 1.

Proposition 1. If sample sizes n and m are equal then this rule is equivalent to rejecting H0 if
the likelihood ratio statistic is smaller than a constant c ∈ (0, 1) chosen s.t.

P ( reject H0 although H0 is true ) = α.

To show this, let us consider the likelihood function

L(σ1, σ2) = (n+m) lnCp − n lnσ1 −m lnσ2 −
1

pσp1

n∑
i=1

|xi − µ1|p −
1

pσp2

m∑
i=1

|yi − µ2|p.

The maximum likelihood estimators of the scaling parameters are given in (15). If σ1 = σ2 = σ,
say, then L∗(σ) = L(σ, σ) is the likelihood function for estimating σ, and

σ̂ = mle(σ) =


n∑
i=1
|xi − µ1|p +

m∑
i=1
|yi − µ2|p

n+m


1/p

.

The likelihood ratio is

Q =

sup
σ1=σ2

L(σ1, σ2)

sup
σ1>0,σ2>0

L(σ1, σ2)
=

L∗(σ̂)

L(σ̂1, σ̂2)

= (
(n+m)n+m

nnmm
)1/p |x− µ11n|pn|y − µ21m|pm

(|x− µ11n|pp + |y − µ21m|pp)(n+m)/p
.

Let ξ = |x− µ11n|pp/2 and η = |y − µ21m|pp/2. Because n = m it follows that Q ≤ t, t ∈ (0, 1)
iff l(ξ) ≥ 0 where l(ξ) = ξ2 + pξ + q, p = −2η/tp/(2m) and q = η2. The two positive solutions of
the equation l(ξ) = 0 are

ξ1 = −p/2 + (p2/4− q)1/2 =
η

tp/(2m)
(1 + (1− tp/m)1/2),

and
ξ2 = −p/2− (p2/4− q)1/2 =

η

tp/(2m)
(1− (1− tp/m)1/2)
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where η > 0. Because l(.) is a convex function, the rejection area of Ho is the set of all ξ satisfying
ξ ≥ ξ1 or ξ ≤ ξ2 The latter inequalities are equivalent to

|x− µ11n|pp

|y − µ21m|pp
≥ 2(1 + (1− tp/m)1/2)

tp/m
− 1

and
|x− µ11n|pp

|y − µ21m|pp
≤ 2(1− (1− tp/m)1/2)

tp/m
− 1.

This proves the equivalence of the considered decision rules.

Remark 1. As we have seen in this section, inferring on the scaling parameters ratio in ln,p-
symmetric sample distributions can be done in a g-robust way. For a discussion of this property
see [28], and note that it goes back in the case p = 2 to [6].

4 Conclusions

As to shortly summarize the results of this paper, we derived exact confidence intervals and signif-
icance tests for single scaling parameters and ratios of two such parameters if the n-dimensional
sample vector follows a norm or antinorm contoured ln,p-symmetric distribution. This assump-
tion includes modeling heavy and light tails of the sample vector’s distribution as well as in-
dependence and ln,p-dependence sampling. Certain classical results are (g, p)-generalized in the
present work. The additional methodological benefit coming from the present paper may be
estimated having a look at [30] where a rather general frame of future work is sketched.

Acknowledgement The author is thankful to the reviewers for their valuable hints leading
to an improvement of the paper. The author declares no conflicts of interest.

5 Appendix

Table 1 gives a brief comparison of norms and antinorms at the hand of the functional |.|q, q ∈ R.
Note that Nq = {x ∈ Rn : |x|q = 0} and Hi = {(x1, ..., xn)T ∈ Rn : xi = 0}, i = 1, ..., n are hyper
planes in Rn.

Table 1: Norms and antinorms

parameter q ∈ [1,∞) ∈ (0, 1] ∈ (−∞, 0)
functional |.|q norm antinorm semi-antinorm, z 6= 0
unit ball Bq convex radially concave radially concave

w.r.t. standard fan in Rn w.r.t. standard fan in Rn

inverse image of 0 Nq {0} {0} ∪d1Hi
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