Primes in short arithmetic progressions

MSC-index 11N35, 11N13

Keywords: Large Sieve, Selberg’s Sieve

The Large Sieve inequality in the form

\[
\sum_{q \leq Q} \sum_{a=1}^{q} \sum_{n \equiv a \pmod{q}} a_n \sum_{n \leq N} \left| \frac{1}{q} \sum_{n \leq N} a_n \right| < (N + Q^2) \sum_{n \leq N} |a_n|^2
\]

is essentially optimal. However, in several applications many of the \(a_n\) vanish, and one might expect better estimates then. In fact, such estimates were given by P. D. T. A. Elliott\[1\]. He showed the following estimate:

Theorem 1 \(N\) and \(Q\) be integers, \(a_p\) be complex numbers for all primes \(p \leq N\). Then we have the estimate

\[
\sum_{q \leq Q} (q-1) \sum_{(a,q)=1} \sum_{p \equiv a \pmod{q}} a_p \sum_{p \leq N} \left| \frac{q}{\varphi(q)} \sum_{p \leq N} a_p \right| ^2 \ll \epsilon \left(\frac{N}{\log N} + Q^{54/11+\epsilon} \right) \sum_{p \leq N} |a_p|^2
\]

Under GRH, \(Q^{54/11}\) may be replaced by \(Q^{4+\epsilon}\). In analogy to the large sieve, he conjectured that one may replace this term by \(Q^{2+\epsilon}\).

Using a completely different approach, Y. Motohashi\[4\] showed that

\[
(1) \quad \sum_{q \leq Q} \sum_{\chi \pmod{q}} *|\pi(x, \chi)|^2 \leq \frac{(2 + o(1))x^2}{\log x \log x / Q^{1/2}}
\]
for $x > Q^{5+\epsilon}$, where $\pi(x, \chi) = \sum_{p \leq x} \chi(p)$. He also conjectured, that $Q^{5+\epsilon}$ may be replaced by $Q^{2+\epsilon}$.

Here we will combine the Large Sieve principle with Selberg’s sieve to prove the conjecture of Elliott and give a version of (1) valid for $x > Q^{2+\epsilon}$.

I would like to thank D. R. Heath-Brown for his help on Proposition 9 which allowed me to reduce the exponent to $2 + \epsilon$, and the referee for pointing out some mistakes.

Theorem 2 Let N and Q be integers with $N > Q^{2+\epsilon}$, a_p be complex numbers for any prime $p \leq N$, and let $2 \leq R \leq \sqrt{N}$ be an integer. Then we have the estimate

$$\sum_{q \leq Q} \sum_{\chi \mod q}^* \left| \sum_{p \leq N} a_p \chi(p) \right|^2 \ll_{\epsilon} \frac{N}{\log N} \sum_{p \leq N} |a_p|^2$$

As this estimate is the analogue of the large sieve estimate, we can give analogues of Halász-type inequalities, too. As there is a variety of different large value estimates, the same is true for these bounds. However, since the optimal estimate depends on the particular application, we only mention the following:

Theorem 3 Let q be an integer. Let \mathcal{C} be a set of characters $\mod q$, a_p be complex numbers for any prime $p \leq N$. Then we have for $k = 2, 3$ or,
if \(q \) is cubefree, for any integer \(k \geq 2 \), the estimates

\[
\sum_{\chi \in \mathcal{C}} \left| \sum_{p \leq N} a_p \chi(p) \right|^2 \leq \left(\frac{N}{\log R} + c_{k,\epsilon} N^{1-1/k} q^{(k+1)/(4k^2)} + |\mathcal{C}| R^{2/k} \right) \sum_{p \leq N} |a_p|^2
\]

and

\[
\sum_{\chi \in \mathcal{C}} \left| \sum_{p \leq N} a_p \chi(p) \right|^2 \leq \left(\frac{N}{\log R} + R^2 |\mathcal{C}| \sqrt{q \log q} \right) \sum_{p \leq N} |a_p|^2.
\]

If \(\mathcal{C} \) is a set of characters to moduli \(q \leq Q \), the same bounds apply with \(q \) replaced by \(Q^2 \), where \(k \) can be chosen arbitrarily, if all occurring values of \(q \) are cubefree, and \(k = 2, 3 \) otherwise.

From this we conclude immediately

Corollary 4 We have for \(x > Q^{2+\epsilon} \) the estimate

\[
\sum_{q \leq Q} \sum_{\chi \pmod{q}} \pi(x, \chi) \leq C_{\epsilon} \frac{x^2}{\log^2 x}
\]

Moreover, for \(x > Q^{3+\epsilon} \) this can be made completely explicit:

\[
\sum_{q \leq Q} \sum_{\chi \pmod{q}} \pi(x, \chi) \leq \frac{(2 + o(1))x^2}{\log x \log x/Q^3}
\]

We can also consider a single character:

Corollary 5 Let \(\chi \) be a complex character. Then we have

\[
|\pi(x, \chi)| \leq \left(\frac{1 + \phi/\alpha}{2 - 2\phi/\alpha} \right)^{1/2} + o(1) \frac{x}{\log x},
\]

where \(\alpha = \frac{\log x}{\log q} \) and \(\phi = \frac{1}{4} \) if \(q \) is cubefree, and \(\phi = \frac{1}{3} \) otherwise.
Note that this estimate is nontrivial as soon as \(x > q^{3/4} \) resp. \(x > q \), depending on whether \(q \) is cubefree or not. With a little more work, we obtain the following statement.

Corollary 6 Let \(D, x, Q \) be parameters with \(x > Q^{1+\epsilon}D^2 \). Let \(N \) be the number of moduli \(q \leq Q \), such that there is some primitive character \(\chi \) of order \(d \leq D \) and some \(d \)-th root of unity \(\zeta \), such that there is no prime \(p \leq x \) with \(\chi(p) = \zeta \). Then we have \(N \ll_{\epsilon} D \).

This was proven by Elliott with \(D = 3 \) under the condition \(x > Q^{54/11+\epsilon} \).

We begin the proof of our Theorems with the following two sieve principles.

Lemma 7 (Bombieri) Let \(V, (\cdot, \cdot) \) be an inner product space, \(v_i \in V \). Then for any \(\Phi \in V \) we have

\[
\sum_i |(\Phi, v_i)|^2 \leq \|\Phi\|^2 \max_j \sum_i |(v_i, v_j)|
\]

This is Lemma 1.5 in [3].

Lemma 8 (Selberg) Let \(R, N \) be integers, such that \(R^2 < N \). Then there is a function \(g \), which has the following properties:

1. \(g(1) = 1, \ |g(n)| \leq 1 \) for \(n \leq R \), \(g(n) = 0 \) for \(n > R \).
2. \(\sum_{n \leq N} \left((1 * g)(n) \right)^2 \leq \frac{N}{\log R} + R^2 \)

This is the usual formulation of Selberg’s sieve when used to count the set of primes \(\leq N \), see e.g. [2], chapter 3, especially Theorem 3.3. In the sequel, we will denote the function given by Lemma 8 with \(g \) and set \(f = (1 * g)^2 \).

We will have to bound character sums involving \(f \), these computations are summarized in the following Proposition.

Proposition 9 Let \(\chi (\mod q) \) be a character, \(R, N, f \) and \(g \) as in Lemma 8, and define \(S = \sum_{n \leq N} f(n) \chi (n) \).

1. If \(\chi \) is principal, we have \(|S| < \frac{N}{\log R} + R^2 \).

2. Assume that \(\chi \) is nonprincipal. Then we have for any fixed \(A \) the estimate \(\sum_{\nu=1}^{\infty} f(\nu) \chi(\nu) e^{-\log^2(\nu/N)} \ll_{\epsilon,A} R^2 q^{1/2} \left(\frac{N}{R^2 q} \right)^{-A} \).

3. If \(\chi \) is nonprincipal, we have the bounds \(|S| \leq R^2 \sqrt{q} \log q \) and \(|S| \leq c_{k,\epsilon} R^{2/k} N^{1-1/k} q^{(k+1)/(4k^2)+\epsilon} \) for \(k = 2, 3 \), or, if \(q \) is cubefree, for \(k \geq 2 \) arbitrary.

Proof: The first assertion is already contained in Lemma 8.

Assume now that \(\chi \) is nonprincipal. Then we have

\[
\left| \sum_{n \leq N} f(n) \chi(n) \right| = \left| \sum_{n \leq N} \left(\sum_{d \mid n} g(d) \right)^2 \chi(n) \right|
\]
\begin{align*}
\sum_{d_1, d_2 \leq R} g(d_1) g(d_2) \chi([d_1, d_2]) \sum_{n \leq N/[d_1, d_2]} \chi(n) & \\
\leq \sum_{d_1, d_2 \leq N} |g(d_1) g(d_2)| \cdot \sum_{n \leq N/[d_1, d_2]} \chi(n) & \\
\leq \sum_{d_1, d_2 \leq R} \left| \sum_{n \leq N/[d_1, d_2]} \chi(n) \right|
\end{align*}

The inner sum can be estimated using either the Polya-Vinogradoff-inequality or Burgess estimates, leading to $|S| \leq R^2 \sqrt{q} \log q$ resp. $|S| \leq c_{k, \epsilon} R^{2/k} N^{1-1/k} q^{(k+1)/(4k^2)+\epsilon}$, thus we obtain the third statement.

To prove the second statement, we begin as above to obtain the inequality

\[\left| \sum_{n=1}^{\infty} f(n) \chi(n) e^{-\log^2(n/N)} \right| \leq \sum_{d_1, d_2 \leq R} \left| \sum_{n=1}^{\infty} \chi(n) e^{-\log^2([d_1, d_2]n/N)} \right| \]

Write $d = [d_1, d_2]$. Using the Mellin-transform $\frac{1}{2\sqrt{\pi i}} \int_{(2)} x^{-s} e^{s^2/4} ds = e^{-\log^2 x}$, the inner sum can be expressed as

\[\sum_{n=1}^{\infty} \chi(n) e^{-\log^2(dn/N)} = \frac{1}{2\sqrt{\pi i}} \int_{(2)} L(s, \chi) e^{s^2/4} N/d^s ds \]

Now we shift the path of integration to the line $\Re s = -A$ with $A > 0$.

Denote with χ_1 the primitive character inducing χ. Then we have

\[L(s, \chi) = \prod_{p \nmid q_2} (1 - \chi_1(p)p^{-s}) L(s, \chi_1). \]
For $A > 2$, the first factor is $\ll q_2^A$, whereas the L-series can be estimated using the functional equation to be $\ll (q_1(|t| + 2))^{A+1/2}$, hence the right hand side is $\ll_A q^{1/2} \left(\frac{N}{R^2} \right)^{-A}$. Hence the whole sum can be bounded by $c(A) R^2 q^{1/2} \left(\frac{N}{R^2} \right)^{-A}$.

To prove Theorem 2, we follow the lines of the proof of the large sieve resp. the Halász-inequality, however, we apply Lemma 7 to a different euclidean space. Consider the subspace $V < l^\infty$ consisting of all bounded sequences (a_n), such that $a_n = 0$ whenever $f(n) = 0$, where f is defined as in Lemma 8. On this space define a product as $\langle (a_n), (b_n) \rangle := \sum_{n=1}^{\infty} f(n) e^{- \log^2 (n/N) a_n b_n}$. Now we apply Lemma 7 to this space and the set of vectors $\Phi = (\hat{a}_n)$, where $\hat{a}_p = a_p e^{\log^2 p/N}$, for prime numbers p in the range $R^2 < p \leq N$, and $\hat{a}_n = 0$ otherwise, and $v_i = (\hat{\chi}(n))$, where similary $\hat{\chi}(n) = \overline{\chi(n)}$, if $f(n) \neq 0$, and 0 otherwise. Now the inequality reads as

$$\sum_{q \leq Q} \sum_{(\mod q)} \left| \sum_{R^2 < p \leq N} a_p \chi(p) \right|^2 \leq \max \chi \left(\sum_{n=1}^{\infty} f(n) e^{- \log^2 n/N} + \sum_{\chi' \neq \chi} \sum_{n \leq N} f(n) e^{- \log^2 n/N} \overline{\chi(n)} \chi' \overline{(n)} \right) \times \sum_{p \leq N} |a_p|^2 e^{2 \log^2 (p/N)}$$

where the maximum is taken over all characters with moduli at most Q.

From Lemma 8 it follows that the first term inside the brackets is $\ll \frac{N}{\log R}$, provided that $R < N^{1/3}$, say. For the second term, let χ be a charac-
\(\bar{\chi} \) is a character (mod \([q, q']\)). By Proposition 9, each term in the outer sum can be bounded by \(c(A)R^2[q, q']^{1/2} \left(\frac{N}{R^2[q, q']} \right)^{-A} \), hence the whole sum is \(c(A)Q^3R^2 \left(\frac{N}{R^2Q^2} \right)^{-A} \).

Since by assumption \(N > Q^{2+\epsilon} \), we can choose \(R = Q^{\epsilon/4}, A = 6/\epsilon + 1 \) to bound this by some constant depending only on \(\epsilon \). Thus we get the estimate

\[
\sum_{q \leq Q} \sum_{\chi \pmod{q}} \left| \sum_{p \leq N} a_p \chi(p) \right|^2 \ll \left(\frac{N}{\epsilon \log N} + C_{\epsilon} \right) \sum_{p \leq N} |a_p|^2.
\]

The range \(n \leq R^2 \) can be estimated using the usual large sieve inequality, which gives \((R^2 + Q^2) \sum_{p \leq N} |a_p|^2 \), which is negligible. Hence Theorem 2 is proven.

The proof of Theorem 3 is similar, but simpler. First, assume that all characters in \(\mathcal{C} \) are characters to a single modulus \(q \). We consider the vector space \(V < \mathbb{C}^N \) consisting of sequences \((a_n)_{n=1}^N \) with \(a_n = 0 \) for all \(n \) with \(f(n) = 0 \) and the scalar product \(\langle (a_n), (b_n) \rangle := \sum_{n \leq N} f(n)a_n \overline{b_n} \). Applying Lemma 7 as above, we obtain the estimate

\[
\sum_{\chi \in \mathcal{C}} \left| \sum_{p \leq N} a_p \chi(p) \right|^2 \leq \left(\frac{N}{\log R} + R^2 + (|\mathcal{C}| - 1) \Delta(R, N, q) \right) \sum_{R \leq p \leq N} |a_p|^2
\]

where \(\Delta(R, N, q) \) is the bound obtained by Proposition 9, i.e. \(\Delta(R, N, q) \leq R^2 \sqrt{\log q} \), resp. \(\Delta(R, N, q) < c_{k, \epsilon} q^{(k+1)/(4k^2)+\epsilon} N^{1-1/k} R^{2/k} \). The term \(R^2 \) can be neglected in comparison with \(\Delta(R, N, q) \). This is obvious in the
first case. In the second case, we may assume that $\Delta(R, N, q) < N$, since otherwise Theorem 3 is an immediate consequence of the Cauchy-Schwarz-inequality. This implies $R < N^{1/2}q^{-(k+1)/(2k)}$, which in turn implies $R^2 < N^{1-1/k}q^{-1/k} < \Delta(R, N, q)$. Hence we obtain Theorem 3 for sets of characters belonging to a single modulus.

The proof for the case that the characters belong to different moduli is similar, note that $[q_1, q_2]$ is cubefree, if both q_1 and q_2 are cubefree.

In the range $Q^{2+\epsilon} \leq x < Q^{3+\epsilon}$, Corollary 4 follows from Theorem 2 by choosing $a_p = 1$ for all prime numbers $p \leq N$, whereas in the range $x > Q^{3+\epsilon}$ it follows from Theorem 3. Similarly we obtain corollary 5 from Theorem 3. We choose $C = \{\chi_0, \chi, \overline{\chi}\}$ to obtain the estimate

$$|\pi(x)|^2 + 2|\pi(x, \chi)|^2 \leq \frac{x}{\log c_k, x^{1/2}q^{k(k)}} \pi(x)$$

and choosing either $k = 3$ or $k \to \infty$ we obtain the result by solving for $|\pi(x, \chi)|$.

To prove corollary 6, let \mathcal{P} be the set of prime numbers p, such that there is some character χ of order d as described in the corollary. For every such p, choose such a character χ_1 together with all its powers, and denote
the set of all these character with C. Let ζ be a d-th root of unity. We have

$$
\sum_{\chi^{d}=\chi_{0}} |\pi(x, \chi)|^2 = d \sum_{a=1}^{d} \left| \{ p \leq x | \chi_{1}(p) = \zeta^{a} \} - \frac{1}{d} \pi(x, \chi_{0}) \right|^2
$$

Since by assumption, one of the terms on the right hand side is large, the right hand side is $\gg \frac{x^2}{d \log^2 x} \geq \frac{x}{D \log^2 x}$. Now we have $|C| \leq D \cdot |\mathcal{P}|$, thus we get

$$
|\mathcal{P}| \frac{x^2}{D \log^2 x} \ll \frac{x^2}{\log x \log R} + xDR^2|\mathcal{P}|Q \log Q
$$

If $D^2Q \log Q < x^{1-\epsilon}$, we can choose $R = x^{\epsilon/4}$, and the second term on the right hand side is still of lesser order then the left hand side. With this choice the inequality can be simplified to $|\mathcal{P}| \ll_{\epsilon} D$.

References

Jan-Christoph Puchta
Mathematical Institute
University of Oxford
24-29 St. Giles’ Street
Oxford, OX1 3LB
United Kingdom
puchta@maths.ox.ac.uk