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Abstract. The circle number function is extended here to regular convex
polygons. To this end, the radius of the polygonal circle is defined as the
Minkowski functional of the circumscribed polygonal disc, and the arc-
length of the polygonal circle is measured in a generalized Minkowski
space having the rotated polar body as the unit disc.
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1. Introduction

Regular convex polygons are studied in a broad variety of literature about
convex geometry and polytopes. In this respect, we refer to [6], [4], [24], and
[23]. Generalized circle numbers are introduced in [19], [21], [15] and [13] for
convex and non-convex l2,p-circles, ellipses and star discs, respectively.
To define circle numbers of regular polygons it is necessary, to introduce two
basic notions. The first one generalizes what we call a disc and its radius. For
symmetric balls, a closely related discussion of some positively homogeneous
functions on R

n can be found in [11]. From this article, it turns out that the
Minkowski functional hS of a star disc S can be used for defining the radius
of convex and even non-convex discs. The present paper will deal, however,
with non-symmetric cases, too.
The second main notion for establishing circle numbers is that of a suit-
ably defined non-Euclidean arc-length measure. One method to construct
this measure is introduced in [13] and consists in considering a generalized
Minkowski space (R2, hT ) to a suitably chosen symmetric star disc T and
replacing the Euclidean norm of the vector normal to the boundary of S in
the defining integral of the Euclidean arc-length by hT . In the present paper,
for every symmetric polygon we introduce a non-Euclidean arc-length and
prove, that our results apply to non-symmetric cases, too. This complements
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the results in [13]. While this way of generalizing the notion of arc-length
deals with integration, another way deals with taking derivatives of area con-
tents of suitably defined disc sectors with respect to the generalized radius
of the polygonal disc. Within a more general frame work, this local way to
define a suitable non-Euclidean arc-length measure was introduced first in
[17] and proved to be equivalent to the integral way in [14]. The equivalence
of the local and integral approaches to a generalized notion of arc-length has
been proved later for ellipses in [15].
Notice that the notion of generalized arc-length is related to the non-Euclidean
generalization of the method of indivisibles and to the notion of a generalized
uniform distribution on a generalized circle being the topological boundary
of a generalized disc. This method was developed in several articles of the
first author and surveyed to some extent in [16]. For an introduction to the
topic of Cavalieri’s classical method of indivisibles and the related so called
Cavalieri integration, we refer to [1] and to [2] and [8], respectively.
For similar considerations on specific polyhedra in dimension three, see [22].

The paper is structured as follows. We discuss some properties of the
polygonal radius and the polygonal Minkowski functional in Section 2. The
polygonally generalized arc-length measure will be considered based upon
both the integral and the local approaches in Section 3, and their equivalence
will be shown. The notion of polygonal circle numbers will be introduced in
Section 4, and a generalized uniform probability distribution on the regular
convex polygons will be studied in Section 5. Section 6 deals with a polygonal
disintegration formula of the Lebesgue measure which is closely connected
with a non-Euclidean generalization of the method of indivisibles. Finally,
we will note other possible choices of the reference radius as to consider the
regular convex polygons being generalized circles in Section 7, and discuss
their properties compared to our choice.

2. Radius

The first step to generalize the circle number π for generalized circles is to
adapt the notion of radius. The idea is to start from a generalized reference
circle and to multiply it by a positive number, this way defining the set of
all points, having this number as the same distance from a given point. This
change of the notion radius was introduced in [19] and it turned out that
the Minkowski functional of this generalized reference circle can serve as its
generalized radius functional. The Minkowski functional is for every finite
dimensional convex body E with the origin in its interior defined by

hE(x) = inf{r > 0 : x/r ∈ E}. (2.1)

It is subadditive and has moreover the property

hE(αx) = αhE(x), for all α > 0 and x ∈ R
n. (2.2)

Originally, this definition was introduced by Hermann Minkowski in [9] and
can be found e.g. in [7]. Note that there is a slightly other definition of
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the Minkowski functional in the literature which assumes E to be centrally
symmetric, so that (2.2) becomes hE(αx) = |α|hE(x), for all α ∈ R. For this
definition and some basic knowledge on the topic of Minkowski functionals,
we refer to [7] and [23]. Moreover, we refer to [23], concerning the topic
of Minkowski geometry and Minkowski spaces in general. In this paper, we
follow the more general approach that is also given in [7], by calling, for every
absorbing set E, hE in (2.1) the Minkowski functional of E.
Let Pn be a regular polygon with n vertices on the Euclidean unit circle.
Without loss of generality, we assume that the vertices of Pn are the points
In,1, ..., In,n, where

IT
n,i =

(

cos

(
2π

n
(i − 1)

)

, sin

(
2π

n
(i − 1)

))

, i ∈ {1, ..., n}, n ≥ 3, (2.3)

see Figure 1. For simplicity, we shall use the same notation In,i for a vector
being oriented from the origin to the point In,i. We will consider Pn as a
generalized reference circle and call it polygonal unit circle. Let Kn be the
convex body circumscribed by Pn. We call Kn the unit polygonal disc. Note
that Pn = {(x, y)T ∈ R

2 : hKn
(x, y) = 1}, and, for r > 0,

r · Kn = {(rx, ry)T ∈ R
2 : hKn

(x, y) ≤ 1} = {(x, y)T ∈ R
2 : hKn

(x, y) ≤ r}
because of (2.2). This motivates us to call Kn(r) = r · Kn a polygonal disc
of polygonal radius r. The Minkowski functional of the unit disc takes the
value r on the boundary of the disc Kn(r),

hKn
(x, y) = r, ∀(x, y)T ∈ Pn(r) = rPn.

The notion of a polygonal radius will be used throughout this paper. For
some basic knowledge on regular polygons, we refer to [6], [24] and [5].

Let aT
n,i = (cos(π/n))

−1 (
cos

(
(2i − 1)π

n

)
, sin

(
(2i − 1)π

n

))
, i ∈ {1, ..., n}. For

every point (x, y)T ∈ R
2, the Minkowski functional hKn

of the polygonal
unit disc Kn can be expressed by hKn

(x, y) = max
{

aT
n,i(x, y)T , i = 1, ..., n

}
.

To prove this, note that Kn can be expressed as Kn = {(x, y)T ∈ R
2 :

An(x, y)T ≤ 1n}, where An ∈ R
n×2 and 1n = (1, ..., 1)T . Since Kn =

{(x, y)T ∈ R
2 : max{An[i](x, y)T , i = 1, ..., n} ≤ 1}, where An[i] denotes the

i-th row of An, and because of the definition of the Minkowski functional, the
formula for hKn

follows. Note that if n is even, then Pn is symmetric with
respect to the origin, hKn

(·) is a norm in R
2, and its representation reduces

to
hKn

(x, y) = max
{

aT
n,i(|x|, |y|)T , i = 1, ..., ⌈n/4⌉

}
, ∀(x, y)T ∈ R

2, where ⌈·⌉
denotes the entire function.

3. Circumference

The notion of generalized arc-length measure has been dealt with in [19] and
in [15] for convex l2,p-circles and ellipses, respectively. The corresponding
vocabulary of generalized surface content for the higher dimensional case
was introduced in [14] and [18] for ln,p-balls and ellipsoids, respectively. In
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[14] and [18], integral and local definitions are given and their equivalence
is proven. Here, we introduce first the integral approach to the polygonal
arc-length and give a local go up to such notion afterwards. Finally, we show
their equivalence.
For any successive and positive (anticlockwise) oriented partition
Zn = {z0, z1, ..., zn = z0} of Pn(ρ), let us define the positive directed T -arc-
length of Pn(ρ) by

ALKn,T (ρ) = sup
n,Zn

n∑

j=1

hT (zj − zj−1).

To study the properties of ALKn,T , we introduce generalized trigonometric
functions. For this, let us consider a parameter representation of the unit
polygonal disc Kn by

Kn = {r(cos ϕ, sin ϕ)T , 0 ≤ ϕ ≤ 2π, 0 ≤ r ≤ Rn(ϕ)}.

Because of hKn
(x, y) = 1, ∀(x, y)T ∈ Pn, it follows that

hKn
(cos ϕ, sin ϕ) = 1/Rn(ϕ), 0 ≤ ϕ ≤ 2π, which allows the representation

Pn =

{(
cos ϕ

Mn(ϕ)
,

sin ϕ

Mn(ϕ)

)T

, 0 ≤ ϕ ≤ 2π

}

,

where Mn(ϕ) = hKn
(cos ϕ, sin ϕ). This motivates the definition of polygo-

nally generalized sine- and cosine-functions as

cosn (ϕ) =
cos ϕ

Mn(ϕ)
and sinn (ϕ) =

sin ϕ

Mn(ϕ)
, ϕ ∈ [0, 2π).

Note that these generalized trigonometric functions can be interpreted geo-
metrically by considering a right angled triangle with vertices (0, 0)T , (x, 0)T

and (x, y)T . Then, the polygonally generalized sine and cosine of the angle
ϕ ∈ [0, 2π) between the positive x-axis and the vector (x, y)T are obtained
by the formulae sinn (ϕ) = y/hKn

(x, y) and cosn (ϕ) = x/hKn
(x, y), respec-

tively. Furthermore, these functions satisfy the equation
hKn

(cosn(ϕ), sinn (ϕ)) = 1 which generalizes the well known formula cos2 ϕ+
sin2 ϕ = 1.
The introduction of polygonally generalized trigonometric functions makes
it possible to define a polygonal polar coordinate transformation P oln :
[0, ∞) × [0, 2π) → R

2 analogously to the Euclidean one by x = r cosn (ϕ)
and y = r sinn (ϕ), for 0 ≤ ϕ ≤ 2π and 0 < r < ∞. The following theorem
tells that, here, r is the polygonal radius and ϕ is the usual polar angle. Let
Q1, ..., Q4 denote the anticlockwise enumerated quadrants of R2.

Theorem 3.1. The map P oln is almost one-to-one, for x 6= 0, its inverse
P ol−1

n is given by

r = hKn
(x, y), arctan (|y/x|) = ϕ in Q1,

π − ϕ in Q2, ϕ − π in Q3 and 2π − ϕ in Q4,

and its Jacobian is J(r, ϕ) = r/M2
n(ϕ), ϕ ∈ [0, 2π), r > 0.



Circle numbers of regular convex polygons 5

Proof. By (2.2), hKn
(x, y) = hKn

(r cosn (ϕ), r sinn (ϕ)) = r. The relations for
arctan(|y/x|) are the same as those in the case of usual polar coordinates. For
calculating the Jacobian, we use the formulae cos′

n (ϕ) = 1
M2

n(ϕ) (− sin (ϕ)Mn(ϕ)−
cos (ϕ)M ′

n(ϕ)) and sin′
n (ϕ) = 1

M2
n(ϕ)(cos (ϕ)Mn(ϕ) − sin (ϕ)M ′

n(ϕ)). �

We denote the restriction of P oln to the case r = 1 by P ol∗
n, P ol∗

n(ϕ) =
P oln(1, ϕ), and its inverse by P ol∗−1

n , P ol∗−1
n : B2 ∩ Pn → B([0, 2π)), and

recall that, according to [13], ALKn,T (ρ) can be rewritten as

ALKn,T (ρ) = ρ

2π∫

0

h(
0 1

−1 0

)
T

(P oln (∇hKn
(x, y)) (r, ϕ))

dϕ

M2
n(ϕ)

,

where P oln (∇hKn
(x, y)) (r, ϕ) = ∇hKn

(x, y)|(x,y)=P oln(r,ϕ) denotes the plug-
in version of the gradient ∇hKn

(x, y) in polygonally generalized coordinates.
Furthermore, if for almost every (x, y)T ∈ R

2 the rotated gradient condition

h(
0 1

−1 0

)
T

(P oln (∇hKn
(x, y)) (r, ϕ)) = 1 (3.1)

is satisfied, then

ALKn,T (ρ) = ρ

2π∫

0

dϕ

M2
n(ϕ)

.

If Pn is symmetric w.r.t. the origin, hKn
denotes a norm, and it is proven

then according to example 2.13. in [13], that the 90◦ anticlockwise rotated
unit polygonal disc with respect to the corresponding dual norm satisfies
condition (3.1).
In what follows, we show that the disc T in (3.1) is equal to the 90◦ anti-
clockwise rotated polar body K∗

n of Kn which is defined by K∗
n = {y ∈ R

2 :
yT x ≤ 1, ∀x ∈ Kn}. Furthermore, we show that even if Pn is not symmetric
then

(
0 −1
1 0

)
K∗

n still satisfies condition (3.1).

Let C = {
n∑

i=1

αian,i,
n∑

i=1

αi = 1, αi ≥ 0} denote the convex hull of the finite

number of points an,1, ..., an,n.

Theorem 3.2. The polar body K∗
n of Kn satisfies the equation K∗

n = C.

Proof. We recall the representation Kn = {x ∈ R
2 : aT

n,ix ≤ 1, i = 1, ..., n}.

Let y ∈ K∗
n. Since for all x ∈ Kn, it holds aT

n,ix ≤ 1, i ∈ {1, ..., n}, we can

find αi ≥ 0,
n∑

i=1

αi = 1 such that αia
T
n,ix ≤ αi and

n∑

i=1

αia
T
n,ix ≤

n∑

i=1

αi = 1.

Because y ∈ K∗
n, we can identify

n∑

i=1

αian,i with y. Hence, y ∈ C. On the

other hand side, if y is an element of C, then yT x =
n∑

i=1

αi aT
n,ix

︸ ︷︷ ︸

∈Kn

≤
n∑

i=1

αi = 1,

thus K∗
n = C. �
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Theorem 3.2 says that K∗
n is circumscribed by the polygon with vertices

I∗
n,i = an,i, i ∈ {1, ..., n}. The Minkowski functional hK∗

n
of K∗

n can be calcu-

lated analogously to that of Kn. Thus for every point (x, y)T ∈ R
2, hK∗

n
can

be expressed by hK∗
n
(x, y) = max

{
IT

n,i+1(x, y)T , i = 1, ..., n, In,n+1 = In,1

}
.

In the following theorem, we state that for any regular polygon Pn a star-
shaped set T can be constructed, such that condition (3.1) is satisfied. To
be more specific, T can be chosen as the 90◦ anticlockwise rotated regular
polygonal polar disc.

Theorem 3.3. The star body T =

(
0 −1
1 0

)

K∗
n satisfies the condition (3.1).

Proof. Notice that

h(
0 1

−1 0

)
T

(x, y) = hK∗
n

((
0 1

−1 0

) (
0 −1
1 0

) (
x
y

))

= hK∗
n
(x, y).

Let Cn,i denote the cone with vertex at the origin, which is spanned up by

the i-th facet In,iIn,i+1 of Pn. For an illustration of I5,i and C5,i, we refer to
Figure 5. Then hKn

can be reformulated by

hKn
(x, y) =

n∑

i=1

1Cn,i
(x, y)

(
x cos ((2i−1)π/n)+y sin ((2i−1)π/n)

cos (π/n)

)

, where

1Cn,i
(x, y) =

{

1, if (x, y)T ∈ Cn,i

0, otherwise
=

{

1, if ϑ ∈
[

2π
n (i − 1), 2π

n i
)

0, otherwise

and ϑ = ϑ(x, y) denotes the polar angle of (x, y)T , i.e. the angle between
the positive x-axis and the line through the origin and the point (x, y)T .
Furthermore,

∇hKn
(x, y) =







n∑

j=1

1̂Cn,j
(x, y)

(
cos ((2j−1)π/n)

cos (π/n)

)

n∑

j=1

1̂Cn,j
(x, y)

(
sin ((2j−1)π/n)

cos (π/n)

)







,

where 1̂Cn,j
(x, y) =

{

1, if ϑ ∈
(

2π
n (j − 1), 2π

n j
)

0, otherwise
slightly modifies

1Cn,j
(x, y) and does not further express dependence on (x, y)T . Hence,

∇hKn
(x, y) = P oln(∇hKn

(x, y))(r, ϕ).

Here and in what follows the gradient is considered a.e. Thus, if C∗
n,i denotes

the cone with vertex at the origin, which is spanned up by the i-th facet
I∗

n,i−1I∗
n,i of P ∗

n with I∗
n,0 = I∗

n,n (we refer to Figure 2 for an illustration of

I∗
5,i and C∗

5,i),

hK∗
n
(x, y) =

n∑

i=1

1C∗
n,i

(x, y)

(

x cos

(
2(i − 1)π

n

)

+ y sin

(
2(i − 1)π

n

))
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Figure 1. Boundaries of the unit
polygons Kn for n = 4, 5, 6, 7 and the
unit circle

1

−1

1−1 x

y

Q1Q2

Q3 Q4

C∗

5,1

C∗

5,2

C∗

5,3

C∗

5,4

C∗

5,5

I∗

5,1

I∗

5,2

I∗

5,3

I∗

5,4

I∗

5,5

Figure 2. The unit pentagon (solid
lines) with its corresponding polar
body (dashed lines)

with 1C∗
n,i

(x, y) =

{

1, if ϑ ∈
[

(2i−3)π
n , (2i−1)π

n

)

0, otherwise
, and it follows that

h(
0 1

−1 0

)
T

(P oln (∇hKn
(x, y)) (r, ϕ))

=

n∑

i=1

n∑

j=1

1C∗
n,i

(x, y)1̂Cn,j
(x, y)

(

cos
(π

n

))−1

cos

(
2(i − 1)π

n
− (2j − 1)π

n

)

.

By definition of 1C∗
n,i

(x, y) and 1̂Cn,j
(x, y), there holds

1C∗
n,i

(x, y)1̂Cn,j
(x, y) = 1 if and only if i = j or i = j + 1, where i = j + 1 for

j = n is defined as i = 1. Thus,

cos

(
2(i − 1)π

n
− (2j − 1)π

n

)

=

{

cos (−π/n) = cos (π/n), if i = j

cos (π/n), if i = j + 1
,

thus

h(
0 1

−1 0

)
T

(P oln (∇hKn
(x, y)) (r, ϕ)) =

n∑

i=1

n∑

j=1

1C∗
n,i

(x, y)1̂Cn,j
(x, y) · 1 = 1.

�

Let us denote the regular upper half-polygon of Pn by P +
n . Furthermore,

the positive directed T -arc-length of a Borel measurable set A ⊆ P +
n is defined

by

ALKn,T (A) = −
∫

G(A)

hT (1, y′(x))dx,



8 Richter and Schicker

with y′(x) = dy
dx , G(A) = {x ∈ [−1, 1] : (x, y(x))T ∈ A} and

y(x) =

⌈n/2⌉
∑

j=1

(

1j(x)
cos (π/n) − x cos ((2j − 1)π/n)

sin ((2j − 1)π/n)

)

,

where

1j(x) =

{

1, if x ∈ [cos (2(j − 1)π/n), cos (2jπ/n))

0, otherwise
.

Notice that because we consider the positive directed arc-length, and hT (·)
is not symmetric in general, it is essential to consider x as the integration
variable decreasing from 1 to −1.
To introduce now a local definition of the polygonal arc-length measure, let
us define the central projection cone generated by a Borel measurable subset
of the polygonal unit circle A ∈ B2 ∩ Pn by

CP Cn(A) =

{(
x
y

)

∈ R
2 :

(
1

hKn
(x, y)

(
x
y

))

∈ A

}

.

The set sectorn(A, r) = CP Cn(A) ∩ Kn(r) will be called a sector of the
polygonal disc Kn(r) with polygonal radius r > 0. The derivative of the
Lebesgue measure of this sector w.r.t. the polygonal radius defines a finite
measure Un : B2 ∩ Pn(r) → R

+ by

Un(A) =
d

dρ
λ(sectorn(A/r, ρ))|ρ=r .

We call Un(·) the polygonal arc-length measure on the polygonal circle Pn(r).
By the notation λ(Kn(r)) = An(r), and the formula

λ(Kn(r)) =

r∫

0

Un(Pn(ρ))dρ (3.2)

which reflects a certain generalization of the method of Cavalieri and Torri-
celli, we obtain

An(r)

r2
=

Un(Pn(r))

2r
. (3.3)

These ratios do not only coincide but are even independent of r. Their com-
mon constant value may be considered as An(1) = 1

2Un(Pn), which motivates
our basic definition in Section 4.
Let A ∈ B2 ∩ Pn and let ln denote the Euclidean distance between the origin
and the lateral faces of Kn. Since ln equals the magnitude of the inner circle
radius of Pn and the outer circle of Pn is the unit circle, it follows that ln =
cos (π/n). Furthermore, it is well known that λ(sectorn(A, 1)) = lnU(A)/2
where U denotes the Euclidean arc-length measure. Hence, Un(A) = 1

2 · ln ·
Un(Pn) · U(A)

λ(Kn) = ln · U(A).
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Theorem 3.4. The polygonal arc-length measure satisfies, for every A ∈ B2 ∩
Pn, the representation

Un(A) =

∫

P ol∗−1

n (A)

dϕ

M2
n(ϕ)

(3.4)

and

Un(A) = 2λ(sectorn(A, 1)). (3.5)

Proof. By changing the Cartesian with polygonally generalized polar coordi-
nates,

λ(sectorn(A, ρ)) =

∫

sectorn(A,ρ)

d(x, y) =

ρ∫

0

rdr

∫

P ol∗−1

n (A)

dϕ

M2
n(ϕ)

.

The derivation with respect to ρ yields (3.4), and (3.5) follows immediately.
�

Theorem 3.5. The positive directed T -arc-length of a given Borel measurable
set A ⊆ P +

n coincides with the polygonal arc-length of A, i.e. ALKn,T (A) =
Un(A).

Proof. By calculating y′(x) and showing the equality
hT (1, y′(x)) = hK∗

n
(y′(x), 1), it follows that hT (1, y′(x)) reduces to

hT (1, y′(x)) = −
⌈n/2⌉∑

j=1

1j(x) cos (π/n)
sin ((2j−1)π/n) . Changing variables x = cos ϕ

Mn(ϕ) , ϕ ∈

[0, π) gives

1j(x) = 1j(ϕ) =

{

1, if ϕ ∈ [2(j − 1)π/n, 2jπ/n)

0, otherwise

and finally

−
∫

G(A)

hT (1, y′(x))dx =

∫

P ol∗−1

n (A)

x′(ϕ)hT (1, y′(ϕ))dϕ

=

∫

P ol∗−1

n (A)

⌈n/2⌉
∑

j=1

1j(ϕ) · 1

M2
n(ϕ)

dϕ = Un(A).

�

The reader who wants to become more acquainted with the evaluation
of the numerical value of AL

Kn,
(

0 −1
1 0

)
K∗

n

(A) = Un(A) for a concrete Borel

measurable set A ⊆ Pn may find a suitable example in the Appendix. To
be more specific, we measure there that part of the unit pentagon P5 which
belongs to the first quadrant Q1, see Figure 6, and calculate its polygonally
generalized arc-length as well as its T -arc-length, for T =

(
0 −1
1 0

)
K∗

5 .
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4. Polygonal circle numbers

The circumference and area content properties of Euclidean circles originally
motivated the definition of the circle number π and have been discussed in [19]
for l2,p-circles and in [15] for ellipses. We follow this line and recall equation
(3.3) to motivate the following definition.

Definition 4.1. The polygonal circle number πn of the regular convex polygon
Pn is defined by πn = An(1).

Because πn = Un(Pn)/2 = π · sin ( 2π
n )

2π
n

, there holds πn −→ π as n → ∞. For

an illustration of this convergence, we refer to Table 1 and Figure 4, where

ǫ(n) = 1 − sin ( 2π
n )

2π
n

denotes the relative error of approximation of π by πn.

n 3 6 10 50 100 697
πn 1,299 2,598 2,939 3,133 3,1395 3,1416

ǫ(n) 0,587 0,173 0,0645 0,0026 0,00066 0,00001

Table 1. The convergence of πn and its approximation error ǫ(n)

Let us recall that the Euclidean isoperimetric inequality connects the circum-
ference U and the area content A of a plane figure by

U2 ≥ 4πA.

Note that, corresponding to a result in [3], U2
n(r) attains the lower bound in

the non-Euclidean case, i.e.

(Un(r))2 = 4πnAn(r), ∀r > 0.

5. Generalized uniform distribution on P
n

The notion of a polygonal arc-length measure makes it possible to consider a
random vector U taking values on the polygonal unit circle Pn and to define
a generalized uniform distribution on Pn by

P (U ∈ B) =
Un(B)

Un(Pn)
, B ∈ B2 ∩ Pn.

Note that the distribution P U induced by a random vector U on the Borel
σ-field B2 has the property P U (A) = P (U ∈ A) for every Borel measurable
set A.
Let a random vector X follow the uniform probability distribution on Kn,
i.e. P (X ∈ A) = λ(A)/λ(Kn), for A ∈ B2 ∩ Kn, and put Y = X/hKn

(X),
where division is defined componentwise. Then the following theorem holds
true, which reflects one of the main properties of the generalized uniform
distribution on Pn.

Theorem 5.1. The random vector Y follows the generalized uniform distribu-
tion on Pn.



Circle numbers of regular convex polygons 11

Proof. It follows from the definition of Un that the equation (3.2) may be
generalized by

λ(sectorn(A/r, r)) =

r∫

0

Un(Pn(ρ) ∩ [ρA/r])dρ, A ∈ B2 ∩ Pn(r). (5.1)

Thus, (3.3) extends to λ(sectorn(A/r,r))
r2 = λ(sectorn(A/r, 1)) = Un(A)

2r , A ∈
B2 ∩ Pn(r). Hence, for A ∈ B2 ∩ Pn,

P (Y ∈ A) = P (X ∈ sectorn(A, 1)) =

d
dρλ(sectorn(A, ρ))

d
dρλ(Kn(ρ))

∣
∣
∣
∣
ρ=1

=
Un(A)

Un(Pn)
.

�

The polygonal circle number πn can be used to reformulate the definition
of the generalized uniform distribution of a random Vector U on Pn. It holds

P (U ∈ B) =
1

2πn

∫

P ol∗−1(B)

dϕ

Mn(ϕ)2
, for B ∈ B2 ∩ Pn.

6. Disintegration of the Lebesgue measure

Polygonal disintegration of the Lebesgue measure is closely related to the
notion of geometric measure representation that has been dealt with in [17],
[14] and [20] for ln,p-balls as well as in [18] for ellipsoids. A corresponding
survey is given in [16]. In this sense, we introduce a disintegration formula for
λ(B), B ⊂ R

2 Borel measurable, using the polygonally generalized arc-length
measure. Further, we give an example to show how polygonal disintegration
of the Lebesgue measure applies, and present a thin layers property for the
Lebesgue measure in this section.

Theorem 6.1. For every regular convex polygon Pn,

λ(B) =
∞∫

0

Un(B ∩ Pn(r))dr, B ∈ B2.

To prove this theorem, one can follow the proof of Theorem 4 in [17]
in an analogous way, wherefore this is omitted here. Theorem 6.1 reflects a
certain generalization of the method of indivisibles of Cavalieri and Torricelli.

Note, that in general λ(B) 6=
∞∫

0

Un(B ∩ Pn(r))dr, but by using the relation

between the polygonal arc-length measure Un(·) and the Euclidean arc-length

measure U(·) it follows that λ(B) = ln
∞∫

0

U(B ∩ Pn(r))dr, B ∈ B2.

Corollary 6.2. For every Borel measurable subset B from R
2 it holds true

that

λ(B) =

∞∫

0

rUn

([
1

r
B

]

∩ Pn

)

dr = ln

∞∫

0

rU

([
1

r
B

]

∩ Pn

)

dr.
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Proof. Let A ∈ B2 ∩ Pn. Then

Un(rA) =
d

dρ
λ(sectorn(A, ρ))|ρ=r = 2rλ(sectorn(A, 1)) = rUn(A).

By Theorem 6.1, with rA = B ∩ Pn(r), the corollary follows. �

Let B ⊂ R
2 be Borel measurable. The function r → Fn(B, r) defined

by

Fn(B, r) :=
U

([
1
r B

]
∩ Pn

)

U(Pn)
, for r > 0

is called the polygonal intersection proportion function (ipf) of the set B.
With this function, the quantity λ(B) can be reformulated by

λ(B) = ωn

∞∫

0

rFn(B, r)dr, where ωn = Un(Pn) = lnU(Pn). This representa-

tion will be called the regular polygonal geometric measure representation of
the Lebesgue measure.

Example. We reprove the well known result for the area content of the square
with the vertices (−1, −1)T , (1, −1)T , (1, 1)T , (−1, 1)T . For this, we use the
geometric measure representation based upon the ipf of the hexagon. Let
B := {(x, y)T ∈ R

2 : max{|x|, |y|} ≤ 1}. We have ω6 = 3
√

3 and therefore

λ(B) = 3
√

3
∞∫

0

rF6(B, r)dr. To calculate F6(B, r), we have to distinguish

four cases with respect to the choice of the hexagonal radius r, see Figure 3.
Because of

F6(B, r) =







1, 0 < r ≤ 1,

1 − 4(r−1)
3r , 1 < r ≤ 2√

3
,

2
3r

(
2√
3

− 2(r − 1)
)

, 2√
3

< r ≤ 1
3 (3 +

√
3),

0, 1
3 (3 +

√
3) < r,

it follows

λ(B) = 3
√

3







1∫

0

rdr +

2√
3∫

1

r − 4

3
(r − 1)dr +

2

3

1

3
(3+

√
3)

∫

2√
3

2√
3

− 2(r − 1)dr







= 4.

Theorem 6.3. Let L(r, ǫ) = {(x, y)T ∈ R
2 : r ≤ hKn

(x, y) ≤ r + ǫ}. The
Lebesgue measure λ(L(r, ǫ)) has the polygonal thin layers property

λ(L(r, ǫ)) ∼ 2πnrǫ, ǫ → +0.

Proof. Because λ(Kn(r)) = An(r) =
r∫

0

ρUn(Pn)dρ and πn = Un(Pn)/2, we

obtain λ(Kn(r)) = 2πn

r∫

0

ρdρ. Thus, λ(L(r, ǫ)) = 2πn

r+ǫ∫

r

ρdρ

= 2πn

(
1
2 (r + ǫ)2 − 1

2 r2
)

= 2πn(rǫ + 1
2 ǫ2). �
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1

−1

1−1 x

y

0 < r ≤ 1

1

−1

1−1 x

y

1 < r ≤ 2√
3

1

−1

1−1 x

y

2√
3

< r ≤
1
3 (3 +

√
3)

1

−1

1−1 x

y

1
3 (3 +

√
3) < r

Figure 3. The hexagonal ipf takes constant values accord-
ing to four regions of the hexagonal radius r.

7. Discussion

In this final section, we make somehow an excursion to the history of approx-
imating the circle number π. The idea to use the radius Ro,n of the outer
circle of Pn as generalized reference circle and the Euclidean circumference
Un(Ro,n) of a regular polygon is rather old. Following it, it is possible to
define numbers

πo,n,1 = Un(Ro,n)/(2Ro,n) =
2Ro,nn sin (π/n)

2Ro,n
= n sin (π/n)

and

πo,n,2 = An(Ro,n)/R2
o,n =

1
2 nR2

o,n sin (2π/n)

R2
o,n

= πn

which are independent of Ro,n but not equal. Thus, neither they do solve
the isoperimetric problem nor can the circumference be written as the de-
rivative of the area content of a regular polygon with respect to Ro,n. The
use of the principle of Cavalieri and Torricelli to derive a geometric measure
representation for the Lebesgue measure is not possible, wherefore there is
no thin layers property as in Theorem 6.3. Hence, πo,n,1 and πo,n,2 appear
as generalized circle numbers with weaker properties than πn and they are
impractical to be used for probabilistic purposes as those were dealt with in
[13]-[22].
Using the radius Ri,n of the inscribed circle, the Euclidean circumference
Un(Ri,n) = 2nRi,n tan (π/n) and the area content An(Ri,n) = nR2

i,n tan (π/n)
inside of a regular polygon, we define

πi,n =
An(Ri,n)

R2
i,n

= n tan
(π

n

)

=
Un(Ri,n)

2Ri,n
.

Each of the considered sequences of circle numbers has got the property to
approximate π. For an illustration of all these approximations of π, see Table
2 and Figure 4. Furthermore, Figure 5 shows the inner and outer approxi-
mations of the unit circle by regular pentagons. Note that the coordinates
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of the center of each facet of the outer pentagon A5,i, i = 1, .., 5 can be
constructed by an anticlockwise rotation of the vertices of the inner penta-

gon I5,i, i = 1, .., 5 through 36◦. Thus A5,i =
(

cos (36◦) − sin (36◦)
sin (36◦) cos (36◦)

)

I5,i, for

i = 1, ..., 5.

n πo,n,1 πo,n,2 = πn πi,n

5 2,93 2,38 3,63
6 3 2,6 3,46
8 3,06 2,83 3,31
10 3,09 2,94 3,24

Table 2. Approximations of π Figure 4. Approximation of π using
the inner (⋆), outer (�) and polygonal
(+) radius of Pn

Appendix

Example. To prove the Relation AL
K5,

(
0 −1
1 0

)
K∗

5

(A) = U5(A) for the set

A = {x, y > 0 : hK5
(x, y) = 1}, which represents that part of the pentagonal

1

−1

1−1 x

y

Q1Q2

Q3 Q4

I5,1

I5,2

I5,3

I5,4

I5,5

A5,1

A5,2

A5,3

A5,4

A5,5

C5,1

C5,2

C5,3

C5,4

C5,5

Figure 5. Approximation of the
unit circle by an inner and outer reg-
ular pentagon

1

−1

1−1 x

y

×

Q1Q2

Q3 Q4

C5,1

C5,2

C5,3

C5,4

C5,5

I5,1

I5,2

I5,3

I5,4

I5,5

I∗

Figure 6. The unit polygonal cir-
cle P5 (solid lines) and its 90◦ anti-
clockwise rotated unit polar pentagon
(dashed lines)
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circle that belongs to the first quadrant, we have U5(A) = cos(π/5) · U(A).
To calculate U(A), one has to sum up the Euclidean lengths of the facets

I5,1I5,2 and I5,2I∗, see Figure 6, where I∗ = (0, cos (π/5)/ sin (3π/5))
T

. Since

I5,1I5,2 is an edge of P5 it holds, for example according to [5] that I5,1I5,2 =

10/(
√

50 + 10
√

5).

Further, I5,2I∗ =

√

cos2 (2π/5) +
(

sin (2π/5) − cos (π/5)
sin (3π/5)

)2

and since accord-

ing to [10] cos (π/5) = 1+
√

5
4 , cos (2π/5) =

√
5−1
4 , sin (π/5) =

√
10−2

√
5

4 , and

sin (2π/5) = sin (3π/5) =

√
10+2

√
5

4 , it follows that

I5,2I∗ =

√

6 − 2
√

5
√

10 + 2
√

5
and U5(A) = l5(I5,1I5,2 + I5,2I∗) =

10 + 14
√

5

4
√

50 + 10
√

5
.

By the definition of ALKn,T (A) it follows that

AL
K5,

(
0 −1
1 0

)
K∗

5

(A) = −
1∫

0

h(
0 −1
1 0

)
K∗

5

(1, y′(x))dx = cos (π/5)·

·
1∫

0

2∑

j=1

1j(x)

sin ((2j − 1)π/5)
dx = cos (π/5)

(
cos (2π/5)

sin (3π/5)
+

1 − cos (2π/5)

sin (π/5)

)

which results in the same value as that of U5(A).
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