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1 Introduction

The 2π-periodic function known as the von Mises density (vMd) arose from considering physical
problems (Langevin [1905], von Mises [1918]). Applying a suitably adapted method of Gauss,
nowadays called the maximum-likelihood method, von Mises [1918] was sucessfully searching for a
cyclic error distribution. For a more detailed discussion, see, e.g., Gumbel et al. [1953].

Introductory and advanced results on and various applications of circular distributions and
directional statistics can be found in Mardia [1972], Batschelet [1981], Fisher et al. [1987], Mardia
and Jupp [2000], Jammalamadaka and SenGupta [2001], Pewsey et al. [2013], and the references
given therein.

The conditional distribution of the directional component of a random vector given its fixed
distance from the origin is often called a conditional offset distribution. Mardia [1972] showed by
a construction following Fisher [1959] that the von Mises distribution (vMD) is the conditional
distribution of the polar angle coordinate of a shifted, homoscedastic, regular, two-dimensional
Gaussian random vector given its Euclidean radius coordinate. Jammalamadaka and SenGupta
[2001] called this approach to the vMD the conditional offset approach. The conditional offset
approach and its generalizations have been dealt with in Mardia and Jupp [2000], Shimizu and Iida
[2002], Jones and Pewsey [2005], and Gatto and Jammalamadaka [2007].

The present paper contributes to the conditional offset approach under various aspects. First, we
apply the it to a broad class of two-dimensional vector distributions, starting with shifted, possibly
heteroscedastic Gaussian and elliptically contoured ones and then turning to norm contoured and
star-shaped ones, we obtain a big class of Doing this, we obtain a big class of generalizations of the
vMD. By introducing density generating functions we allow underlying bivariate distributions with
heavy or light tails. By describing density levels with the help of positively homogeneous functions
we deal with the aforementioned distributions.

Based on the study of rather general underlying bivariate models, we discuss the notions of a
directional component (or coordinate) of a random vector and of the vector’s generalized radius
coordinate (or its generalized distance from the origin). We do this in accordance with the basic
geometric properties of the two-dimensional density level sets of the underlying vector distribution.
For a closely related comparison of the well interpretable polar and the more involved elliptical polar
angle component of a Gaussian rv, we refer to Dietrich et al. [2013]. For different types of distances
from the origin a random vector may have, see Richter [2011b, 2014, 2015] as well as Richter and
Schicker [2016].
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The radius component occuring in the conditional offset approach will be generally be non-
Euclidean. However, the angular component will be the polar angle unless stated otherwise. For
introductions to norm-contoured and star-shaped vector distributions, we refer to Richter [2015]
and Richter [2014], respectively.

The paper is organized as follows. The conditional offset approach is presented for different
choices of the parameters of the two-dimensional Gaussian distribution and for elliptically contoured
vector distributions in Section 2. The resulting generalized vMds are visualized in Section 3. Also
in Section 3, the four parameter model resulting in the Gaussian case is compared to two other
four parameter models from the literature by means of maximum likelihood (ML) inference. The
conditional offset approach for star-shaped bivariate model distributions is presented in Section 4
and the resulting generalized vMds are visualized in Section 5. According to Richter [2014], there
is a need in the latter case to first determine the radius component of the bivariate random vectors
in terms of Minkowski functionals of certain star bodies. This will be also done in Section 5. An
example from the analysis of processing times deals with a polygonal generalization of the vMD. A
concluding remark concerning statistical applications is added in Section 6.

2 conditional offset approach for Gaussian and elliptically contoured
vector distributions

2.1 Axes-aligned Gaussian model

We write (X,Y )T ∼ Φν,Θ if the rv (X,Y )T follows the Gaussian distribution having expectation
vector ν ∈ R2 and 2 × 2 covariance matrix Θ. Suppose that, for some λ > 0, δ > 0, µ ∈ [−π, π)
and 0 < b ≤ a,

(X,Y )T ∼ Φ
λ

 a cos(a,b)(µ)

b sin(a,b)(µ)

, 1
δ

 a2 0
0 b2

,

where cos(a,b)(ϕ) = cosϕ/(aN(a,b)(ϕ)) and sin(a,b)(ϕ) = sinϕ/(bN(a,b)(ϕ)) with

N(a,b)(ϕ) =
(
cos2 ϕ/a2 + sin2 ϕ/b2

) 1
2

are the E(a,b)-generalized trigonometric functions introduced in Richter [2011a] and satisfying the
equation cos2

(a,b)(ϕ) + sin2
(a,b)(ϕ) = 1, for all ϕ ∈ R.

Changing from Cartesian to E(a,b)-generalized elliptical polar coordinates X = Ra cos(a,b)(Φ),

Y = Rb sin(a,b)(Φ), and denoting by f(R,Φ) the probability density function (pdf) of the rv (R,Φ)T ,
it turns out that

f(R,Φ)(r, ϕ) =
I[0,∞)(r)I[−π,π)(ϕ) δr

2π abN2
(a,b)(ϕ)

× exp

{
−δ

2

[
(r cos(a,b)(ϕ)− λ cos(a,b)(µ))2 + (r sin(a,b)(ϕ)− λ sin(a,b)(µ))2

]}
where IA denotes the indicator function of the set A. Integrating f(R,Φ)(r, ϕ) w.r.t. ϕ gives the
marginal pdf fR of R, and dividing f(R,Φ) by fR yields the conditional pdf of Φ given R = r,

fΦ|R(ϕ|r) =
C(a,b,δrλ,µ)

N2
(a,b)(ϕ)

exp
{
δrλ

[
cos(a,b)(ϕ) cos(a,b)(µ) + sin(a,b)(ϕ) sin(a,b)(µ)

]}
, (1)

where C(a,b,δrλ,µ) is a normalizing constant such that
∫ π
−π fΦ|R(ϕ|r) dϕ = 1. Every choice of the

triple (δ, r, λ) leading to the same product δrλ = κ, say, results in the same conditional pdf fΦ|R.
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Moreover, since cos(a,b)(ϕ) = cos(1,b/a)(ϕ), sin(a,b)(ϕ) = sin(1,b/a)(ϕ) and N(a,b)(ϕ) = N(1,b/a)(ϕ)/a,
we have fΦ|R(ϕ|r) = vMdζ,κ,µ(ϕ), where ζ = b/a and

vMdζ,κ,µ(ϕ) =
C(ζ,κ,µ)

N2
(1,ζ)(ϕ)

exp
{
κ
[
cos(1,ζ)(ϕ) cos(1,ζ)(µ) + sin(1,ζ)(ϕ) sin(1,ζ)(µ)

]}
(2)

with C(ζ,κ,µ) being the suitable normalizing constant. Note that Φ is the usual polar angle, but

since R =
(
(X/a)2 + (Y/b)2

) 1
2 , the conditioning in (1) is not a conditioning w.r.t. a multiple of the

Euclidean radius unless a = b, i.e., ζ = 1. See Richter [2011a] for more (geometric) explanation. If
ζ = 1, then cos(1,ζ) = cos, sin(1,ζ) = sin, N(1,ζ)(ϕ) ≡ 1, and, due to the well known formula

cosϕ cosµ+ sinϕ sinµ = cos(ϕ− µ),

the pdf in (2) is that of the vMD with parameters κ and µ. This is the motivation for calling
the 2π-periodic pdf in (2) the axes aligned elliptically contoured Gaussian generalized vMd with
parameters ζ ∈ (0, 1], κ > 0 and µ ∈ [−π, π). If ζ < 1, then (2) may be also called the axes aligned
heteroscedastic Gaussian generalization of the vMd.

Before we extend the conditional offset approach to the class of regular Gaussian vector dis-
tributions in Section 2.2, we state a Lemma which allows a more convenient representation of the
normalizing constant.

Lemma 1. Let T(a,b) : R→ R be the mapping ϕ 7→ ψ defined by

T(a,b)(ϕ) = ψ =

{
− arccos(cos(a,b)(ϕ)) −π ≤ ϕ < 0

arccos(cos(a,b)(ϕ)) 0 ≤ ϕ < π

for some a > 0, b > 0, and T(a,b)(ϕ + 2π) = T(a,b)(ϕ) + 2π, ∀ϕ. Then T(a,b) is one-to-one, and
cos(a,b)(ϕ) = cos(T(a,b)(ϕ)) and sin(a,b)(ϕ) = sin(T(a,b)(ϕ)), ∀ϕ. Moreover, the Jacobian of this
transformation is JT(a,b)

(ϕ) = (abN2
(a,b)(ϕ))−1. The inverse map of the map T(a,b) is given by

T−1
(a,b)(ψ) =

{
− arccos(cos(1/a,1/b)(ψ)) −π ≤ ψ < 0

arccos(cos(1/a,1/b)(ψ)) 0 ≤ ψ < π
, T−1

(a,b)(ψ + 2π) = T−1
(a,b)(ψ) + 2π, ∀ψ .

Using Lemma 1, we conclude that C(ζ,κ,µ) does not depend on µ,

C(ζ,κ,µ) =

(∫ π

−π
N−2

(1,ζ)(ϕ) exp
{
κ
[
cos(1,ζ)(ϕ) cos(1,ζ)(µ) + sin(1,ζ)(ϕ) sin(1,ζ)(µ)

]}
dϕ

)−1

=

(∫ π

−π
ζ exp

{
κ
[
cosψ cos(T(1,ζ)(µ)) + sinψ sin(T(1,ζ)(µ))

]}
dψ

)−1

=

(
ζ

∫ π

−π
exp

{
κ cos(ψ − T(1,ζ)(µ))

}
dψ

)−1

=
1

2π ζ I0(κ)
,

i.e. C(ζ,κ,µ) = C(ζ,κ) = (2π ζ I0(κ))−1. The last integral in the evaluation of C(ζ,κ,µ) is the same
as in the evaluation of the normalizing constant of the vMd having parameters κ and T(1,ζ)(µ).
Here, I0(κ) is the modified Bessel function of the first kind and order zero, see, e.g., Abramowitz
and Stegun [1972]. Hence, transforming Ψ = T(1,ζ)(Φ) yields the usual vMD. In light of Dietrich
et al. [2013] and Richter [2014], one may prefer to consider the random polar angle Φ instead of the
elliptic polar angle or eccentric anomaly Ψ, because of its easy interpretation.

2.2 Regular Gaussian model

The more general case that the Gaussian rv (X,Y )T has expectation vector ν and an arbitrary
regular covariance matrix

1

δ
Σ =

1

δ

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
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can be reduced to the preceding case as follows. The ellipse EΣ = {(x, y)T ∈ R2 : (x, y)Σ−1(x, y)T =
1} can be rotated clockwise by the angle α ∈ [0, π/2) by multiplying it with the matrix D(α) =(

cosα sinα
− sinα cosα

)
such that the resulting ellipse D(α)EΣ has main axes being aligned with the coor-

dinate axes. To this end, the angle α = α(Σ) has to be chosen according to formula (6) in Dietrich
et al. [2013],

α = α(Σ)

= [1− I{0}(ρ)]

[
π

4
I{σ2}(σ1) + (1− I{σ2}(σ1))

(
1

2
arctan

2σ1σ2ρ

σ2
1 − σ2

2

+
π

2
I(−∞,0)(ρ(σ1 − σ2))

)]
, (3)

where we define 2σ1σ2ρ/(σ
2
1 −σ2

2) = sgn(ρ) ·∞ and 0 · arctan±∞ = 0 if σ1 = σ2. The values a and
b from the representation D(α)EΣ = {(x, y)T ∈ R2 : (x/a)2 + (y/b)2 = 1} = E(a,b) are given also
there in formula (7),

a = a(Σ) =
√
σ2

1 cos2 α+ σ2
2 sin2 α+ 2ρσ1σ2 sinα cosα ,

b = b(Σ) =
√
σ2

2 cos2 α+ σ2
1 sin2 α− 2ρσ1σ2 sinα cosα .

(4)

Using the angle α according to (3) to change variables

X =
R cos Φ

N(a,b)(Φ− α)
, Y =

R sin Φ

N(a,b)(Φ− α)
, (5)

and following the conditional offset approach as before, leads to the conditional pdf of Φ given
R = r,

fΦ|R(ϕ|r) =
C(a,b,κ,µ)(α)

N2
(a,b)(ϕ− α)

× exp
{
κ
[
cos(a,b)(ϕ− α) cos(a,b)(µ− α) + sin(a,b)(ϕ− α) sin(a,b)(µ− α)

]}
, (6)

where α = α(Σ), a = a(Σ), b = b(Σ) are given in (3) and (4), κ = δrλ > 0, the expectation vector
of (X,Y )T is assumed to be

ν =
λ

N(a,b)(µ− α)

(
cosµ
sinµ

)
for some µ ∈ [−π, π) and λ > 0, and where the normalizing constant does not depend on α and µ,
C(a,b,κ,µ)(α) = C(a,b,κ). Again, every choice of the triple (δ, r, λ) leading to the same product κ results
in the same conditional pdf fΦ|R. Note that Φ is still the usual random polar angle of (X,Y )T .
However, the conditioning random radius coordinate is now the elliptical radius R = hKΣ

((X,Y )T ),
where

hK((x, y)T ) = inf{ξ > 0 : (x, y)T ∈ ξ ·K}

defines the Minkowski functional of a star body K having the origin as an inner point, and

KΣ =
{

(x, y)T ∈ R2 : (x, y)Σ−1(x, y)T ≤ 1
}

is the star body circumscribed by the ellipse EΣ. Note that R is the Euclidean radius if Σ is the
2 × 2 unit matrix. In the general case, however, R = R(Φ) = (X2 + Y 2)

1
2N(a,b)(Φ − α), where

tan Φ = Y/X, and α is defined in (3).
Note that, contrary to Sections 2.1 and 2.2, the quantities a und b defined in (4) do not satisfy any

certain inequality yet. However, using the equalities cos(a,b)(ϕ) = − sin(b,a)(ϕ− π/2), sin(a,b)(ϕ) =
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cos(b,a)(ϕ − π/2) and N2
(a,b)(ϕ) = N2

(b,a)(ϕ − π/2), ∀ϕ, the right side of the equation in (6) can be
rewritten as

C(a,b,κ) exp
{
κ
[
cos(b,a)(ϕ− α∗) cos(b,a)(µ− α∗) + sin(b,a)(ϕ− α∗) sin(b,a)(µ− α∗)

]}
N2

(b,a)(ϕ− α∗)
,

where α∗ = α + π/2 ∈ [π/2, π). The latter representation of (6) corresponds to the case where
the ellipse EΣ is rotated clockwise by the angle α∗ = α + π/2 instead of α, D(α∗)EΣ = E(b,a), cf.
Remark 6.2 in Dietrich et al. [2013].

In accordance with Section 2.1 we may use α∗ instead of α whenever a < b to ensure that the
main axis aligned with the x-axis is not the smaller one. Enlarging the domain of α up to the
interval [0, π) this way, we have fΦ|R(ϕ|r) = vMdζ,κ,µ,α(ϕ), where again ζ = b/a,

vMdζ,κ,µ,α(ϕ) =
C(ζ,κ)

N2
(1,ζ)(ϕ− α)

× exp
{
κ
[
cos(1,ζ)(ϕ− α) cos(1,ζ)(µ− α) + sin(1,ζ)(ϕ− α) sin(1,ζ)(µ− α)

]}
, (7)

and C(ζ,κ) = (2π ζ I0(κ))−1. The 2π-periodic pdf in (7) will be called the regular Gaussian elliptically
contoured generalization of the vMd having paramaters ζ ∈ (0, 1], κ > 0, µ ∈ [−π, π) and α ∈ [0, π).

2.3 A class of representations for the vMD

Before we turn over to the elliptically contoured model in Section 2.4, we want to draw some con-
sequences from our considerations so far. Given any regular bivariate Gaussian random vector and
any fixed value r > 0 of the conditioning random elliptical radius R, the conditional offset approach
uniquely defines a regular Gaussian elliptically contoured generalization of the vMD. Moreover,
with regard to Lemma 1, such a generalized vMD is associated with an uniquely determined vMD
having parameters κ > 0 and ν ∈ [−π, π). Consequently, any regular bivariate Gaussian distribu-
tion is thus uniquely related to a vMD. The next theorem emphasizes this fact by stating a class of
representations for any vMD with parameters κ > 0 and ν ∈ [−π, π).

Let T(a,b) denote the map considered in Lemma 1 for some fixed 0 < b ≤ a, and define
|(x, y)T |(a,b) := (x2/a2 + y2/b2)1/2, following the notation in Richter [2011a].

Theorem 2.1. Let a random variable Ψ follow a vMD with arbitrary but fixed parameters κ > 0
and ν ∈ [−π, π) , and let the polar angle of (x, y)T 6= (0, 0)T be Pol∗−1(x, y). Then

L(Ψ) = L
(
T(a,b)(Pol∗−1(X,Y )) | |D(α)(X,Y )T |(a,b) = r

)
for all Gaussian random vectors (X,Y )T ,

(X,Y )T ∼ Φ
λ

N(a,b)(µ−α)

cosµ
sinµ

,DT (α)

a2 0
0 b2

D(α)

,

where r > 0 and λ > 0 satisfy κ = rλ, and µ ∈ [−π, π) and α ∈ [0, π) are such that T(a,b)(µ−α) ≡ ν
modulo 2π.

Remark 1. Let Ψ follow a vMD with arbitrary parameter κ > 0 and ν = 0, and fix 0 < b ≤ a. Then,
for any µ ∈ [−π, π) and α ∈ [0, π), it follows that L(T−1

(a,b)(Ψ + T(a,b)(µ − α)) + α) coincides with
the regular Gaussian elliptically contoured generalization of the vMD having parameters ζ = b/a,
κ > 0, µ and α by simple density transformation.

Kato and Jones [2010] consider a Möbius transformation M which maps the unit circle onto
itself in the complex plane. With respect to the arguments of the corresponding complex numbers
ψ and ϕ, say, such a circle-to-circle transformation is given there by

ψ
M7−→ ϕ = µ+ ν + 2 arctan

(
1− r
1 + r

tan

(
ψ − ν

2

))
, ψ ∈ [0, 2π) (8)
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where µ, ν ∈ [0, 2π) and r ∈ [0, 1). We further require ψ + 2π 7→ ϕ + 2π, for any ψ. Using the
Möbius transformation from Ψ to Φ = M(Ψ), Kato and Jones [2010] discuss the resulting family of
four-parameter distributions on the circle. We remark that there is no Möbius transformation M
given in (8) which leads to a regular Gaussian elliptically contoured generalization of the vMD unless
for the special subcase a = b, i.e. ζ = 1. This is a consequence of the following symmetry properties
of the continuous and strictly monotonically increasing transformations under consideration. The
transformation T ∗(a,b) defined by

ψ
T ∗

(a,b)7−→ ϕ = T−1
(a,b)(ψ + T(a,b)(µ− α)) + α (9)

is symmetric w.r.t. any of the points (−T(a,b)(µ − α) + kπ/2, α + kπ/2), k ∈ Z. Here, Z denotes
the set of all integers. Hence, all points of symmetry are equidistantly spread on a straight line
having slope one. If r > 0, the transformation (8) is only symmetric with respect to any of the points
(ν+k2π, µ+ν+k2π), k ∈ Z, which again are equidistantly spread on a straight line having slope one,
see Figure 1. Consequently, if r ∈ (0, 1), we can only find three such points of symmetry if ψ runs
through any closed interval of length 2π. Considering (9), we can find five such points. Therefore,
transforming Ψ according to (8) or (9), respectively, results in different circular distributions. The
special case of r = 0 entails the simple linear transformation ψ 7→ µ+ν+(ψ−ν)/2. Hence, if r = 0
and a = b, then (8) as well as (9) transform Ψ to a von Mises distributed random variable.

Figure 1: The graph of T ∗(a,b) (solid) with a = 2, b = 1, µ1 = 3π/2, α = π/4 and the graph of the
Möbius transformationM (dash-dotted) with r = 0.6, µ2 = π, ν = π/2 in the interval [ν−π, ν+π].
Both functions are symmetric with respect to any intersection points with the corresponding dotted
line. Note that both transformations map [ν − π, ν + π) onto an interval of length 2π.

2.4 Elliptically contoured model

Let g : [0,∞)→ [0,∞) satisfy 0 < I(g) <∞ where I(g) =
∫∞

0 rg(r) dr. Any such function will be
called a density generating function (dgf). We write (X,Y )T ∼ Φg,ν,Θ if (X,Y )T has the pdf

(x, y)T 7→ D(g) · |Θ|−
1
2 · g

((
(x− ν1, y − ν2)Θ−1(x− ν1, y − ν2)T

) 1
2

)
(10)

where ν = (ν1, ν2)T ∈ R2, Θ is a 2 × 2 symmetric positive definite matrix and D(g) is a suitable
normalizing constant. In other words, (X,Y )T follows an elliptically contoured distribution with
expectation vector ν, shape matrix Θ and dgf g.
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Note that the conditional offset approach to the Gaussian elliptically contoured generalized vMd
can be adapted to any absolutely continuous elliptically contoured distribution. For the subclass of
spherically symmetric distributions, where Θ is a multiple of the unit matrix, this idea is outlined
in Jones and Pewsey [2005]. To this end, let (X,Y )T ∼ Φg,ν, 1

δ
Σ. Changing variables according to

(5) where again α = α(Σ), a = a(Σ) and b = b(Σ) are given as in (3) and (4), respectively, and
following the conditional offset approach, we arrive at the conditional pdf of the polar angle Φ given
the fixed value of the elliptical radius R = r,

fΦ|R(ϕ|r) =
C(a,b,δ,r,λ,µ)(α, g)

N2
(a,b)(ϕ− α)

× g
((
δ(r2 + λ2)− 2δrλ

[
cos(a,b)(ϕ− α) cos(a,b)(µ− α) + sin(a,b)(ϕ− α) sin(a,b)(µ− α)

]) 1
2

)
.

(11)

The parameters λ and µ are uniquely defined by the representation of the expectation vector ν of
(X,Y )T ,

ν =
λ

N(a,b)(µ− α)

(
cosµ
sinµ

)
.

The normalizing constant C(a,b,δ,r,λ,µ)(α, g) does actually neither depend on α nor on µ. Notice that,
in contrast to the Gaussian case, the density in (11) generally depends not only through the product
δrλ on the triple (δ, r, λ). However, replacing the triple (δ, r, λ) by (1,

√
δr,
√
δλ) and exchanging

the roles of r and λ yields the same density. These are the reasons why we assume w.l.o.g. that
δ = 1 and λ ≥ r, from now on. The conditional pdf fΦ|R depends only through ζ = b/a upon a and
b, thus we arrived at fΦ|R(ϕ|r) = vMdg;ζ,r,λ,µ,α(ϕ), where the 2π-periodic pdf

vMdg;ζ,r,λ,µ,α(ϕ) =
C(ζ,r,λ)(g)

N2
(1,ζ)(ϕ− α)

× g
((
r2 + λ2 − 2rλ

[
cos(1,ζ)(ϕ− α) cos(1,ζ)(µ− α) + sin(1,ζ)(ϕ− α) sin(1,ζ)(µ− α)

]) 1
2

)
(12)

is called the regular elliptically contoured g-generalization of the vMd having parameters ζ ∈ (0, 1],
0 < r ≤ λ, µ ∈ [−π, π) and α ∈ [0, π). The fact that ζ ∈ (0, 1] is again a consequence of the
circumstance that the original domain of α was enlarged, cf. Section 2.2. By means of Lemma 1,
the normalizing constant C(ζ,r,λ)(g) can be simplified as

C(ζ,r,λ)(g) =

(
ζ

∫ π

−π
g
((
r2 + λ2 − 2rλ cosψ

) 1
2

)
dψ

)−1

. (13)

Note that the latter integral equals that arising in the evaluation of the normalizing constant in the
spherical case in Jones and Pewsey [2005], Section 2.5. The elliptical polar angle Ψ = T(1,ζ)(Φ),
with suitably chosen parameters, has the distribution considered also there. Since we study the
conditional pdf of the polar angle Φ given the elliptical radius, instead of studying the elliptical
polar angle Ψ given the Euclidean radius, the resulting distribution classes allow rather different
interpretation and are actually not limited to symmetric pdfs, here. However, any regular elliptically
contoured g-generalized vMd (in the sense of the present work) which involves symmetry can be
identified as a g-generalization in the sense of Jones and Pewsey [2005].

Note that the density vMdg;ζ,r,λ,µ,α defined in (12) where α 6= 0 can be represented as a shifted
version of the density vMdg;ζ,r,λ,µ−α,0,

vMdg;ζ,r,λ,µ,α(ϕ) = vMdg;ζ,r,λ,µ−α,0(ϕ− α) , for all ϕ .

Here, µ − α may be altered modulo 2π with respect to the domain [−π, π) of the parameter.
Moreover, the argument of the dgf g in (12) is a 2π-periodic continuous function

ϕ 7→
(
r2 + λ2 − 2rλ

[
cos(1,ζ)(ϕ− α) cos(1,ζ)(µ− α) + sin(1,ζ)(ϕ− α) sin(1,ζ)(µ− α)

]) 1
2
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taking all values from the interval [λ− r, λ+ r]. The global maximum and minimum points of this
function do not depend on ζ ∈ (0, 1], and are given by µ+k2π and µ+π+k2π, respectively, where
k ∈ Z. Hence, fΦ|R(ϕ|r) depends on g only through its values in this interval. If the dgf is g = gG,
gG(r) = exp

{
−r2/2

}
, r > 0, then (X,Y )T follows a Gaussian distribution, and the conditional pdf

of Φ given R = r is the regular Gaussian elliptically contoured generalization of the vMd.
By suitable choices of the dgf g, one can model bivariate elliptically contoured distributions with

heavy or light tails. Moreover, different degree of concentration of probability mass of (X,Y )T at
the expectation vector ν ∈ R2 may be modeled this way. Frequently used dgfs are that of Kotz type
or Pearson type VII,

gK(r) = r2(M−1) exp
{
−βr2γ

}
, M > 0, β > 0, γ > 0 ,

gP (r) =

(
1 +

r2

m

)−M
, M > 1,m > 0 ,

respectively, where r > 0. The dgf gG of the Gaussian distribution belongs to the Kotz type class
of dgfs and entails light tails. On the other hand, the dgf gt(r) = (1 + r2/m)−m/2−1, m > 0 of the
multivariate t-distribution is a special Pearson type VII dgf which models heavier tails.

For evaluating the regular elliptically contoured g-generalization of the vMd one seeks for an
explicit representation of the normalizing constant C(ζ,r,λ)(g) as in (13). Changing variables ψ = 2α,
one can exploit the well known relation cos(2α) = 2 cos2 α− 1 to get

1

C(ζ,r,λ)(g)
= 2ζ

∫ π/2

−π/2
g
(

((r + λ)2 − 4rλ cos2 α)1/2
)
dα .

In the case of a Kotz type dgf one can consider the power series expansion of the exponential
term, and interchange the order of integration and summation,

1

C(ζ,r,λ)(gK)
= 2ζ ·

∞∑
m=0

(−β)m

m!

∫ π/2

−π/2

(
(r + λ)2 − 4rλ cos2 α

)γm+M−1
dα

= 2ζ π ·
∞∑
m=0

(−β)m

m!

2F1

(
1
2 , 1− γm−M ; 1; 4rλ

(λ+r)2

)
(r + λ)2(1−γm−M)

, r 6= λ,

where the last equation follows from 3.682 in Gradshteyn and Ryzhik [2007], and 2F1 is the Gaus-
sian hypergeometric function which is available as a standardly implemented function in software
packages like MATLAB and Maple. If r = λ then

1

C(ζ,r,λ)(gK)
= 2ζ ·

∞∑
m=0

(−β)m

m!

∫ π/2

−π/2

(
4r2 − 4r2 cos2 α

)γm+M−1
dα

= 2ζ
√
π ·

∞∑
m=0

(−β)m

m!

(4r2)γm+M−1Γ
(
mγ +M − 1

2

)
Γ(mγ +M)

,

where we exploited an integral representation of the beta function (Gradshteyn and Ryzhik [2007],
8.380 (2)) which can subsequently be written in terms of gamma functions.

In the case of a Pearson type VII dgf, it follows again from 3.682 in Gradshteyn and Ryzhik
[2007] that

1

C(ζ,r,λ)(gP )
= 2ζ

∫ π/2

−π/2

(
1 +

(r + λ)2 − 4rλ cos2(α)

m

)−M
dα

=
2ζ π 2F1

(
1
2 ,M ; 1; 4λr

m+(r+λ)2

)
(
m+(r+λ)2

m

)M .
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3 Visualization of the elliptically contoured generalized vMd

This section provides some visualizations of the generalized vMd for the elliptically contoured model.
First, the axes aligned and the general regular Gaussian cases will be illustrated, for which the
densities are given in (2) and (7), respectively. The effectiveness of the four parameter model (7) is
shown by applying it to real life data. Then, elliptically contoured g-generalizations of the vMd are
drawn for g ∈ {gK , gP }. Recall that circular densities are 2π-periodic by definition. That is why
we illustrate circular densities only in intervals of length 2π. However, one has always to keep in
mind the 2π-periodic nature of the pdf to not get the impression of asymmetry even in cases when
the density is symmetric, see Figure 10.

3.1 Gaussian elliptically contoured generalizations of the vMd

Except for Figure 6, the figures in the present section deal with the axes aligned Gaussian case. In
this case, the dgf is gG and the shift parameter is α = 0. The three parameters ζ, κ and µ are of
influence for the shape of the generalized vMd. Altering in each figure only one of these parameters,
Figures 2 and 3 show that the density can be unimodal symmetric (cf. Jones and Pewsey [2005])
and unimodal asymmetric. Alternatively, Figures 4 and 5 show examples of both symmetric and
asymmetric bimodality. Recall that ζ = 1 always entails symmetry, see Figure 5.

Figure 2: ζ = 1, µ = 0 Figure 3: ζ = 4/5, κ = 1

Figure 4: ζ = 1/2, µ = 0 Figure 5: κ = 1/2, µ = π/4 Figure 6: ζ = 1/4, κ = 1/2, µ =
π/4 + α

All figures discussed so far deal with the case α = 0, i.e. with the axes aligned case. The case
α 6= 0 can be considered as a shifted version of the densities drawn already in Section 2.4 and Figure
6. Therefore, the visualization of such shifts is omitted in the rest of the paper.
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3.2 Fitting and comparing the regular Gaussian model

We consider now fitting the regular Gaussian elliptically contoured generalization of the vMd to
real life data by means of ML inference. Let the log-likelihood function based on an iid sample from
density (7) be denoted by l. We do not introduce here the system of equations the ML estimators
ζ̂, κ̂, µ̂ and α̂ must satisfy. Instead, we directly minimize the negative log-likelihood. This can
efficiently be done with the help of the MATLAB routine fminsearch. Since one cannot guarantee
uniqueness of a local minimum of −l, we let run fminsearch several times where the starting values
of all the parameters are chosen randomly, each time. In addition to model (7), we consider two
competing four parameter models being also generalizations of the vMD. The generalized von Mises
distribution GvM2 considered in Gatto and Jammalamadaka [2007] has a pdf proportional to

exp{κ1 cos(ϕ− µ1) + κ2 cos(2(ϕ− µ2))} , ϕ ∈ [0, 2π), (14)

where µ1 ∈ [0, 2π), 0 ≤ µ2 < π and κ1, κ2 > 0. For the pdf

1− r2

2π I0(κ3)
exp

{
κ3 (ξ cos(ϕ− η)− 2r cos ν)

1 + r2 − 2r cos(ϕ− γ)

}
1

1 + r2 − 2r cos(ϕ− γ)
, ϕ ∈ [0, 2π) (15)

where γ, ξ and η are functions of the four parameters µ3, ν ∈ [0, 2π), r ∈ [0, 1) and κ > 0, see Kato
and Jones [2010]. Note that we have considered already in Section 2.3 the Möbius transformation
associated with (15) . For comparing several models, Kato and Jones [2010] considered the Akaike
(AIC) and Bayes information criterions (BIC) which are based on the log-likelihood l and on a
penalty term depending on the number of estimated parameters and, in case of BIC, also on the
number of observations. For more details on AIC and BIC, we refer to Burnham and Anderson
[2002]. Since all the models under consideration here have the same number of parameters, there is
no need for calculating the AIC or BIC. Thus we can compare all three models directly according
to their maximized log-likelihood. The calculation of the ML estimators is always based on several
restarts of the routine fminsearch which we adopted from Gatto and Jammalamadaka [2007]. Our
comparative study is based on data sets that have already been considered in Gatto and Jam-
malamadaka [2007] or Kato and Jones [2010], respectively. First, we consider data taken from a
regional, integrated hydrological monitoring system for the pan-Arctic land mass called ArcticRIMS,
accessible at the WWW address http://rims.unh.edu/. This project provides a near-real time
monitoring of pan-Arctic water budgets and river discharge to the Arctic Ocean which are impor-
tant elements of the larger Earth System especially with regard to global climate change. Among
several other variables the wind directions are measured at several locations. Gatto and Jammala-
madaka [2007] considered the wind directions measured daily from January 2005 to December 2005
on four different sites at continental level: the Pan Arctic, the Europe, the Greenland and the North
America basins. These data sets and the related MATLAB programs from Gatto are available at
http://www.imsv.unibe.ch/content/research/publications/software/index_eng.html.

The data set considered in Kato and Jones [2010] concerns wind directions measured hourly
between July 1 and 31, 2007, at Neuglobsow (Germany) by an integrated monitoring station for
atmospheric observations that belongs to the Umweltbundesamt (German Federal Environment
Agency). The full data set is available from the WMO World Data Centre for Greenhouse Gases at
the WWW address http://ds.data.jma.go.jp/gmd/wdcgg/ (search the data catalogue for Neu-
globsow, MET (Meteorological Data)).

Table 1 shows the ML estimates of the parameters and the maximized log-likelihood. According
to the latter, model (7) is the most competitive one for all four data sets taken from ArcticRIMS.
Notice that the log-likelihood regarding model (14) for the Greenland Basins is improved compared
to the ML estimates given in Gatto and Jammalamadaka [2007]. With respect to the data from
Neuglobsow, density (15) fits best. However, model (7) fits nearly as good as (15) and better than
(14) by some distance although it also inserts in its graph an unsupportable ‘shoulder’ around
2.5 radians, cf. Kato and Jones [2010]. According to Kato and Jones [2010], model (14) is to be
preferred in favour of (15) when bimodality is expected, see the log-likelihood in Table 1. If there
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Table 1: ML estimates of the parameters and the maximized log-likelihood

model (7) ζ̂ κ̂ µ̂ α̂ l

Pan Arctic basins 0.2174 1.0428 −2.1130 0.9893 −337.1615
Europe basins 0.2705 0.3829 −2.2217 0.8499 −492.4967
Greenland basins 0.2929 0.2484 −0.4414 0.9353 −544.1206
North America basins 0.2065 0.3332 −2.0187 1.0199 −440.3798
Neuglobsow 0.5553 1.3182 −1.7645 1.8110 −1009.2287

GJ model (14) κ̂1 κ̂2 µ̂1 µ̂2 l

Pan Arctic basins 0.8109 1.9897 4.5055 0.9822 −378.5888
Europe basins 0.2781 1.6028 4.2329 0.8530 −499.8043
Greenland basins 0.4085 1.2521 5.7489 0.9550 −558.6433
North America basins 0.3444 1.8600 4.9710 1.0082 −468.2882
Neuglobsow 1.3002 0.6327 4.1054 1.7966 −1024.0578

KJ model (15) κ̂3 r̂ ν̂ µ̂3 l

Pan Arctic basins 1.7939 0.7827 2.2916 2.2224 −401.2495
Europe basins 2.9116 0.6579 3.4999 5.8278 −575.9140
Greenland basins 2.4629 0.5312 3.1483 5.7410 −617.1228
North America basins 3.1643 0.6893 2.8138 2.2969 −572.7837
Neuglobsow 1.8201 0.5052 2.2105 3.3130 −1006.7217

is no particular reason to expect bimodality, but there is evidence of asymmetry, model (15) seems
to be more attractive to Kato and Jones [2010] than (14). The numerical illustration yields the
confidence for the new model (7) being competitive in both situations and being even better than
(14) for the data considered here, when bimodality is expected. Note that the normalizing constant
in (7) is easy to handle whereas the normalizing constant in (14) is an infinite sum of products of
modified Bessel functions. Figure 7 shows the fitted densities and the superposed histograms of the
corresponding wind directions. For the purposes of comparability with the literature, the densities
are considered on the interval [0, 2π). We adopted the number of bins as good as possible from
Gatto and Jammalamadaka [2007] (≈ 62 bins) and Kato and Jones [2010] (12 bins).

11



Pan Arctic Basins Europe Basins Greenland Basins

North America Basins Neuglobsow

Figure 7: Fitted densities as in (7) [solid], (14) [dotted] and (15) [dashed]

3.3 Elliptically contoured generalizations of the vMd

In real data applications, it may be of some interest to adapt just a small number of parameters
instead of a completely unknown type of dgf. This section deals with two parameterized families of
dgfs and the generalized vMDs based upon the corresponding bivariate probability laws.

3.3.1 The Kotz type generalization vMdgK ;ζ,r,λ,µ,α

Let g = gK in (12), where gK involves the additional parameters M > 1/2, β > 0 and γ > 0. Note
that vMdg;ζ,r,λ,µ,α does not change if we replace (r, λ, β) by ((2β)1/(2γ)r, (2β)1/(2γ)λ, 1/2), and that
β = 1/2,M = γ = 1 corresponds to the Gaussian case. That is why we put w.l.o.g. β = 1/2 and
are further only concerned with the remaining parameters ζ, r, λ, µ,M and γ. Of course, one can
reproduce all the figures from the preceding Gaussian case here as well. But in addition, Figure 8
shows bimodal density functions which are pretty much concentrated on the interval [0, π) if γ ≥ 2.
One can also model three modes, see Figure 9.
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Figure 8: ζ = 1/2, r = λ = M = 1, µ = π/3 Figure 9: ζ = 1/2, r = λ = γ = 1, µ = 0

3.3.2 The Pearson type VII generalization vMdgP ;ζ,r,λ,µ,α

In addition to the parameters (ζ, r, λ), the Pearson VII type dgf gP brings along the parameters
M > 1 and m > 0. We put m = 1 because replacing (r, λ,m) by (r/

√
m,λ/

√
m, 1) yields the same

density. Again, one can model uni- and bimodality as well as symmetry and asymmetry, see Figures
10 up to 13. A bit more general discussion of the question which influence light and heavy bivariate
elliptically contoured distribution tails have onto the shape of the generalized vMd is provided in
the next section.

Figure 10: ζ = 2/3, r = 1 = M,µ = π/2 Figure 11: ζ = 1/3, r = 1 = M,µ = 0

13



Figure 12: ζ = 1 = r = M,µ = 0 Figure 13: ζ = 1/3, r = λ = 1, µ = π/3

3.3.3 Light and heavy bivariate distribution tails and mass concentrations

Notice that ϕ 7→ 1/(2π ζ N2
(1,ζ)(ϕ − α)) is the circular pdf corresponding to the E(1,ζ)-generalized

uniform probability distribution on the Borel sets of E(1,ζ) introduced in Richter [2011a], shifted by
α ∈ [0, π). This function reduces to the pdf of the circular uniform distribution if ζ attains the value
1, see Figure 14. Hence, the pdf in (12) can be considered as the shifted circular E(1,ζ)-generalized
uniform distribution, perturbated by the factor involving g.

Figure 14: E(1,ζ)-generalized uniform distribution

Recall that the argument of the dgf g in the representation (12) of the regular elliptically
contoured g-generalization of the vMd takes values only in the interval [λ − r, λ + r] where the
boundaries are attained if ϕ = µ+π or ϕ = µ, respectively. Consequently, the bivariate distribution’s
tail effects the shape of the generalized vMd most if λ� r. If r and λ are close to each other and
not very far from zero then the shape of the generalized vMd is mostly effected by the distribution’s
probability mass around its expectation vector ν. Finally, if λ and r are close to each other and
λ+ r � 0 then the portion of the bivariate distribution’s probability mass effecting the generalized
vMd is largest and the shape of the generalized vMd may be effected by the two-dimensional
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distribution’s center as well as by its tail.
If r = λ = 1 then the argument of g is restricted in (12) to the interval [0, 2]. In Figure 15,

the restrictions of the dgfs gK and gP to this interval are visualized where w.l.o.g. β and m are
chosen as β = 1/2 and m = 1, respectively. In the case of the Kotz type dgf, large values of the
parameter M ‘prefer’ directions close to µ which correspond to arguments of g close to the number
two. Moreover, large values of the parameter γ split the interval [−π, π) into two portions, one
which ‘prefers’ the corresponding directions and one which gives lower weight to its corresponding
directions. Considering gP , large values of M of m yield large values of g if ϕ is close to µ+ π.

Figure 15: left: gK , where β = 1
2 and γ = 1 center: gK , where M = 1 and β = 1

2
right: gP , where m = 1

4 Star-shaped models

Let K ⊂ R2 be a star body having the origin 02 as an inner point. Hence, K is compact and equal
to the closure of its interior, kerK is not empty and 02 ∈ kerK where kerK stands for the set of all
points w.r.t. which K is star-shaped. Recall that K is said to be star-shaped w.r.t. a point a ∈ K
whenever for every x ∈ K \{a} the segment with the endpoints a and x is contained in K. For such
K, the Minkowski functional hK : R2 → [0,∞) is well defined. We assume that hK is positively
homogeneous and call K(r) = rK = {(x, y)T ∈ R2 : hK((x, y)T ) ≤ r} and its topological boundary
S(r) = rS the star ball and star sphere of star radius or Minkowski radius r > 0, respectively. A
special case which may be of interest for its own is given if K is a ball w.r.t. any norm in R2.

In slightly other notation than in Richter [2011b], let sinK(ϕ) = sinϕ/MK(ϕ), cosK(ϕ) =
cosϕ/MK(ϕ) denote star-generalized trigonometric functions, where MK(ϕ) = hK((cosϕ, sinϕ)T ).
Note that the star body corresponding to a bivariate elliptically contoured distribution is the disc
KΣ having the ellipse EΣ as its topological boundary. Also note that the special definition of
the E(a,b)-generalized trigonometric functions in Section 2 slightly differs from the present general
definition of the star-generalized trigonometric functions by the scaling factors 1/a and 1/b.

Generalizing the conditional offset approach described in Section 2, the following star-shaped
generalized vMd was derived in Richter [2014]

vMdg;K,r,λ,µ(ϕ) = D(g,K)R2
S(ϕ)g

(
hK

((
r cosK(ϕ)− λ cosK(µ)
r sinK(ϕ)− λ sinK(µ)

)))
, (16)

where g is a dgf, RS describes S by S =

{
RS(ϕ)

(
cosϕ
sinϕ

)
, ϕ ∈ [−π, π)

}
, and

D(g,K) =

(∫ π

−π
R2
S(ϕ)g

(
hK

((
r cosK(ϕ)− λ cosK(µ)
r sinK(ϕ)− λ sinK(µ)

)))
dϕ

)−1

. (17)
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Note that hK((x, y)T ) = 1 for (x, y)T ∈ S implies that MK(ϕ) = 1/RS(ϕ). For proving formula
(16), it was supposed in Richter [2014], Section 2, that a certain Assumption 1 w.r.t. the boundary
S of K is satisfied. Since this is the case in all examples considered in the present paper, we will
not introduce the details of this assumption. Instead, we draw some consequences from formula
(16) in the subsequent sections. To this end, we have inter alia to derive explicit expressions for the
Minkowski functionals of several star bodies. Having done this, (16) gives further generalizations
of the vMd. Note that formally defining a probability dgf on a circle might be done without
considering the normalizing constant associated with it. It is therefore another key point of the
present conditional offset approach to give the explicit representation of the normalizing constant
in (17).

5 Visualization of the star-shaped generalized vMd

As mentioned before, determining an explicit expression for the Minkowski functional of the under-
lying star body K plays the key role in deriving a concrete star-shaped generalized vMd from the
general formula (16). This way a non-concentric elliptically contoured, a polygonally contoured and
a p-generalized elliptically contoured generalization of the vMd is derived in this section.

5.1 Non-concentric elliptically contoured generalization

In this section, we assume that the star body K is an elliptical disc containing the origin as an
arbitrary inner point not necessarily being a center of symmetry,

K = Ka,b;e,f =
{

(x, y)T ∈ R2 : |(x+ e, y + f)T |(a,b) ≤ 1
}
.

Proposition 1. The Minkowski functional of the shifted elliptical disc is

hKa,b;e,f ((x, y)T ) =

ex
a2 + fy

b2
+
√

x2

a2 + y2

b2
− (fx−ey)2

a2b2

1− e2

a2 − f2

b2

, (x, y)T ∈ R2.

Proof. Starting from the definition

hK((x, y)T ) = inf
{
λ > 0 : (x, y)T ∈ λK

}
, (x, y)T ∈ R2,

it follows that

hKa,b;e,f ((x, y)T ) = inf

{
λ > 0 :

(
x
λ + e

)2
a2

+

( y
λ + f

)2
b2

≤ 1

}
= inf

{
λ > 0 : b2(x+ λe)2 + a2(y + λf)2 ≤ a2b2λ2

}
= inf

{
λ > 0 : (a2f2 + b2e2)λ2 + 2(b2ex+ a2fy)λ+ b2x2 + a2y2 ≤ a2b2λ2

}
= inf

{
λ > 0 : (a2b2 − a2f2 − b2e2)λ2 − 2(b2ex+ a2fy)λ− b2x2 − a2y2 ≥ 0

}
.

Because we assumed that (0, 0)T is an inner point of K,

1 > |(e, f)T |(a,b) =
e2

a2
+
f2

b2
.

Consequently, the set of points satisfying the equation

(a2b2 − a2f2 − b2e2)λ2 − 2(b2ex+ a2fy)λ− b2x2 − a2y2 = 0

is an open up parabola with two real valued roots, say λ1,2,

λ1,2 =
(b2ex+ a2fy)⊕

√
(b2ex+ a2fy)2 + (b2x2 + a2y2)(a2b2 − a2f2 − b2e2)

a2b2 − a2f2 − b2e2

=

ex
a2 + fy

b2 ⊕
√

x2

a2 + y2

b2 −
(fx−ey)2

a2b2

1− e2

a2 − f2

b2

,
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where ⊕ is accordingly to be chosen as + and - . The denominator of the last ratio is greater than
zero by assumption, hence for giving a positive solution for λ, the numerator has to be positive,
too. Therefore, one has to chose ⊕ as +.

Before we visualize the non-concentric elliptically contoured generalized vMd, let us consider the
underlying bivariate distributions which are of interest on their own. To this end, let the random
vector (X,Y )T have the pdf

ϕg;a,b,e,f (x, y) = C(g,Ka,b;e,f ) · g
(
hKa,b;e,f ((x− ν1, y − ν2)T )

)
.

According to Richter [2014], the random vector (X,Y )T follows a non-centric elliptically contoured
distribution, (X,Y )T ∈ NCEC, where

NCEC = {(X,Y )T : (X,Y )T has pdf ϕg;a,b,e,f , g is any dgf, 0 < b < a, 0 < |(e, f)T |(a,b) < 1,
(ν1, ν2)T ∈ R2}.

Proposition 2. The normalizing constant C(g,Ka,b;e,f ) does neither depend on e nor on f , and

C(g,Ka,b;e,f ) = C(g,Ka,b) =
1

I(g) · 2π ab
.

Proof. Note that (ν1, ν2)T is a vector of location and does not effect the value of C(g,Ka,b;e,f ).
Hence, w.l.o.g., (ν1, ν2)T = (0, 0)T . Following Richter [2014], the normalizing constant satisfies

C(g,Ka,b;e,f ) =
1

I(g) ·
∫ 2π

0

(
MKa,b;e,f (ϕ)

)−2
dϕ

.

The value of the integral coincides with the Ea,b;e,f -generalized circumference of the topological
boundary Ea,b;e,f of Ka,b;e,f . Hence,∫ 2π

0

1

M2
Ka,b;e,f

(ϕ)
dϕ =

d

dρ
λ(Ka,b;e,f (ρ)) |ρ=1

=
d

dρ
λ(ρKa,b;e,f ) |ρ=1= 2λ(Ka,b;e,f ) = 2λ(Ka,b) = 2π ab,

where λ denotes the Lebesgue measure on R2, and

C(g,Ka,b;e,f ) =
1

I(g) · 2π ab
.

The non-centric nature of such a distribution is shown in Figure 16 where the random vector’s
density level sets are plotted next to its pdf. The same figure also visualizes the corresponding
Gaussian non-concentric elliptically contoured generalization of the vMd.
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Figure 16: top: The pdf ϕg;a,b,e,f (x, y) and the corresponding non-concentric density level sets
where g = gG, a = 1, b = 0.7, e = 0.5, f = −0.5, µ = −π/5, λ = 5 and (ν1, ν2) =
λ(cosKa,b;e,f (µ), sinKa,b;e,f (µ)) ≈ (0.449,−0.326).
bottom: The circular pdf derived by the conditional offset approach in the same constellation of
parameters, and where r = 2.

If we put µ = π/4 and leave all other parameters unchanged, the shape of the non-concentric
elliptically contoured generalized vMd changes significantly, see Figure 17. Further non-concentric
elliptically contoured generalized vMds are visualized in Figures 18 and 19 in the case g = gG,
r = λ = 1 and µ = 0.
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Figure 17: The circular pdf derived by the conditional offset approach, where r = 2 and µ = π/4.

Figure 18: b = 1, e = 0.5, f = 0 Figure 19: a = 2, b = 1, f = 0.1

Figure 20: Non-concentric elliptically contoured generalized vMdg;Ka,b;e,f ,r,λ,µ with g = gG, a = 1,
b = 1

3 , e = 0, f = −1
5 and r = λ = 1.
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Remark 2. For given circular data, one might be interested in finding a suitable star body K to
construct a suitable model based upon a star-shaped generalized vMd as in (16). One might come
up with an idea on such a star body if one plots a rose diagram based upon the data. Then, one of
the easiest star-shaped generalized vMd one can think of could be

vMdK(ϕ) = D(K) ·R2
S(ϕ) . (18)

Note that (18) is closely related to the star-generalized uniform probability distribution ωS and the
Lebesgue measure of the so called star sectors of the corresponding star body K. For more details
on star sectors and ωS , we refer to Richter [2014]. Figure 21 shows the rose diagrams to the data
sets from Section 3, where the number of circular segments corresponds to the number of bins for
the histograms there. The diagrams are normed such that the total area of all circular segments in
each diagram equals one. From these figures, one might get the impression that a non-concentric
and rotated ellipse with half main axes of length 1 and ζ would be a suitable star body for modeling
the given data. That is why we do not fit (18) directly to the data, but the density in (18), modified
by the additional shift parameter α ∈ [0, π),

vMdK(ϕ− α) = D(K) ·R2
S(ϕ− α). (19)

In other words, we are maximizing the logarithmic likelihood over the parameter set {ζ, e, f, α}.
Possible points of further investigation are the following two empirical oberservations. Several

graphs of the densities (19) seem to be quite similar to those of model (7). Moreover, the correspond-
ing logarithmic likelihoods are close to those in Table 2. The geometric aspect of the interpretation
of our models is additionally supported by plotting the ellipses in Figure 21. Notice that the ellipses
are normalized such that their enclosed area equals one.

Table 2: ML estimates of the parameters and the maximized log-likelihood

model (19) ζ̂ ê f̂ α̂ l

Pan Arctic basins 0.2159 0.4674 0.0178 0.9898 −337.1157
Europe basins 0.2705 0.1827 0.0127 0.8500 −492.5067
Greenland basins 0.2929 -0.0070 0.0361 0.9353 −544.1263
North America basins 0.2065 0.1476 0.0152 1.0199 −440.3759
Neuglobsow 0.5536 0.4437 -0.2011 1.8005 −1008.2793
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Figure 21: Rose diagrams and the fitted density as in (19)

5.2 Polygonally contoured generalization

Regular convex polygons Pn having n vertices and the convex star body Kn circumsribed by Pn are
dealt with in Richter and Schicker [2016]. There, the authors give a polygonal disintegration formula
of the Lebesgue measure, and derive normalizing constants of dgfs in dependence of polygonal circle
numbers being themselves generalizations of the well known circle number π. To this end, the
authors derive the following Minkowski functional of Kn,

hKn((x, y)T ) =
n∑
i=1

1[2π(i−1)/n,2πi/n)(Pol∗−1(x, y))
x cos((2i− 1)π/n) + y sin((2i− 1)π/n)

cos(π/n)
,

(x, y)T ∈ R2, where Pol∗−1(x, y) again denotes the polar angle, i.e. the angle between the positive
x-axis and the ray starting in the origin and passing through the point (x, y). Figure 22 shows
the circular pdf ϕ 7→ Cn/M

2
Kn

(ϕ) corresponding to the polygonally generalized uniform probability
distribution on the Borel sets of Pn, where Cn is a norming constant. It also shows the polygonally
contoured gG-generalized vMd for the same values of n. For details on star generalized uniform
distributions, we refer to Richter [2014]. The influence of r > 0 and λ > 0, still in the Gaussian
case, g = gG, is illustrated in Figure 23.

21



Figure 22: Polygonally generalized uniform distribution [left] and the polygonally contoured gener-
alized vMdg;Kn,r,λ,µ with g = gG, r = 1, λ = 1 and µ = 0 [right].

Figure 23: Polygonally contoured generalized vMdg;Kn,r,λ,µ with g = gG, n = 6, r = λ = 1, and
µ = 0 unless stated otherwise.

Example 1 Let a production process P be devided into two consecutive sub-processes P1 and
P2 each having the same average processing time T > 0. The initialization of the sub-process P2

starts immediately after the termination of P1. However, the moment of transition from P1 to P2

is assumend to be unobservable for some reason. The random deviations T ∗1 and T ∗2 the processing
times of the sub-processes P1 and P2 have from T , respectively, are assumed to jointly follow a
continuous K4-shaped distribution with dgf g : [0,∞)→ [0,∞) and contour defining star body K4.
In other words, T ∗1 and T ∗2 have the joint pdf

(t∗1, t
∗
2)T 7→ C(g,K4) · g(hK4((t∗1, t

∗
2)T )) , (t∗1, t

∗
2)T ∈ R2,

where hK4((t∗1, t
∗
2)T ) = |t∗1| + |t∗2|, 0 < I(g) < ∞ and C(g,K4) is the normalizing constant. It

follows from Richter [2009] that the distribution of (T ∗1 , T
∗
2 )T can also be considered as a continuous

l2,1-symmetric distribution. Due to initializing processes there is a (non random) delay of ν1 before
P1 starts and a (non random) delay of ν2 before P2 starts, where ν1, ν2 ≥ 0. The random vector
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(T1, T2)T := (T ∗1 + ν1, T
∗
2 + ν2)T has the joint density function

(t1, t2)T 7→ C(g,K4) · g(hK4((t1 − ν1, t2 − ν2)T )) .

Hence, we do not recognize the deviation T ∗1 + T ∗2 from 2T but T1 + T2 = T ∗1 + ν1 + T ∗2 + ν2, at the
end of the production process.

Figure 24: The pdf of (T1, T2)T where g(r) = e−λr, r > 0, and the corresponding density level sets.

Moreover, let the production process be sensitive to the deviation of the sub-processes from
their average processing times. Both, ‘heavy’ downward and upward deviations T ∗i of a single sub-
processing time from T , i ∈ {1, 2}, may therefore indicate problems in the production process.
Hence, the (unobservable) variable |T ∗1 | + |T ∗2 | may be of special interest. For sufficiently small ν1

and ν2 this random variable could be approximated by |T1|+ |T2|.
Assume that the production process P terminated successfully and that |T1| + |T2| = t, t > 0.

We consider now the conditional probabilities for that both T1 and T2 are positive, T2 is larger then
T1, and the absolute value of T2 is greater than that of T1, each time given that |T1| + |T2| = t.
Any of these conditional probabilities can be evaluated on the basis of the polygonally contoured
generalized vMD:

P (T1 > 0, T2 > 0 | |T1|+ |T2| = t) = P
(

0 < Φ <
π

2

)
,

P (T2 > T1 | |T1|+ |T2| = t) = P

(
π

4
< Φ <

5π

4

)
,

P (|T2| > |T1| | |T1|+ |T2| = t) = P

(
π

4
< Φ <

3π

4

)
+ P

(
5π

4
< Φ <

7π

4

)
.

Here, Φ has the circular pdf vMdg;K4,r,λ,µ where r = t, and λ > 0 and µ ∈ [−π, π) satisfy(
ν1

ν2

)
= λ ·

(
cosK4(µ)
sinK4(µ)

)
.
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Figure 25: Density level sets of the random vector (T1, T2)T centered at (ν1, ν2)T (dotted), the set
t · K4 = {(t1, t2)T ∈ R2 : |t1| + |t2| = t} (solid, thin) and, from left to right, the subset of all
(t1, t2)T ∈ t ·K4 satisfying t1 > 0, t2 > 0 or t2 > t1 or |t2| > |t1|, respectively (solid, thick).

In the same manner, one can evaluate conditional probabilities concerning T ∗1 and T ∗2 on using
Ti = T ∗i + νi, i = 1, 2. The resulting probabilities are exact even though there might be some more
effort in the evaluation of the corresponding set of angles than in the examples in Figure 25.

5.3 The p-generalized elliptically contoured generalization

For some a, b > 0, let the disc Ka,b;p be circumscribed the p-generalized ellipse

Ea,b;p =

{
(x, y)T ∈ R2 :

(∣∣∣x
a

∣∣∣p +
∣∣∣y
b

∣∣∣p) 1
p

= 1

}
.

Then, according to Richter [2014],

hKa,b;p((x, y)T ) =
(∣∣∣x
a

∣∣∣p +
∣∣∣y
b

∣∣∣p) 1
p
, (x, y)T ∈ R2 .

Figures 26 up to 28 illustrate the resulting generalized vMdg;Ka,b;p,r,λ,µ where g = gG. Both sides of
Figure 28 illustrate the density for the same choice of parameters except for the parameter p > 0.
The star body Ka,b;p generates a norm, hKa,b;p , iff p ≥ 1. Moreover, if we consider p ∈ (0, 1), see
the right side in Figure 28, then Ka,b;p is radially concave with respect to the canonical fan, and
generates an antinorm, hKa,b;p , see Moszyńska and Richter [2012].

24



Figure 26: b = 1, p = 4, r = λ = 1, µ = 0 Figure 27: a = 2, b = r = λ = 1, µ = 0

Figure 28: a = b = 1, r = 3/4, λ = 1, µ = 5π/3

6 Remark on identifiability

At several places throughout Section 2 we introduced restrictions on the parameters of the regular
elliptically contoured g-generalized vMD to ensure that different choices of the parameters lead to
different distributions. We summarize all these restrictions in Remark 3(c) below. Such identifia-
bility is of special interest in statistical inference. Remark 3(a) concerns constructions using star
bodies not considered in the present note.

Remark 3. (a) In the context of the star-shaped generalized vMd introduced in Section 4, one has
always to discuss the uniqueness of the parameters separately in dependence on the underlying
star body.
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(b) Regarding the elliptically contoured generalized vMd, one has always to discuss identifiability
dependent on the concrete dgf g. We have done so in context of the dgfs gG, gK and gP .

(c) Still regarding the elliptically contoured generalized vMd but concerning arbitrary dgfs, we
have discussed general restrictions on the parameters. Those arose as follows: Starting from
any shifted elliptically contoured bivariate distribution with dgf g in Section 2.4, we arrived
at the regular elliptically contoured g-generalized vMd as in (12). In doing so, we considered
the parameters λ > 0 and µ ∈ [−π, π), δ, a, b > 0 and α ∈ [0, π/2), and r > 0, which arose
from the expectation vetor ν, the form matrix Θ, and the condition that R = r, respectively.
Here, we had to restrict the domain of the triple (δ, r, λ), namely δ = 1 and λ ≥ r > 0.
In accordance with the introductory axes-aligned Gaussian case in Section 2.1, we enlarged
the domain of the angle α, α ∈ [0, π) to restrict a and b to a ≥ b. Since a and b affect the
generalized vMd only through their ratio, we replaced a, b by ζ = b/a, ζ ∈ (0, 1].
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