Uniqueness of minimal coverings of maximal partial clones

KARSTEN SCHÖLZEL

ABSTRACT. A partial function f on an k-element set E_k is a partial Sheffer function if every partial function on E_k is definable in terms of f. Since this holds if and only if f belongs to no maximal partial clone on E_k , a characterization of partial Sheffer functions reduces to finding families of minimal coverings of maximal partial clones on E_k . We show that for each $k \geq 2$ there exists a unique minimal covering.

1. Introduction

In many-valued logic the set of truth values is finite and without loss of generality we can assume it to be $E_k := \{0, 1, \dots, k-1\}, k \in \mathbb{N}, k \ge 2$.

The set $P_k := \{f^{(n)} \mid f^{(n)} \colon E_k^n \to E_k, n \ge 1\}$ is the set of all total functions on E_k . Let $D \subseteq E_k^n$, $n \ge 1$ and $f^{(n)} \colon D \to E_k$. Then $f^{(n)}$ is called an *n*-ary partial function on E_k with domain D. We also write dom(f) = D. If the arity of the function is known we omit the upper index and write f instead of $f^{(n)}$. Denote by $\widetilde{P}_{k}^{(n)}$ the set of all *n*-ary partial functions on E_{k} and set

$$\widetilde{P}_k := \bigcup_{n \ge 1} \widetilde{P}_k^{(n)}.$$

Let $C_{\emptyset} := \left\{ f \in \widetilde{P}_k \mid \operatorname{dom}(f) = \emptyset \right\}.$

For $i \in \{1, ..., n\}$ the *n*-ary function $e_i^{(n)}$ defined by setting $e_i^{(n)}(x_1, ..., x_n) := x_i$ for all $x_1, ..., x_n \in E_k$ is called the *n*-ary projection onto the *i*-th coordinate. Let $J_k := \left\{ e_i^{(n)} \mid n \in \mathbb{N}, 1 \le i \le n \right\}$ be the set of all projections. For $f \in \widetilde{P}_k^{(n)}$ and $g_1, ..., g_n \in \widetilde{P}_k^{(m)}$ let $f(g_1, ..., g_n) \in \widetilde{P}_k^{(m)}$ be the composition as given in [2], i.e.,

$$x \in \operatorname{dom}(f(g_1, \dots, g_n)) \iff \left(x \in \bigcap_{i=1}^n \operatorname{dom}(g_i)\right) \land (g_1(x), \dots, g_n(x)) \in \operatorname{dom}(f)$$

and $f(g_1,\ldots,g_n)(x) := f(g_1(x),\ldots,g_n(x))$ for all $x \in \text{dom}(f(g_1,\ldots,g_n))$. A partial clone (clone) on E_k is a composition closed subset of $\widetilde{P}_k(P_k)$ containing the set of projections J_k .

²⁰⁰⁰ Mathematics Subject Classification: Primary: 08A55; Secondary: 03B50, 03A40. Key words and phrases: partial functions, maximal partial clones, minimal covering. The author thanks his advisor Dietlinde Lau.

KARSTEN SCHÖLZEL

The set of all partial clones on E_k (clones on E_k), ordered by inclusion, forms an algebraic lattice $\mathbb{L}\widetilde{P}_k$ ($\mathbb{L}P_k$), whose smallest element is the set of all projections and greatest element is \widetilde{P}_k (P_k), respectively. A maximal partial clone (a maximal clone) on E_k is a co-atom of \widetilde{P}_k and P_k , respectively. Thus a partial clone (clone) M is a maximal partial clone (maximal clone) if the inclusions $M \subset C \subset \widetilde{P}_k$ ($M \subset C \subset P_k$) hold for no partial clone (hold for no clone) C on E_k .

For $F \subseteq P_k$ ($F \subseteq P_k$), we denote by $[F]_P$ ([F]) the partial clone (clone) on E_k generated by F, i.e., the intersection of all partial clones (clones) containing the set F on E_k . Clearly $[F]_P$ ([F]) is the least partial clone (clone) on E_k containing F.

A set F of partial functions (functions) on E_k is *complete* if $[F]_P = P_k$ ($[F] = P_k$), respectively. It is well known that a set $F \subseteq \tilde{P}_k$ ($F \subseteq P_k$) is complete if and only if F is contained in no maximal partial clone (maximal clone) on E_k (see, e.g., [6] for the partial case and e.g., [7], Theorem 1.5.4.1, for the total case). Therefore maximal clones fully described in [9, 10] (see also [11]) play a fundamental role for completeness.

Similarly, maximal partial clones play a very important role for the completeness problem of finite partial algebras. The description of all maximal partial clones on a finite set can be found in the literature. We refer the reader to the papers of Haddad and Rosenberg [3, 5] for the description of all maximal partial clones.

Sheffer [17] described two binary functions $f \in P_2$ such that $[\{f\}] = P_2$, i.e., such that every function on E_2 can be expressed in terms of f only. A function $f \in P_k$ is a *Sheffer function* if every function on E_k can be obtained by composition from f and the projections, i.e., if $[f] := [\{f\}] = P_k$.

Next Webb [18] showed that the function f defined by

$$f(x,y) := \min(x,y) + 1 \pmod{k}$$

is a Sheffer function for P_k . Sheffer functions have been well studied and characterized by Rousseau [12] and Schofield [13]. We refer the reader to [11] for a detailed list of references on the subject.

Partial Sheffer functions are defined similarly. A partial function f on E_k is a partial Sheffer function if every partial function on E_k can be obtained by composition from f and the projections, i.e., if $[f]_P = \tilde{P}_k$. However due to the difficulty of the problem, very little is known about partial Sheffer functions for \tilde{P}_k . Already the family of all maximal partial clones on E_k is far more complex than the family of all maximal clones on E_k . This is already shown in the following table where $|\mathcal{M}_k|$ and $|\mathcal{PM}_k|$ denote the number of maximal clones (see [7] p. 185) and maximal partial clones (see [15]), respectively.

k	$ \mathscr{M}_k $	$ p\mathcal{M}_k $
2	5	8
3	18	58
4	82	1 102
5	643	325722
6	15182	5242621816
7	7848984	?

Results on partial Sheffer functions can be found in the papers by Haddad and Rosenberg [4], Romov [8], and Haddad and Lau [2]. Many examples of partial Sheffer functions are known, see e.g. [1] and [4].

The completeness problem for partial Sheffer functions is the question if for a given partial function $f \in \tilde{P}_k$ the identity $[f]_P = \tilde{P}_k$ holds. That means, criteria are investigated to decide if a partial function is a partial Sheffer function. The problem has been solved for k = 2 by Haddad and Rosenberg [4], for k = 3 by Haddad and Lau [2], and for k = 4 by the author in [14] (see also [16]). A specific notion used there is a minimal covering of the maximal partial clones, which for $k \in \{2, 3, 4\}$ has been shown to be unique and has been determined in the papers mentioned above. The aim of this paper is to show that for all $k \geq 2$ there is a unique minimal covering.

2. Definitions and the Theorem of Haddad and Rosenberg

Relations are useful to describe the clones in \tilde{P}_k . We often write the elements of relations as columns and a relation can then be given as a matrix. For example, the ternary relation $\rho = \{(0, 1, 2), (1, 2, 0), (3, 4, 5), (2, 3, 1)\}$ can also be written as

$$\varrho = \left(\begin{array}{rrrr} 0 & 1 & 3 & 2\\ 1 & 2 & 4 & 3\\ 2 & 0 & 5 & 1 \end{array}\right).$$

Denote by $E_k^{a \times b}$ be the set of all $(a \times b)$ -matrices over E_k . Let a matrix be given by $C = (c_{ij})_{h,n} \in E_k^{h \times n}$. Then denote by $c_{i*} = (c_{i1}, \ldots, c_{in})$ the *i*-th row of the matrix where $i \in \{1, \ldots, h\}$, and denote by $c_{*j} = (c_{1j}, \ldots, c_{hj})^{\mathrm{T}}$ the *j*-th column of the matrix where $j \in \{1, \ldots, n\}$.

Let $\mathcal{R}_k^{(h)}$ be the set of all *h*-ary relations on E_k and $\mathcal{R}_k := \bigcup_{h \ge 1} \mathcal{R}_k^{(h)}$. For a relation $\varrho \in \mathcal{R}_k$ we write $\varrho^{(h)}$ to indicate that $\varrho \in \mathcal{R}_k^{(h)}$, i.e., that ϱ is an *h*-ary relation.

An *n*-ary function $f^{(n)} \in \widetilde{P}_k$ preserves an *h*-ary relation $\varrho^{(h)} \in \mathcal{R}_k$ iff for all $c_{*1}, c_{*2}, \ldots, c_{*n} \in \varrho$ with $c_{1*}, \ldots, c_{h*} \in \text{dom}(f)$ holds

$$f(c_{*1}, \dots, c_{*n}) := \begin{pmatrix} f(c_{1*}) \\ f(c_{2*}) \\ \vdots \\ f(c_{h*}) \end{pmatrix} := \begin{pmatrix} f(c_{11}, c_{12}, \dots, c_{1n}) \\ f(c_{21}, c_{22}, \dots, c_{2n}) \\ \vdots \\ f(c_{h1}, c_{h2}, \dots, c_{hn}) \end{pmatrix} \in \varrho$$

Denote by $\operatorname{pPOL}_k \varrho$ the set of all functions $f \in \widetilde{P}_k$ which preserve the relation $\varrho \in \mathcal{R}_k$. For example, for h = 1 and $\varrho = \{0\}$ the set $\operatorname{pPOL}_k\{0\}$ is the set of all functions $f \in \widetilde{P}_k$ for which $f(0, \ldots, 0) = 0$ or $(0, \ldots, 0) \notin \operatorname{dom} f$.

For each $m \in \mathbb{N}$ set $\eta_m := (0, 1, \dots, m-1)^{\mathrm{T}}$.

Denote by $\omega(v)$ the set of distinct entries of $v = (v_1, \ldots, v_h) \in E_k^h$, that means, $\omega(v) = \omega((v_1, \ldots, v_h)) := \{v_1, \ldots, v_h\}$. Additionally for some relation $\varrho \subseteq E_k^h$ we set $\omega(\varrho) = \bigcup_{v \in \varrho} \omega(v)$. For example, for $v = (0, 0, 1) \in E_k^3$ we get $\omega(v) = \{0, 1\}$. **Definition 2.1.** Set for all h with $1 \le h \le k$

$$\begin{array}{l} \varrho_1 := \left\{ (a, a, b, b), (a, b, a, b) \mid a, b \in E_k \right\}, \\ \varrho_2 := \left\{ (a, a, b, b), (a, b, a, b), (a, b, b, a) \mid a, b \in E_k \right\}, \\ \iota_k^h := \left\{ x \in E_k^h \mid |\omega(x)| \le h - 1 \right\}. \end{array}$$

Definition 2.2. For an arbitrary equivalence relation ε on E_h define

$$\delta_{k,\varepsilon}^{(h)} := \left\{ (a_0, \dots, a_{h-1}) \in E_k^h \mid (i,j) \in \varepsilon \Longrightarrow a_i = a_j \right\}.$$

If h or k is understood from the context we just write δ_{ε} or $\delta_{\varepsilon}^{(h)}$ or $\delta_{k,\varepsilon}$. If $\varepsilon_1, \ldots, \varepsilon_r$ are the non-singular equivalence classes of the relation ε then we write $\delta_{k;\varepsilon_1,\ldots,\varepsilon_r}^{(h)}$ or $\delta_{\varepsilon_1,\ldots,\varepsilon_r}$ instead of $\delta_{k,\varepsilon}^{(h)}$. For example, $\delta_{k;E_h}^{(h)} = \{(x, x, \ldots, x) \in E_k^h \mid x \in E_k\}$. These relations are called *diagonal* relations. Especially E_k^h for any h is a diagonal relation.

Definition 2.3. For $\varrho^{(h)} \subseteq E_k^h$ we set $\sigma(\varrho) := \varrho \setminus \iota_k^h$ and $\delta(\varrho) := \varrho \cap \iota_k^h = \varrho \setminus \sigma(\varrho)$. If $\delta(\varrho) = \delta_\gamma$ for some equivalence relation γ on E_h then we write $\varepsilon(\varrho) := \gamma$.

Definition 2.4. A relation $\rho^{(h)} \subseteq E_k^h$ is

- areflexive, if $h \ge 2$ and $\delta(\varrho) = \emptyset$, i.e., $\varrho = \sigma(\varrho)$ meaning that for each $(x_1, \ldots, x_h) \in \varrho$ we have that $x_i \ne x_j$ for all $1 \le i < j \le h$.
- quasi-diagonal, if $\sigma(\varrho)$ is a non-empty areflexive relation, and $\delta(\varrho) = \delta_{\varepsilon}$ where $\varepsilon \neq \iota_h^2$ is an equivalence relation on E_h .

Definition 2.5. For $\varrho^{(h)} \subseteq E_k^h$ set $\sigma := \sigma(\varrho)$, $\delta := \delta(\varrho)$, and denote by S_h the set of all permutations on E_h .

For $r = (r_0, \ldots, r_{h-1}) \in \varrho$ and $\pi \in S_h$ we write

$$r^{[\pi]} := (r_{\pi(0)}, r_{\pi(1)}, \dots, r_{\pi(n-1)}), \text{ and } \varrho^{[\pi]} := \left\{ r^{[\pi]} \mid r \in \varrho \right\}.$$

Let $\Gamma_{\sigma} := \{ \pi \in S_h \mid \sigma \cap \sigma^{[\pi]} \neq \emptyset \}.$

The model of ρ is the *h*-ary relation $M(\rho) := \left\{ \eta_h^{[\pi]} \mid \pi \in \Gamma_\sigma \right\} \cup (\delta \cap E_h^h)$ on E_h . The relation ρ is *coherent*, if the following conditions hold:

- (1) $\varrho \neq E_k^h, \ \varrho \neq \emptyset,$
- (2) (a) ρ is a unary relation, i.e., h = 1, or
 - (b) ρ is a reflexive with $2 \le h \le k$, or
 - (c) ρ is quasi-diagonal with $2 \le h \le k$, or
 - (d) $\delta = \iota_k^h$ with $3 \le h \le k$, or
 - (e) h = 4 and $\delta = \varrho_i$ with $i \in \{1, 2\}$ (see Definition 2.1),
- (3) $r^{[\pi]} \in \sigma$ for all $r \in \sigma$ and all $\pi \in \Gamma_{\sigma}$,
- (4) for every σ' with $\emptyset \neq \sigma' \subseteq \sigma$ there is a relational homomorphism $\varphi \colon E_k \to E_h$ from σ' to $M(\varrho)$, such that $\varphi(r) = \eta_h$ for some $r \in \sigma'$, i.e., there is some $r = (r_0, \ldots, r_{h-1}) \in \sigma'$ with $(\varphi(r_0), \ldots, \varphi(r_{h-1})) = (0, \ldots, h-1)$,
- (5) (a) if $\delta = \iota_k^h$ and $h \ge 3$ then $\Gamma_\sigma = S_h$,
 - (b) if $\delta = \rho_1$ then $\Gamma_{\sigma} = \langle (0231), (12) \rangle$ (Γ_{σ} is the permutation group which is generated by the cycles (0231) and (12)),
 - (c) if $\delta = \rho_2$ then $\Gamma_{\sigma} = S_4$.

We remark that all non-empty non-diagonal totally reflexive, totally symmetric relations are coherent.

Denote by $\widetilde{\mathcal{R}}_k^{\max}$ the set of all coherent relations. Due to [15] (Chapter: Different Relations – Different Clones) we can assume that $pPOL_k \rho \neq pPOL_k \chi$ for all $\rho^{(h)}, \chi^{(h)} \in \widetilde{\mathcal{R}}_k^{\max}$ with $\rho \neq \chi$. Let

$$p\mathscr{M}_k := \{ P_k \cup C_{\emptyset} \} \cup \left\{ \operatorname{pPOL}_k \varrho \mid \varrho \in \widetilde{\mathcal{R}}_k^{\max} \right\}$$

Theorem 2.6 (of Haddad and Rosenberg; [3, 5]). Let $k \ge 2$. For each $A \subset \widetilde{P}_k$ with $A = [A]_P$ there is a maximal partial clone M_A with $A \subseteq M_A$. A clone M is a maximal partial clone of \widetilde{P}_k if and only if $M \in p\mathcal{M}_k$, i.e., in other words $p\mathcal{M}_k$ is the set of all maximal partial clones of \widetilde{P}_k .

Theorem 2.7 (Completeness criterion for \widetilde{P}_k ; [5]). Let $C \subseteq \widetilde{P}_k$. Then $[C]_{\mathbf{P}} = \widetilde{P}_k$ if and only if $C \not\subseteq M$ for all $M \in p\mathcal{M}_k$.

Definition 2.8. The set of coherent relations $\widetilde{\mathcal{R}}_k^{\max}$ can be divided into the following sets:

$$\begin{split} \mathcal{U} &:= \{\chi^{(\mu)} \in \mathcal{R}_k^{\max} \mid \mu = 1\},\\ \mathcal{A} &:= \{\chi^{(\mu)} \in \widetilde{\mathcal{R}}_k^{\max} \mid \mu \ge 2 \land \chi \text{ is areflexive}\},\\ \mathcal{Q} &:= \{\chi^{(\mu)} \in \widetilde{\mathcal{R}}_k^{\max} \mid \mu \ge 2 \land \chi \text{ is quasi-diagonal}\}\\ \mathcal{S} &:= \{\chi^{(\mu)} \in \widetilde{\mathcal{R}}_k^{\max} \mid \mu \ge 3 \land \delta(\chi) = \iota_k^{\mu}\},\\ \mathcal{L} &:= \{\chi^{(\mu)} \in \widetilde{\mathcal{R}}_k^{\max} \mid \mu = 4 \land \delta(\chi) \in \{\varrho_1, \varrho_2\}\}. \end{split}$$

Definition 2.9. Let $\varrho^{(h)} \in \mathcal{R}_k$ and $A = \{a_0, \ldots, a_{l-1}\} \subseteq E_h$ with $a_i < a_j$ for all i < j. Then set

$$\operatorname{pr}_{A} \varrho := \operatorname{pr}_{a_{0},\ldots,a_{l-1}} \varrho$$
$$:= \{ (x_{a_{0}},\ldots,x_{a_{l-1}}) \mid \exists x_{0},\ldots,x_{h-1} \in E_{k} : (x_{0},\ldots,x_{h-1}) \in \varrho \}.$$

Definition 2.10. For $\varrho^{(h)} \in \mathcal{Q}$ denote by ϱ^* the union of the non-singleton classes of the equivalence relation $\varepsilon(\varrho)$. We define

$$pp \varrho := pr_{\varrho^{\star}} \varrho,$$

$$\|\varrho\| := |\varrho^{\star}|,$$

$$\mathcal{Q}_{0} := \{\chi^{(\mu)} \in \mathcal{Q} \mid \varepsilon(\chi) \text{ has no singular equivalence class} \}$$

$$\left(= \{\chi^{(\mu)} \in \mathcal{Q} \mid pp \chi = \chi\} = \{\chi^{(\mu)} \in \mathcal{Q} \mid \|\chi\| = \mu\}\right),$$

$$\mathcal{Q}_{1} := \mathcal{Q} \setminus \mathcal{Q}_{0}.$$

If $\varrho \in \mathcal{Q}_1$ then define

$$\mathcal{Q}_{\varrho} := \left\{ \chi \in \mathcal{Q}_1 \mid \begin{array}{c} (\|\chi\| < \|\varrho\|) \lor \\ (\|\chi\| = \|\varrho\| \land \operatorname{pp} \chi \not\subseteq \operatorname{pp} \varrho) \end{array} \right\}.$$
(2.1)

Because $\operatorname{pPOL}_k \varrho = \operatorname{pPOL}_k \varrho^{[\pi]}$ for all $\pi \in S_h$ we use the convention $\operatorname{pp} \varrho = \operatorname{pr}_{E_{\|\varrho\|}} \varrho$ for all $\varrho \in \mathcal{Q}$.

The relations in Q_1 are exactly the coherent quasi-diagonal relations ρ where $\varepsilon(\rho)$ has at least one singular class.

Example 2.11. Let k = 10 and

$$\varrho^{(5)} := \begin{pmatrix} 0 & 5\\ 1 & 6\\ 2 & 7\\ 3 & 8\\ 4 & 9 \end{pmatrix} \cup \delta^{(5)}_{\{0,1\},\{2,3\}}.$$

$$\varrho^{\star} = \{0, 1, 2, 3\}, \\
\|\varrho\| = 4, \text{ and} \\
\text{pp } \varrho = \begin{pmatrix} 0 & 5 \\ 1 & 6 \\ 2 & 7 \\ 3 & 8 \end{pmatrix} \cup \delta^{(4)}_{\{0,1\},\{2,3\}}$$

Then $\rho \in \mathcal{Q}_1$, since $\varepsilon(\rho)$ has a singleton block {4}, and pp $\rho = \operatorname{pr}_{E_4} \rho \in \mathcal{Q}_0$.

3. Minimal covering

We want to determine which maximal partial clones in the criterion in Theorem 2.7 are needed to characterize partial Sheffer functions. According to Theorem 2.7 a function $f \in \tilde{P}_k$ is a partial Sheffer function if and only if $f \in \tilde{P}_k \setminus (\bigcup p\mathcal{M}_k)$. It turns out that the union $\bigcup p\mathcal{M}_k$ of maximal partial clones is also $\bigcup \mathcal{X}$ for a proper subset \mathcal{X} of $p\mathcal{M}_k$. This leads to the following definition.

Definition 3.1. A set $\mathscr{X} \subseteq p\mathscr{M}_k$ is a minimal covering of $p\mathscr{M}_k$, if for every $f \in P_k$ holds

$$[f]_{\mathbf{P}} = \widetilde{P}_k \iff \forall A \in \mathscr{X} : f \notin A$$

and for each $A \in \mathscr{X}$ there is some $f \in \widetilde{P}_k$ with

$$[f]_{\mathbf{P}} \neq \widetilde{P}_k \land (\forall B \in \mathscr{X} \setminus \{A\} : f \notin B).$$

Lemma 3.2. Let C be a maximal partial clone and $f \in C$ with $f \notin B$ for all $B \in p\mathcal{M}_k \setminus \{C\}$. Then C is in every minimal covering of $p\mathcal{M}_k$.

Proof. Let $f \in C \in p\mathcal{M}_k$ with $f \notin B$ for all $B \in p\mathcal{M}_k \setminus \{C\}$. Assume there is a minimal covering \mathscr{X} of $p\mathcal{M}_k$ with $C \notin \mathscr{X}$. Then $[f]_P \subseteq C \subset \widetilde{P}_k$ and $f \notin A$ for each $A \in \mathscr{X} \subseteq p\mathcal{M}_k \setminus \{C\}$, in contradiction to the first condition of a minimal covering.

Lemma 3.3. Let $C \in p\mathcal{M}_k$ and $\mathcal{C} \subseteq p\mathcal{M}_k \setminus \{C\}$ be such that every $C' \in \mathcal{C}$ is contained in every minimal covering of $p\mathcal{M}_k$ and for all $f \in C$ there is some $C' \in \mathcal{C}$ with $f \in C'$. Then C is in no minimal covering of $p\mathcal{M}_k$.

 $\mathbf{6}$

Proof. Assume C is in some minimal covering \mathscr{X} of $p\mathscr{M}_k$. Then there is some $f \in P_k$ with $[f]_{\mathbf{P}} \neq P_k$ and $f \notin B$ for all $B \in \mathscr{X} \setminus \{C\}$. From $\mathscr{C} \subseteq \mathscr{X}$ follows $f \notin C$. Thus $f \notin A$ for all $A \in \mathscr{X}$, and $[f]_{\mathrm{P}} \neq \widetilde{P}_k$ contradicting \mathscr{X} minimal covering of $p\mathcal{M}_k$. Thus C is in no minimal covering. \square

4. A Product of Functions

Definition 4.1. Let $D' \in E_k^{a \times b}$ be an (a, b)-matrix on E_k , i.e.,

$$D' = \begin{pmatrix} d_{11} & \dots & d_{1b} \\ \vdots & \ddots & \vdots \\ d_{a1} & \dots & d_{ab} \end{pmatrix}$$

with $d_{ij} \in E_k$ for all i, j.

If a function $f^{(n)} \in \widetilde{P}_k$ is defined by

$$f(D') := v = (v_1, \dots, v_a)^{\mathrm{T}}$$

then

$$n := b,$$

 $\operatorname{dom} f := D := \{(d_{i1}, \dots, d_{ib}) \mid i \in \{1, \dots, a\}\},$
 $f(d_{i1}, \dots, d_{ib}) := v_i$

for all $i \in \{1, \ldots, a\}$. If the domain D := dom f is given then D' is a matrix whose rows are the entries of D in lexicographical order.

Let $\chi^{(h)} \in \mathcal{R}_k$ and $f^{(n)} \in \tilde{P}_k$ be defined by $f(\chi) = v$ then assume χ be given as a matrix as explained before, i.e., $n = |\chi|$ and $v \in E_k^h$.

Definition 4.2. Let $f^{(n)} \in \widetilde{P}_k$ with $D = \operatorname{dom} f$ and $g^{(m)} \in \widetilde{P}_k$ with $E = \operatorname{dom} g$. Then $D' \in E_k^{|D| \times n}$ and $E' \in E_k^{|E| \times m}$. Define $F^{(N)} := (f \otimes g) \in \widetilde{P}_k^{(n \cdot m)}$ by

$$F(D' \otimes E') := F\left(\begin{array}{c|c} D'_{*1} & \dots & D'_{*n} \\ \hline E' & \dots & E' \end{array}\right) := \left(\begin{array}{c|c} f(D') \\ \hline g(E') \end{array}\right).$$
(4.1)

We assume E' has no constant rows so F is well-defined. Then

$$\operatorname{dom} F = \{ \underbrace{(a_1, \dots, a_1, \dots, \underbrace{a_i, \dots, a_i}_{m \text{ times}}, \dots, \underbrace{a_n, \dots, a_n}_{m \text{ times}}) \mid (a_1, \dots, a_n) \in D \}$$
$$\cup \{ (b_1, b_2, \dots, b_m, b_1, b_2, \dots, b_m, \dots, b_1, b_2, \dots, b_m) \mid (b_1, \dots, b_m) \in E \}.$$

Let $c = (c_1, \ldots, c_N) \in \text{dom } F$. Then we say it is from the *E*-part or *g*-part of F if $c = pr_i(E', E', \dots, E')$ for some i. Otherwise we say it is from the D-part or f-part of F.

Likewise we inductively set $f \otimes g_1 \otimes \cdots \otimes g_{l-1} \otimes g_l := (f \otimes g_1 \otimes \cdots \otimes g_{l-1}) \otimes g_l$ with $g_i \in P_k$ for all $i \in \{1, \ldots, l\}$.

Example 4.3. Let $f, g \in \widetilde{P}_k$ be given by

$$f\left(\begin{array}{cc} 0 & 0\\ 0 & 1\end{array}\right) := \left(\begin{array}{cc} 1\\ 2\end{array}\right), \ g\left(\begin{array}{cc} 0 & 2 & 3\\ 2 & 4 & 5\end{array}\right) := \left(\begin{array}{cc} 4\\ 0\end{array}\right).$$

where

$$D' = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, D = \operatorname{dom} f = \{(0,0), (0,1)\},$$
$$E = \operatorname{dom} g = \{(0,2,3), (2,4,5)\}.$$

Then

$$(f \otimes g) \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ \hline 0 & 2 & 3 & 0 & 2 & 3 \\ 2 & 4 & 5 & 2 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ \hline 4 \\ 0 \end{pmatrix}$$

and

$$dom(f \otimes g) = \{(0, 0, 0, 0, 0, 0), (0, 0, 0, 1, 1, 1), \\ (0, 2, 3, 0, 2, 3), (2, 4, 5, 2, 4, 5)\}.$$

5. Criteria

For the remainder of this paper we will assume $k \ge 3$ as the case k = 2 is already solved.

Lemma 5.1 (Lemma 4 [2]). The maximal partial clone $P_k \cup C_{\emptyset}$ belongs to every minimal covering of $p\mathcal{M}_k$.

Lemma 5.2 (Lemmas 5, 7 [2]). Let $\varrho \in \mathcal{U}$, *i.e.*, $\emptyset \subset \varrho \subset E_k$. Then $\operatorname{pPOL}_k \varrho$ belongs to every minimal covering of $p\mathcal{M}_k$.

Lemma 5.3. Let $\varrho^{(h)} \in \widetilde{\mathcal{R}}_k^{\max}$ with $h \ge 2$ and $f^{(n)} \in \widetilde{P}_k$. Let $c_{*1}, c_{*2}, \ldots, c_{*n} \in \varrho$ with $c_{1*}, \ldots, c_{h*} \in \operatorname{dom}(f)$ and $c_{i'*} = c_{i''*}$ for some $i', i'' \in \{1, \ldots, h\}$ with i' < i''. Then $d := f(c_{*1}, c_{*2}, \dots, c_{*n}) \in \varrho$.

Proof. Because two rows are equal we have $c_{*i} \in \delta(\varrho) \subseteq \iota_k^h$ for all $i \in \{1, 2, \ldots, n\}$. Because ρ is coherent there are the following cases for $\delta := \delta(\rho)$:

 $\delta = \emptyset$: Then ρ is a reflexive and $c_{*1} \notin \rho$ contradicting the assumption. $\delta = \delta_{\varepsilon}$ for some equivalence relation $\varepsilon \neq \iota_{h}^{2}$: Then $c_{*1}, c_{*2}, \ldots, c_{*n} \in \delta_{\varepsilon}$ and thus $d\in \delta_{\varepsilon}\subseteq \varrho.$

$$\delta = \iota_k^h$$
: Then $d_{i'} = f(c_{i'*}) = f(c_{i''*}) = d_{i''}$, i.e., $d \in \iota_k^h \subseteq \varrho$.
 $\delta = \varrho_1$: Then

$$\delta = \{(a, a, b, b) \mid a, b \in E_k, a \neq b\} \cup \{(a, b, a, b) \mid a, b \in E_k, a \neq b\} \cup \{(a, a, a, a) \mid a \in E_k\}$$

and there are the following subcases:

i' = 1 and i'' = 2: Then

$$c_{*j} \in \delta \setminus \{(a, b, a, b) \mid a, b \in E_k, a \neq b\} = \delta_{\{0,1\},\{2,3\}}$$

for all $j \in \{1, 2, ..., n\}$ and thus $d \in \delta_{\{0,1\},\{2,3\}} \subset \varrho_1 \subseteq \varrho$. The case i' = 3 and i'' = 4 is analogous. i' = 1 and i'' = 3: Then

$$c_{*i} \in \delta \setminus \{(a, a, b, b) \mid a, b \in E_k, a \neq b\} = \delta_{\{0,2\},\{1,3\}}$$

for all $j \in \{1, 2, ..., n\}$ and thus $d \in \delta_{\{0,2\},\{1,3\}} \subset \varrho_1 \subseteq \varrho$. The case i' = 2 and i'' = 4 is analogous.

i' = 1 and i'' = 4: Then $c_{*j} \in \{(a, a, a, a) \mid a \in E_k\} = \delta_{\{0,1,2,3\}}$ for all $j \in \{1, 2, \dots, n\}$ and thus $d \in \delta_{\{0,1,2,3\}} \subset \varrho_1 \subseteq \varrho$.

The case i' = 2 and i'' = 3 is analogous.

 $\delta = \varrho_2$: is done analogously.

Lemma 5.4. Let $\varrho^{(h)} \in \mathcal{S}$ (see Definition 2.8) with either

$$h \ge 4$$
, or

$$h = 3 \text{ and } \exists x \in \sigma(E_k^2) \, \forall a \in E_k \setminus \omega(x) \, \exists y \in \sigma(\varrho) : \omega(x) \cup \{a\} = \omega(y).$$
(5.1)

Then

$$\forall f \in pPOL_k \ \varrho \ \exists \gamma \in \mathcal{U} \cup \{\chi\} : f \in pPOL_k \ \gamma \tag{5.2}$$

with
$$\chi := \left\{ x \in E_k^{h-1} \mid \{x\} \times E_k \subseteq \varrho \right\}$$
 and $\operatorname{pPOL}_k \chi \in p\mathscr{M}_k$.

Proof. The definition of χ implies that χ is totally symmetric and totally reflexive. We have to show that χ is non-diagonal. For h = 3 we have $\chi \neq \iota_k^2$ because of (5.1). Assume $h \geq 3$ and $\chi = E_k^{h-1}$ to the contrary. Since $\varrho \neq E_k^h$, there is an $x := (x_1, x_2, \ldots, x_h) \in E_k^h \setminus \varrho$ and hence $(x_1, \ldots, x_{h-1}) \notin \chi$. Thus χ is a non-diagonal totally symmetric totally reflexive relation and thus pPOL_k $\chi \in p\mathcal{M}_k$.

Let $f^{(n)} \in \text{pPOL}_k \rho$ be arbitrary. Assume to the contrary, that $f \notin \text{pPOL}_k \gamma$ for all $\gamma \in \mathcal{U} \cup \{\chi\}$. Then there are $c_{*1}, \ldots, c_{*n} \in \chi$ with $c := f(c_{*1}, \ldots, c_{*n}) \in E_k^{h-1} \setminus \chi$. This means,

$$\exists q \in E_k \setminus \omega(c) \,\forall y \in \sigma(\varrho) : \omega(c) \cup \{q\} \neq \omega(y).$$

Because $f \notin \text{pPOL}_k(E_k \setminus \{q\})$ there are $q_1, \ldots, q_n \in E_k \setminus \{q\}$ with $f(q_1, \ldots, q_n) = q$. Thus follows

$$f\left(\begin{array}{ccc}c_{*1}&\ldots&c_{*n}\\q_1&\ldots&q_n\end{array}\right)=\left(\begin{array}{c}c\\q\end{array}\right)=:t$$

with $|\omega(t)| = h$, and therefore $t \notin \iota_k^h$. Because of $\omega(t) \neq \omega(y)$ for every $y \in \sigma(\varrho)$ by construction, $t \notin \varrho$ holds. But c_{*1}, \ldots, c_{*n} are chosen with $\begin{pmatrix} c_{*i} \\ q_i \end{pmatrix} \in \varrho$ for all $i \in \{1, \ldots, n\}$ contradicting $f \in \text{pPOL}_k \varrho$. Thus (5.2) holds. \Box

Let the set \mathcal{S}' consist of all relations in \mathcal{S} not fulfilling the conditions of Lemma 5.4, i.e., $\mathcal{S}' := \{\chi^{(\mu)} \mid \chi \in \mathcal{S}, \mu = 3 \text{ and } (5.1) \text{ is not fulfilled by } \chi\}.$

KARSTEN SCHÖLZEL

Lemma 5.5. Let $\varrho^{(h)} \in \mathcal{Q}_0$ (see Definition 2.10) with h = 2 and

$$\exists x \in E_k \ \exists \pi \in S_2 : \{x\} \times E_k \subseteq \varrho^{[\pi]}.$$

Then $pPOL_k \rho$ belongs to no minimal covering of $p\mathcal{M}_k$.

Proof. Let $f^{(n)} \in \text{pPOL}_k \rho$ be arbitrary. Assume to the contrary $f \notin \text{pPOL}_k \theta$ for all $\theta \in \mathcal{U}$.

Let $A \subset E_k$ be a maximal set with $A \times E_k \subseteq \varrho^{[\pi]}$. Let $y \in E_k$ be arbitrary. Because $f \notin \text{pPOL}_k A$ and $f \notin \text{pPOL}_k (E_k \setminus \{y\})$ there are rows $c_A \in A^n$ and $c_y \in (E_k \setminus \{y\})^n$ with $f(c_A) =: a \in E_k \setminus A$ and $f(c_y) = y$. Thus $(a, y) \in \varrho^{[\pi]}$ and because y is arbitrary we get $(A \cup \{a\}) \times E_k \subseteq \varrho^{[\pi]}$ contradicting the maximality of A.

Thus the assumption is wrong and $f \in pPOL_k \theta$ for some $\theta \in \mathcal{U}$. This implies $pPOL_k \varrho$ is in no minimal covering, because $pPOL_k \theta$ is in every minimal covering of $p\mathcal{M}_k$ by Lemma 5.2.

Let the set Q'_0 consist of all relations in Q_0 not fulfilling the conditions of Lemma 5.5.

If ρ is symmetric, then Lemma 5.5 follows from Theorem 15, (b) in [2].

6. Sorting the minimal coverings

Definition 6.1. Let $\rho, \chi \in \widetilde{\mathcal{R}}_k^{\max}$ with $\rho \neq \chi$, i.e., $\operatorname{pPOL}_k \rho \neq \operatorname{pPOL}_k \chi$ by definition of $\widetilde{\mathcal{R}}_k^{\max}$. We write $\rho \ll \chi$ iff

$$\begin{array}{l} \forall f \in \mathrm{pPOL}_k \, \varrho \, \exists g \in \mathrm{pPOL}_k \, \varrho \\ \left((g \not\in \mathrm{pPOL}_k \, \chi) \land \left(\forall \psi \in \widetilde{\mathcal{R}}_k^{\max} \, (f \not\in \mathrm{pPOL}_k \, \psi \Longrightarrow g \not\in \mathrm{pPOL}_k \, \psi) \right) \right). \end{array}$$

Lemma 6.2. Let $X = \operatorname{pPOL}_k \varrho \in p\mathcal{M}_k$, $f \in X$, and $\mathscr{Y}, \mathscr{Z} \subseteq p\mathcal{M}_k$ with $f \notin Y$ for all $Y \in \mathscr{Y}$ and $\mathscr{Z} = \{\operatorname{pPOL}_k \psi \mid \psi \in \widetilde{\mathcal{R}}_k^{\max} \land \varrho \ll \psi\} \neq \emptyset$.

Then there is some $F \in X$ with $F \notin Y$ for all $Y \in \mathscr{Y} \cup \mathscr{Z}$.

Proof. Let $l := |\mathscr{Z}|$ and $\mathscr{Z} := \{ pPOL_k \psi_1, \dots, pPOL_k \psi_l \}$. If l = 1 then the statement of this Lemma follows from Definition 6.1. Now let $l \ge 2$. Assume there is some $f_i \in X$ with $i \in \{1, \dots, l-1\}$, $f_i \notin Y$ for all $Y \in \mathscr{Y}$ and $f_i \notin pPOL_k \chi_j$ for all $j \le i$. Since $i + 1 \le l$ and $\varrho \ll \chi_{i+1}$, there is some $f_{i+1} \in X$ with $f_{i+1} \notin pPOL_k \chi_{i+1}$ and $f_{i+1} \notin Y$ for all $Y \in \mathscr{Y} \cup \{pPOL_k \chi_j \mid 1 \le j \le i\}$. Thus, by induction on l, there is some $F := f_l \in X$ with $F \notin Y$ for all $Y \in \mathscr{Y} \cup \mathscr{Y}$. \Box

Remark 6.3. With the help of \ll we can define a directed graph $\mathcal{G} = (p\mathcal{M}_k, E)$ without loops such that $(X, Y) \notin E$ for all $X, Y \in p\mathcal{M}_k$ with $X = \text{pPOL}_k \varrho$, $Y = \text{pPOL}_k \psi$ and $\varrho \ll \psi$.

If $X \in p\mathcal{M}_k$ is a sink in \mathcal{G} , then X is in every minimal covering of $p\mathcal{M}_k$. Assume this is false. Then there is a minimal covering \mathscr{Y} of $p\mathcal{M}_k$ with $X \notin \mathscr{Y}$ and

$$\forall f \in X \; \exists Y \in \mathscr{Y} : f \in Y.$$

Since X is a sink, i.e., $(X, Y) \notin E$, we have $\rho \ll \psi$ for all $Y = \text{pPOL}_k \psi \in \mathscr{Y}$ and thus by Lemma 6.2 there is some $F \in X$ with $F \notin Y$ for all $Y \in \mathscr{Y}$ contradicting \mathscr{Y} is a covering of $p\mathscr{M}_k$. Thus X is in every minimal covering of $p\mathscr{M}_k$.

If $X \in p\mathcal{M}_k$ is not a sink in the graph \mathcal{G} then X is covered by its successors $U(X) := \{Y \in p\mathcal{M}_k \mid (X,Y) \in E\}$, i.e.,

$$X \subseteq \bigcup_{Y \in U(X)} Y.$$

Assume this is false. Then there is some $f \in X$ with $f \notin X'$ for all $X' \in U(X)$. By Lemma 6.2 there is some $F \in X$ with $F \notin X'$ for all $X' \in U(X)$ and $F \notin Z$ for all $Z \in p\mathcal{M}_k$ with $(X, Z) \notin E$. Thus $F \notin Y$ for all $Y \in \mathscr{X} \setminus \{X\}$. But then $U(X) = \emptyset$ because of the existence of F, i.e., X is a sink. Thus X is covered by U(X).

Then we show in following sections that \mathcal{G} is acyclic. This implies if X is not a sink then X is covered by sinks since \mathcal{G} is transitive and finite, i.e., X is in no minimal covering. Thus there is only one minimal covering.

Definition 6.4. Sometimes we write $\chi \subset \varrho$ to mean $\chi \subset \varrho^{[\pi]}$ for some $\pi \in S_h$. Because $\operatorname{pPOL}_k \varrho = \operatorname{pPOL}_k \varrho^{[\pi]}$ we can assume $\pi = \operatorname{id}$ in most cases where id is the identity permutation in S_h .

Similarly if we write $\chi \not\subseteq \rho$ then $\chi \not\subseteq \rho^{[\pi]}$ for all $\pi \in S_h$.

Lemma 6.5. Let $\varrho^{(h)} \in \mathcal{A} \cup \mathcal{Q}'_0 \cup \mathcal{L}$ and $\chi^{(\mu)} \in (\mathcal{Q} \cup \mathcal{L} \cup \mathcal{S}) \setminus \{\varrho\}$. Then $\varrho \ll \chi$.

Proof. Let $\sigma := \sigma(\varrho)$ and $\delta := \delta(\varrho)$. Let $f \in \text{pPOL}_k \varrho$ be arbitrary. If $f \notin \text{pPOL}_k \chi$ then g := f fulfills the conditions of $\varrho \ll \chi$. Thus assume $f \in \text{pPOL}_k \chi$.

There are two cases:

 $\mu \leq h \ or \ \chi \in \mathcal{S}$:

Let $g_0(\chi) := v$ (see Definition 4.1) for some $v \in \rho^{[\pi]} \setminus \chi$ if $\chi \subset \rho^{[\pi]}$ for some $\pi \in S_h$ (w.l.o.g. $\pi = \mathrm{id}$) and $v \in E_k^{\mu} \setminus \chi$ otherwise. Then $g_0 \notin \mathrm{pPOL}_k \chi$.

We have to show $g_0 \in \text{pPOL}_k \varrho$. Assume $g_0^{(n)} \notin \text{pPOL}_k \varrho$. Then there are some rows c_{1*}, \ldots, c_{h*} with $c_{*1}, \ldots, c_{*n} \in \varrho$ and $g_0(c_{*1}, \ldots, c_{*n}) =: d \notin \varrho$. Because of Lemma 5.3 all rows have to be different. Thus if $\mu = h$ then $\{c_{*1}, \ldots, c_{*n}\} \subseteq \chi^{[\pi']}$ for some $\pi' \in S_h$.

There are some cases:

 $\mu < h$: Because g_0 is only defined on μ different rows Lemma 5.3 applies.

 $\mu = h \text{ and } \chi \subset \varrho$: Then $\pi' \in \Gamma_{\sigma(\varrho)}$ because $\chi^{[\pi']} \subset \varrho$ and $\chi \subset \varrho$. Thus we have $d = v^{[\pi']} \in \rho$ because $v \in \rho$.

- $\mu = h \text{ and } \chi \not\subseteq \varrho^{[\pi]} \text{ for all } \pi \in S_h$: Thus there is some $j \in \{1, 2, \ldots, n\}$ with $c_{*j} \notin \varrho$ contradicting the assumption.
- $\chi \in \mathcal{S}$ and $\mu > h$: Then $E_k^h = \operatorname{pr}_A \iota_k^\mu = \{c_{*1}, \ldots, c_{*n}\} \subseteq \varrho$ contradicting that ϱ is coherent.

Thus $g_0 \in \text{pPOL}_k \varrho$.

Let $G_0 := f \otimes g_0$ and L = 0. By construction $G_0 \notin \text{pPOL}_k \chi$. $\mu > h \text{ and } \chi \notin S$:

Let $\sigma_0 := \sigma$ and define the relations $\sigma_1, \sigma_2, \ldots, \sigma_l, \sigma_{l+1}$ recursively until $\sigma_{l+1} = \emptyset$ and $\emptyset \notin \{\sigma_0, \sigma_1, \ldots, \sigma_l\}$ hold. Let $\emptyset \subset \sigma_i \subseteq \sigma$ be given. Because ϱ is coherent, there is a relational homomorphism $\varphi_i \colon E_k \to E_h$ from σ_i to $M(\varrho)$ and an $s_i \in \sigma_i$ with $\varphi_i(s_i) = \eta_h$. Let $\sigma_{i+1} \coloneqq \{s \in \sigma_i \mid \varphi_i(s) \in \delta \cap E_h^h\}$. From $\varphi_i(s_i) = \eta_h \notin \delta \cap E_h^h$ follows $|\sigma_{i+1}| < |\sigma_i|$. Because $|\sigma|$ is finite there is an $l \in \mathbb{N}$ with $\sigma_{l+1} = \emptyset$.

Define $\varphi_{\star}: E_h \to E_k$ by $\varphi_{\star}(\eta_h) := s_0$. Then define for $i \in \{0, 1, \ldots, l\}$ the function $q_i: E_k \to E_k$ with $q_i(x) := \varphi_{\star}(\varphi_i(x))$. Then q_i is a relational homomorphism from σ_i to ϱ . For $v := (v_0, v_1, \ldots, v_{m-1}) \in E_k^m$ and $m \in \{1, 2, \ldots, k\}$ let

$$Q_{-1}(v) := \delta_E^{(m)},$$

 $Q_i(v) := Q_{i-1}(v) \cup \{(x_{v_0}, x_{v_1}, \dots, x_{v_{m-1}}) \in E_k^m \mid \varphi_i(a) = \varphi_i(b) \Longrightarrow x_a = x_b\},$ $Q_{l+j}(v) := Q_l(v) \text{ for all } j \ge 1.$

Because of $|\varphi_i(E_k)| = h$ we have $|\omega(x)| \le h$ for all $x \in Q_i(\eta_k)$. Let

$$\forall i \in \{0, 1, 2, \dots, l\} : g_i(\{\eta_k\} \cup Q_{i-1}(\eta_k)) := q_i(\eta_k), \\ \forall j \in \{1, 2, \dots, |E_k^k|\} : g_{l+j}(\{\eta_k\} \cup Q_l(\eta_k)) := w_j,$$

where $\{w_1, w_2, \dots, w_{|E_k^k|}\} = E_k^k$. Let $L := l + |E_k^k|$.

We now show $g_i \in \text{pPOL}_k \varrho$ for $i \in \{0, 1, \ldots, L\}$. Assume $g_i^{(n)} \notin \text{pPOL}_k \varrho$. Then there are rows c_{1*}, \ldots, c_{h*} with $c_{*1}, \ldots, c_{*n} \in \varrho$ and $g_i(c_{*1}, \ldots, c_{*n}) =: d \in E_k^h \setminus \varrho$. By construction of g_i we can w.l.o.g. assume that $c' := c_{*1} = \text{pr}_{p_1,\ldots,p_h} \eta_k$ with pairwise different coordinates p_1, \ldots, p_h . Thus $c' \in \sigma(\varrho)$. There are two cases:

 $c' \in \sigma_i$: We have $i \leq l$ since $\sigma_{l+1} = \emptyset$. Then $d = g_i(c', c_{*2}, \ldots, c_{*n}) = q_i(c') \in \varrho$ because q_i is a relational homomorphism from σ_i to ϱ . This is in contradiction to $d \in E_k^h \setminus \varrho$.

 $c' \in \rho \setminus \sigma_i$: Then there is some j < i such that $c' \in \sigma_j$ and $c' \notin \sigma_{j+1}$ hold. Then $\varphi_j(c') \in \sigma(E_k^h)$. Thus

$$E_k^h = Q_j(c') \subseteq Q_{i-1}(c') = \operatorname{pr}_{p_1,\dots,p_h} Q_{i-1}(\eta_k) = \{c_{*2},\dots,c_{*n}\} \subseteq \varrho,$$

i.e., $\rho = E_k^h$ in contradiction to ρ coherent.

Thus no such c' can exist and therefore $g_i \in pPOL_k \rho$ for all $i \in \{0, 1, ..., L\}$. Let $G_i := f \otimes g_0 \otimes g_1 \otimes \cdots \otimes g_i$ for $i \in \{0, 1, ..., L\}$.

We show $G_L \notin \text{pPOL}_k \chi$. If $g_i \notin \text{pPOL}_k \chi$ for some $i \in \{0, 1, \ldots, L\}$, then $G_L \notin \text{pPOL}_k \chi$. Otherwise $Q_l(v) \subseteq \chi$ for some $v \in \chi$ by construction of $Q_l(v)$ and $g_i \in \text{pPOL}_k \chi$ for $i \in \{0, 1, \ldots, L\}$. Then $g_{l+j}(\{v\} \cup \delta_{E_{\mu}}^{(\mu)} \cup Q_l(v)) \in \chi$ for all $j \in \{1, 2, \ldots, |E_k^k|\}$ and thus $E_k^{\mu} \subseteq \chi$ in contradiction to χ coherent.

Let $G_{-1} = f$ and $g = G_L$. Now we show that $g \in pPOL_k \rho$ by induction over $i \in \{-1, 0, 1, \dots, L\}$.

The basis $G_{-1} = f \in \text{pPOL}_k \rho$ is given by choice of f.

The induction goes from i - 1 to i for $i \in \{0, 1, ..., L\}$. Let $G_{i-1} \in \text{pPOL}_k \varrho$. We want to show $G_i = G_{i-1} \otimes g_i \in \text{pPOL}_k \varrho$. Let $D := \text{dom} G_{i-1}, E := \text{dom} g_i$ and D', E' the associated matrices (see Definition 4.1).

Assume $G_i \notin \text{pPOL}_k \varrho$. Then there are some rows c_{1*}, \ldots, c_{h*} from $D' \otimes E'$ with

$$F\begin{pmatrix}c_{1*}\\\vdots\\c_{h*}\end{pmatrix} =: \begin{pmatrix}s_{1}\\\vdots\\s_{h}\end{pmatrix} =: s \notin \varrho$$
(6.1)

and

$$\forall j \in \{1, 2, \dots, N\} : c_{*j} \in \varrho.$$
(6.2)

By Lemma 5.3 all the rows c_{i*} are pairwise different.

Because $G_{i-1} \in \text{pPOL}_k \rho$ and $g_i \in \text{pPOL}_k \rho$ some rows have to be from the *D*-part and some from the *E*-part of $D' \otimes E'$.

Assume w.l.o.g. c_{1*} is from the *D*-part and c_{h*} is from the *E*-part. From $\delta(\chi) \neq \emptyset$ and χ coherent follows $\delta_{E_{\mu}}^{(\mu)} \subseteq \delta(\chi) \subseteq \chi$.

There are three cases:

- $\rho \in \mathcal{A}$: Because $E_k \subseteq c_{h*}$ there is some column j with $c_{1j} = c_{hj}$ in contradiction to ρ areflexive.
- $\varrho \in \mathcal{Q}'_0$: If h = 2 then $\{x\} \times E_k \subseteq \varrho$ in contradiction to $\varrho \in \mathcal{Q}'_0$, i.e., ϱ does not fulfill the conditions of Lemma 5.5.

Let $h \geq 3$ and $i \in \{2, \ldots, h-1\}$ be arbitrary. Because $c_{1*} \neq c_{i*}$ there is column j with $(c_{1j}, c_{ij}, c_{hj})^{\mathrm{T}} = (x, y, y)^{\mathrm{T}}$ and $x \neq y$. Because i is arbitrary and $\delta(\varrho) = \delta_{\varepsilon}$ for some equivalence relation ε we get that $(0, a) \notin \varepsilon = \varepsilon(\varrho)$ for all $a \neq 0$, i.e., $\varepsilon(\varrho)$ has a singular equivalence class contradicting $\varrho \in \mathcal{Q}_0$.

 $\varrho \in \mathcal{L}$: If c_{1*}, c_{2*}, c_{3*} (which are pairwise different) are from D and is c_{4*} from E, then there is there is a column $c_{*j} = (x, y, z, w)^{\mathrm{T}} \notin \varrho$ with $|\{x, y, z\}| \geq 2$ and $|\{x, y, z, w\}| = 3$ in contradiction to (6.2). Otherwise there is some column $c_{*j} = (x, y, y, y)^{\mathrm{T}} \notin \varrho$ with $x \neq y$ contradicting (6.2).

Thus $G_i \in \text{pPOL}_k \rho$ and by induction $g = G_L \in \text{pPOL}_k \rho$. Because $g \notin \text{pPOL}_k \chi$ we get $\rho \ll \chi$.

Lemma 6.6. Let $\varrho^{(h)} \in \mathcal{Q}_1 \cup \mathcal{S}'$ and $\chi^{(\mu)} \in \mathcal{S}$. Then $\varrho \ll \chi$.

Proof. Let $f \in \text{pPOL}_k \varrho$ be arbitrary. If $f \notin \text{pPOL}_k \chi$ then g := f fulfills the conditions of \ll . Thus assume $f \in \text{pPOL}_k \chi$.

Let $g_{\chi}(\chi) := v$ (see Definition 4.1) for some $v \in \varrho \setminus \chi$ if $\chi \subseteq \varrho$ and $v \in E_k^{\mu} \setminus \chi$ otherwise. Then $g_{\chi} \in \text{pPOL}_k \varrho$ and let $g := f \otimes g_{\chi}$. We get $g \notin \text{pPOL}_k \chi$ because $g_{\chi} \notin \text{pPOL}_k \chi$. Let D := dom f and $E := \text{dom } g_{\chi}$ as in Definition 4.2, n = |D|, m = |E| and $N = |D| \cdot |E|$.

It suffices to show $F^{(N)} := (f \otimes g_{\chi}) \in \text{pPOL}_k \rho$. Assume this is false. Then there are some rows c_{1*}, \ldots, c_{h*} from $D \otimes E$ with $s_i := F(c_{i*}), s := (s_1, \ldots, s_h)^T \notin \rho$ and $c_{*j} \in \rho$ for all $j \in \{1, 2, \ldots, N\}$. By Lemma 5.3 all the rows c_{i*} are pairwise different.

If all rows c_{i*} are from the *D*-part of $D \otimes E$, then $f(c_{*1m}, c_{*2m}, \ldots, c_{*nm}) = s \notin \varrho$ in contradiction to $f \in \text{pPOL}_k \varrho$. Thus one row is from the *E*-part.

Assume there are rows from both parts of $D \otimes E$. Then w.l.o.g. ρ is given such that c_{1*} is from the *D*-part and c_{h*} is from the *E*-part. Let $c_{i_1*}, \ldots, c_{i_q*}$ with q < h the rows of the *E*-part. Then $\delta_{E_q}^{(q)} \subseteq (c_{ij})_{i=i_1,\ldots,i_q,j=1,\ldots,N}$.

There are two cases:

- $\varrho \in \mathcal{Q}_1$: Let $c_{i_1*}, c_{i_2*}, c_{h*}$ be three pairwise different rows. Then there are columns j_1 and j_2 with $(c_{i_1j_1}, c_{i_2j_1}, c_{hj_1})^{\mathrm{T}} = (x, y, x)^{\mathrm{T}}, (c_{i_1j_2}, c_{i_2j_2}, c_{hj_2})^{\mathrm{T}} = (x, y, y)^{\mathrm{T}}$ and $x \neq y$. Thus $(i_1 1, i_2 1), (i_1 1, h 1), (i_2 1, h 1) \notin \varepsilon(\varrho)$. Because $i_1 \neq i_2 \neq h$ are arbitrary it follows that $\delta(\varrho) = \delta_{\iota_h^2}^{(h)} = E_k^h$ in contradiction to ϱ coherent.
- $\varrho \in \mathcal{S}'$: If only c_{1*} is from D, then $\{x\} \times E_k^2 \subseteq \varrho$ for some $x \in c_{1*}$, and thus $(x,y)^{\mathrm{T}} \times E_k \subseteq \varrho$ with $x \neq y$. If only c_{h*} is from E then $(x,y)^{\mathrm{T}} \times E_k \subseteq \varrho$ with $x \neq y, x \in c_{1*}$ and $y \in c_{2*}$. Thus Lemma 5.4 applies contradicting $\varrho \in \mathcal{S}'$. \Box

Lemma 6.7. Let $\varrho^{(h)} \in \mathcal{Q}_1$ and $\chi^{(\mu)} \in \mathcal{Q}_{\varrho}$. Then $\varrho \ll \chi$.

Proof. Let $f \in pPOL_k \rho$ be arbitrary. If $f \notin pPOL_k \chi$ then g := f fulfills the conditions of \ll . Thus assume $f \in pPOL_k \chi$.

Let $g_{\chi}(\chi) := v$ (see Definition 4.1) for some $v \in E_k^{\mu} \setminus \chi$ and let $g := f \otimes g_{\chi}$. We get $g \notin \text{pPOL}_k \chi$ because $g_{\chi} \notin \text{pPOL}_k \chi$. It suffices to show

$$F^{(N)} := (f \otimes g_{\chi}) \in \operatorname{pPOL}_k \varrho. \tag{6.3}$$

Let $D := \operatorname{dom} f$ and $E := \operatorname{dom} g$ as in Definition 4.2, n = |D|, m = |E| and $N = |D| \cdot |E|$.

Assume (6.3) is false. Then there are c_{1*}, \ldots, c_{h*} from $D \otimes E$ with $s_i := F(c_{i*})$, $s := (s_1, \ldots, s_h)^T \notin \rho$ and $c_{*j} \in \rho$ for all $j \in \{1, 2, \ldots, N\}$. By Lemma 5.3 all the rows c_{i*} are pairwise different.

If all rows c_{i*} are from the *D*-part of $D \otimes E$, then $f(c_{*1m}, c_{*2m}, c_{*nm}) = s \notin \varrho$ in contradiction to $f \in \text{pPOL}_k \varrho$. Thus at least one row is from the *E*-part.

Let $l := \|\varrho\|$. Let w.l.o.g. pp ϱ be the first l rows of ϱ . Assume there is some row $c_{i_{1}*}$ with $1 \le i_{1} \le l$ such that $c_{i_{1}*}$ is not from the part of E representing pp χ . Let $i_{2} \ne i_{1}$ with $1 \le i_{2} \le l$ be arbitrary. Then there are columns j_{1} and j_{2} with $(c_{i_{1}j_{1}}, c_{i_{2}j_{1}}, c_{hj_{1}})^{\mathrm{T}} = (x, y, x)^{\mathrm{T}}$, $(c_{i_{1}j_{2}}, c_{i_{2}j_{2}}, c_{hj_{2}})^{\mathrm{T}} = (x, y, y)^{\mathrm{T}}$ and $x \ne y$. Thus $(i_{2} - 1, i_{1} - 1) \notin \varepsilon(\varrho)$, i.e., there is a singleton class in $\varepsilon(\mathrm{pp}\,\varrho)$ in contradiction to $\mathrm{pp}\,\varrho \in \mathcal{Q}_{0}$.

So we need $\operatorname{pp} \chi \subseteq \operatorname{pp} \varrho$ in contradiction to the definition of \mathcal{Q}_{ϱ} .

Definition 6.8. Let $f \in \widetilde{P}_k^{(1)}$ be a unary function. Then we define recursively $f^0 := e_1^{(1)}$ and $f^n := f(f^{n-1})$ for all $n \ge 1$.

For the proof of Theorem 6.13 some lemmas are needed using the following condition on $\rho \in \mathcal{A}$.

$$\exists \varphi \in \operatorname{Pol}_{k}^{(1)} \varrho \,\forall l \in \{1, 2, \dots, h-1\} \,\forall D \subseteq \sigma(E_{k}^{l}) \,\forall v \in \sigma(E_{k}^{h-l}) \\ \forall \pi \in S_{h} \,\exists m \geq 0 : D \times \{\varphi^{m}(v)\} \not\subseteq \varrho^{[\pi]}.$$

$$(6.4)$$

Proposition 6.9. Let $\varrho^{(h)} \in \mathcal{A}$ and ϱ fulfills (6.4). Then there is some $\varphi' \in \operatorname{Pol}_k^{(1)} \varrho$ which suffices the conditions in (6.4) and $\varphi' \notin \operatorname{pPOL}_k\{x\}$ for all $x \in E_k$.

Proof. There is some $\varphi \in \operatorname{Pol}_k^{(1)} \varrho$ which fulfills (6.4). Let

$$\varphi'(x) = \begin{cases} y & \text{for some } y \in E_k \setminus \{x\}, \text{ if } x \in E_k \setminus \omega(\varrho), \\ \varphi(x) & \text{otherwise.} \end{cases}$$

Let $x \in E_k \setminus \omega(\varrho)$. If $x \in \omega(D) \cup \omega(v)$ then $D \times \{(\varphi')^0(v)\} = D \times \{v\} \not\subseteq \varrho^{[\pi]}$ for all π . Thus φ' fulfills the conditions of (6.4) because it coincides with φ on $\omega(\varrho)$. Let $x \in \omega(\varrho)$. Then there is some $D \subseteq \sigma(E_k^{h-1})$ with $D \times \{x\} \subseteq \varrho^{[\pi]}$ for some

Let $x \in \omega(\varrho)$. Then there is some $D \subseteq \sigma(E_k^{h-1})$ with $D \times \{x\} \subseteq \varrho^{[\pi]}$ for some $\pi \in S_h$. But there is some $m \ge 0$ with $D \times \{(\varphi')^m(x)\} \not\subseteq \varrho^{[\pi]}$ because of (6.4). Thus $\varphi'(x) \ne x$. For $x \notin \omega(\varrho)$ follows $\varphi'(x) \ne x$ by definition of φ' .

Lemma 6.10. Let $\varrho^{(h)} \in \mathcal{A}$ and ϱ fulfills (6.4). Then $\operatorname{pPOL}_k \varrho$ is in every minimal covering of $p\mathcal{M}_k$.

Proof. Because of Lemma 6.5 we just have to find a function $f \in pPOL_k \rho$ with

$$\forall \chi \in (\mathcal{U} \cup \mathcal{A}) \setminus \{\varrho\} : f \notin \mathrm{pPOL}_k \chi.$$

Then there is some function $g \in pPOL_k \rho$ with

$$\forall \chi \in \mathcal{R}_k^{\max} \setminus \{\varrho\} : g \notin \mathrm{pPOL}_k \chi$$

and by construction also $g \notin P_k \cup C_{\emptyset}$. Thus $\text{pPOL}_k \varrho$ is in every minimal covering of $p\mathcal{M}_k$ by Lemma 3.2.

We will now construct the function f mentioned above.

We can assume $\pi = \mathrm{id} \in S_h$ in (6.4) because $\mathrm{pPOL}_k \, \varrho = \mathrm{pPOL}_k \, \varrho^{[\pi]}$. Because of Proposition 6.9 we can assume $\varphi \notin \mathrm{pPOL}_k \{x\}$ for all $x \in E_k$.

Let $f_0 := \varphi$ and define $f_j := f_{j-1} \otimes f_{\chi_j}$ recursively with

$$X := \{\chi_1, \dots, \chi_N\} := \{\chi \in \mathcal{U} \cup \mathcal{A} \mid \varphi \in \operatorname{pPOL}_k \chi\}.$$

Let $\chi^{(\mu)} = \chi_i \in X$. There are two cases:

 $\mu \leq h$: Let $f_{\chi}(\chi) := z$ (see Definition 4.1) with $z \in \varrho \setminus \chi$ if $\chi \subset \varrho$ and $z \in E_k^{\mu} \setminus \chi$ otherwise. Then $f_{\chi} \notin \operatorname{pPOL}_k \chi$ and by construction $f_{\chi} \in \operatorname{pPOL}_k \varrho$.

 $\mu > h$: Because ϱ is coherent there is a relational homomorphism $\theta_0: E_k \to E_k$ from ϱ to $M(\varrho)$. Let $\theta_1: E_h \to E_k$ with $\theta_1(\eta_h) = v_1$ for some $v_1 \in \varrho$. Then $\theta \in \text{pPOL}_k \varrho$ for $\theta: E_k \to E_k$ with $\theta(x) = \theta_1(\theta_0(x))$.

Let $v \in \chi$ be arbitrary and let $f_{\chi}(\chi) := \theta(v)$ (see Definition 4.1). Because $|\omega(\theta(v))| \leq h < \mu$ we have $\theta \notin \text{pPOL}_k \chi$, and thus $f_{\chi} \notin \text{pPOL}_k \chi$.

By construction θ is a relational homomorphism from ρ to ρ . Thus $f_{\chi} \in \text{pPOL}_k \rho$.

Because $f_j = f_{j-1} \otimes f_{\chi_j}$ and $f_{\chi_j} \notin \text{pPOL}_k \chi_j$ we get $f_j \notin \text{pPOL}_k \chi_j$.

Assume $f_j^{(n)} \notin \text{pPOL}_k \varrho$. Then there are rows c_{1*}, \ldots, c_{h*} with $c_{*1}, \ldots, c_{*n} \in \varrho$ and $f(c_{*1}, \ldots, c_{*n}) = d \in E_k^h \setminus \varrho$. Then the rows c_{i*} are pairwise different and some rows belong to the f_{j-1} part of f_j and some to the f_{χ} part. The rows can w.l.o.g. be sorted in a way such that the first l rows for some $l \in \{1, 2, \ldots, h-1\}$ are from the f_{j-1} part of $f_j = f_{j-1} \otimes f_{\chi_j}$.

Let $D := \operatorname{pr}_{0,\dots,l-1}\{c_{*1},\dots,c_{*n}\}$ and $W := \operatorname{pr}_{l,\dots,h-1}\{c_{*1},\dots,c_{*n}\}$. Because the rows $c_{l*}, c_{l+1*},\dots,c_{h-1*}$ are from the f_{χ} part and f_{χ} is only defined on χ we get $W = \operatorname{pr}_{p_l,p_{l+1},\dots,p_{h-1}} \chi$ for pairwise different p_i . Let $v \in W \subseteq E_k$ be arbitrary. Then there is some $v' \in \chi$ with $v = \operatorname{pr}_{p_l,p_{l+1},\dots,p_{h-1}} v'$. Thus $\{\varphi^m(v) \mid m \ge 0\} \subseteq W$ because $\varphi \in \operatorname{pPOL}_k \chi$, i.e., $\{\varphi^m(v') \mid m \ge 0\} \subseteq \chi$.

But then $D \times \{\varphi^m(v) \mid m \ge 0\} \subseteq \varrho$ in contradiction to (6.4).

KARSTEN SCHÖLZEL

Let $\Gamma' \subseteq S_h$ and $l \leq h$. Then we define $\Gamma'_{|E_l|} \subseteq S_l$ by

$$\Gamma'_{|E_l} := \{ \pi \in S_l \mid \exists \pi' \in \Gamma' : (\forall x \in E_l : \pi(x) = \pi'(x)) \land (\forall x \in E_h \setminus E_l : \pi'(x) = x) \}.$$

Lemma 6.11. Let $\varrho^{(h)} \in \mathcal{A}$, $\bar{\chi}^{(l)} \subseteq E_k^l$, $V \subseteq E_k^{h-l}$, $l \in \{1, \ldots, h-1\}$ and $\chi \times V \subseteq \varrho$. Let $\Gamma' := \{\pi \in \Gamma_\sigma \mid \forall x \in E_h \setminus E_l : \pi(x) = x\}$ and $\chi' := \{c^{[\pi]} \mid c \in \bar{\chi}, \pi \in \Gamma'_{|E_l}\}.$ Then χ' is coherent and $\chi' \times V \subseteq \varrho$.

Proof. From the definition of Γ' and ρ coherent follows $\chi' \times V \subseteq \rho$. We now show that χ' is coherent.

• If $l \ge 2$ then $\chi' \ne E_k^l$ because $\chi' \subseteq \sigma(E_k^l) \subset E_k^l$.

Let l = 1 and $\chi' = E_k^l = E_k$. If h = 2 then $V \neq E_k$ because otherwise $E_k^2 \subseteq \rho$ contradicting ρ coherent. Let V' with $V \subseteq V' \subset E_k$ be maximal with respect to inclusion such that $\chi' \times V' \subseteq \varrho$. Because $f \notin pPOL_k V'$ there are $b_1, \ldots, b_n \in V'$ and $y \in E_k \setminus V'$ with $f(b_1, \ldots, b_n) = y$. Then there is some $x \in E_k$ such that $(x, y)^T \notin \varrho$ and there are $a_1, \ldots, a_n \in E_k \setminus \{x\}$ with $f(a_1, \ldots, a_n) = x$ because $f \notin pPOL_k(E_k \setminus \{x\})$ and $E_k \setminus (E_k \setminus \{x\}) = \{x\}$. Thus

$$f\left(\begin{array}{cc}a_1&\ldots&a_n\\b_1&\ldots&b_n\end{array}\right)=\left(\begin{array}{c}x\\y\end{array}\right)\not\in\varrho$$

but $(a_i, b_i)^{\mathrm{T}} \in \varrho$ for all $i \in \{1, \ldots, n\}$ contradicting $f \in \mathrm{pPOL}_k \varrho$. If $h \ge 3$ then $\begin{pmatrix} x \\ w \end{pmatrix} \notin \varrho$ for all $w \in V \subseteq \sigma(E_k^{h-l})$ and $x \in \omega(w)$.

Thus
$$\chi' \neq E_k^i$$
.

- $\chi' \subseteq \sigma(E_k^l)$, i.e., χ' is a reflexive and $1 \leq l < k$,
- $r^{[\pi]} \in \chi'$ for all $r \in \chi'$ and $\pi \in \Gamma_{\chi'}$ because $\pi \in \Gamma'$ for any $\pi \in \Gamma_{\chi'}$.
- $M(\chi') = \{\eta_l^{[\pi]} \mid \pi \in \Gamma_{\chi'} = \Gamma'_{|E_l}\}$. Let ψ with $\emptyset \subset \psi \subseteq \chi'$ and $w \in V$ be arbitrary. Because ρ is coherent there exists a relational homomorphism $\lambda: E_k \to E_h$ from $\psi \times \{w\}$ to $M(\varrho)$ with

$$\lambda \left(\begin{array}{c} c\\ w \end{array}\right) = \eta_h,$$

i.e., $\lambda(c) = \eta_l$, for some $c \in \psi$. For any $c' \in \psi$ we have

$$\lambda \begin{pmatrix} c' \\ w \end{pmatrix} \in M(\varrho) = \{\eta_h^{[\pi]} \mid \pi \in \Gamma_\sigma\}$$

and because $\lambda(w) = (l, \dots, h-1)^{\mathrm{T}}$ we get

$$\lambda \left(\begin{array}{c} c'\\ w \end{array}\right) \in \{\eta_h^{[\pi]} \mid \pi \in \Gamma'\}$$

and thus $\lambda(c') \in M(\chi')$.

Let $\lambda' \colon E_k \to E_l$ be defined by

$$\lambda'(x) := \begin{cases} \lambda(x) & \text{if } x \in \omega(\chi'), \\ 0 & \text{otherwise.} \end{cases}$$

Then $\lambda': E_k \to E_l$ is a relational homomorphism from χ' to $M(\chi')$ such that $\lambda'(c) = \eta_l$ for some $c \in \chi'$.

Thus χ' is coherent, i.e., $\chi' \in \mathcal{U} \cup \mathcal{A}$.

Lemma 6.12. Let $\varrho^{(h)} \in \mathcal{A}$ and ϱ does not fulfill (6.4). Then $\operatorname{pPOL}_k \varrho$ is in no minimal covering of $p\mathcal{M}_k$.

Proof. Let $f^{(n)} \in \operatorname{pPOL}_k \varrho$ be arbitrary with

$$\forall \chi^{(\mu)} \in \mathcal{U} \cup \mathcal{A} : (\mu < h \Longrightarrow f \notin \operatorname{pPOL}_k \chi).$$
(6.5)

Let $\varphi(x) := f(x, \ldots, x)$. Then $\varphi \in \operatorname{pPOL}_k^{(1)} \varrho$ and by (6.5) we have $\varphi(x) \in E_k \setminus \{x\}$ for all $x \in E_k$, specifically $\varphi \in \operatorname{Pol}_k^{(1)} \varrho$. Because (6.4) is false, there exist $l, D = \{D_{*1}, \ldots, D_{*|D|}\} \subseteq \sigma(E_k^l), v \in \sigma(E_k^{h-l})$ and $\pi \in S_h$ with 0 < l < h and

$$\forall m \ge 0 : D \times \{\varphi^m(v)\} \subseteq \varrho^{[\pi]}$$

Because $pPOL_k \rho = pPOL_k \rho^{[\pi]}$ we assume w.l.o.g. $\pi = id$, i.e.,

$$\forall m \ge 0 : D \times \{\varphi^m(v)\} \subseteq \varrho. \tag{6.6}$$

We show $\varphi^m(v) \in \sigma(E_k^{h-l})$ for all $m \ge 0$. Assume otherwise. Then

$$\left(\begin{array}{c}D_{*1}\\\varphi^m(v)\end{array}\right)\in\iota_k^h$$

for some m, but this contradicts (6.6) because $\rho \subseteq \sigma(E_k^h)$.

Because $\sigma(E_k^{h-l})$ is finite, there are $0 \le m_1 < m_2$ such that $\varphi^{m_1}(v) = \varphi^{m_2}(v)$. Let $V := \{\varphi^{m_1+m}(v) \mid m \ge 0\}$. Then for any $w \in V$ there is some $w' \in V$ with $\varphi(w') = w$.

Let $\chi \in \{\psi^{(\mu)} \in \mathcal{U} \cup \mathcal{A} \mid \mu = l\}$ with $\chi \times V \subseteq \varrho$. Then there are rows c_{1*}, \ldots, c_{l*} with $c_{*1}, \ldots, c_{*n} \in \chi$ and $f(c_{*1}, \ldots, c_{*n}) =: d \in E_k^l \setminus \chi$.

Let $w' \in V$ arbitrary and $w = \varphi(w') \in V$. Then $\chi \times \{w'\} \subseteq \varrho$ and

$$f\left(\begin{array}{ccc}c_{*1}&\ldots&c_{*n}\\w'&\ldots&w'\end{array}\right)=\left(\begin{array}{ccc}d\\w\end{array}\right)\in E_k^h,$$

i.e.,

$$\left(\begin{array}{c}d\\w\end{array}\right)\in\varrho$$

because $f \in pPOL_k \rho$. Thus $(\chi \cup \{d\}) \times V \subseteq \rho$. This also implies $\chi \cup \{d\} \subseteq \sigma(E_k^l)$ as shown before.

Let $\Gamma' := \{\pi \in \Gamma_{\sigma} \mid \forall x \in E_h \setminus E_l : \pi(x) = x\}$ and $\chi' := \{c^{[\pi]} \mid c \in \chi \cup \{d\}, \pi \in \Gamma'_{|E_l}\}.$

By Lemma 6.11 with $\bar{\chi} = \chi \cup \{d\}$ we get χ' coherent, i.e., $\chi' \in \mathcal{U} \cup \mathcal{A}$, and $\chi \subset \chi'$ with $\chi' \times V \subseteq \varrho$.

Now let $\chi_0 := \{D_{*1}\}$ then χ_0 is coherent and $\chi_0 \times V \subseteq \rho$. By the argument above there is an infinite chain $\chi_0 \subset \chi_1 \subset \chi_2 \subset \ldots$ with $\chi_i \in \mathcal{U} \cup \mathcal{A}$ and $\chi_i \times V \subseteq \rho$ for all $i \in \mathbb{N}$. But this contradicts $|\mathcal{U} \cup \mathcal{A}| < \infty$ and thus the assumption (6.5) is wrong. Thus for any $f \in pPOL_k \rho$ there is some $\chi^{(\mu)} \in \mathcal{U} \cup \mathcal{A}$ with $\mu < h$ and $f \in pPOL_k \chi$. By induction there is some $\psi^{(\mu')} \in \mathcal{U} \cup \mathcal{A}$ with $\mu' \leq \mu$, $f \in pPOL_k \psi$ and $pPOL_k \psi$ is in every minimal covering of $p\mathscr{M}_k$.

Thus $pPOL_k \rho$ is in no minimal covering of $p\mathcal{M}_k$.

Theorem 6.13. Let $\varrho^{(h)} \in \mathcal{A}$. Then $\operatorname{pPOL}_k \varrho$ is in any minimal covering of $p\mathcal{M}_k$ if and only if ϱ fulfills (6.4).

Proof. If ρ fulfills (6.4) then pPOL_k ρ is in every minimal covering by Lemma 6.10. If ρ does not fulfill (6.4) then pPOL_k ρ is no minimal covering by Lemma 6.12. \Box

7. Uniqueness of minimal coverings

Lemma 7.1. Let \mathscr{X}, \mathscr{Y} be two different minimal coverings of $p\mathscr{M}_k$. Then $pPOL_k \ \varrho \in \mathscr{X}$ if and only if $pPOL_k \ \varrho \in \mathscr{Y}$ for all $\varrho \in \mathcal{U} \cup \mathcal{A}$.

Proof. By Lemma 5.2 we have $pPOL_k \rho \in \mathscr{X}$ and $pPOL_k \rho \in \mathscr{Y}$ for all $\rho \in \mathcal{U}$. By Theorem 6.13

$$\forall \varrho \in \mathcal{A} (\mathrm{pPOL}_k \, \varrho \in \mathscr{X} \iff \mathrm{pPOL}_k \, \varrho \in \mathscr{Y}).$$

Lemma 7.2. Let \mathscr{X}, \mathscr{Y} be two different minimal coverings of $p\mathscr{M}_k$. Then $\operatorname{pPOL}_k \varrho \in \mathscr{X}$ if and only if $\operatorname{pPOL}_k \varrho \in \mathscr{Y}$ for all $\varrho \in \mathcal{Q}_0 \cup \mathcal{L}$.

Proof. Assume this is false. Then there exists some $\rho \in \mathcal{Q}_0 \cup \mathcal{L}$ such that $X := \operatorname{pPOL}_k \rho \in \mathscr{X} \setminus \mathscr{Y}$. Because X is in some minimal covering of $p\mathscr{M}_k$ we obtain $\rho \in \mathcal{Q}'_0 \cup \mathcal{L}$. By Lemma 6.5 we have

$$\mathscr{Z} := \{ \operatorname{pPOL}_k \psi \mid \psi \in \mathcal{R}_k^{\max} \land \varrho \ll \psi \} \supseteq \{ \operatorname{pPOL}_k \psi \mid \psi \in (\mathcal{Q} \cup \mathcal{L} \cup \mathcal{S}) \setminus \{ \varrho \} \}.$$

Since \mathscr{X} is a minimal covering there exists some $f \in X$ with $f \notin X'$ for all $X' \in \mathscr{X} \setminus \{X\}$. By Lemma 6.2 there is some $F \in X$ with $F \notin Y$ for all $X' \in \mathscr{X} \cup \mathscr{X}$ and $X' \neq X$. Since \mathscr{Y} is a covering there is some $Y \in \mathscr{Y}$ with $F \in Y$. But then $Y \in \mathscr{Y} \setminus (\mathscr{X} \cup \mathscr{Z}) = (\mathscr{Y} \setminus \mathscr{Z}) \setminus \mathscr{X} = (\mathscr{Y} \cap \{\operatorname{pPOL}_k \chi \mid \chi \in \mathcal{U} \cup \mathcal{A}\}) \setminus \mathscr{X} = \emptyset$ by Lemma 7.1. This is a contradiction.

Lemma 7.3. Let $\mathscr{X} \subseteq p\mathscr{M}_k$ be a minimal covering of $p\mathscr{M}_k$. Then $pPOL_k \varrho \notin \mathscr{X}$ for all $\varrho \in \mathcal{S} \setminus \mathcal{S}'$.

Proof. Assume $X := \text{pPOL}_k \varrho \in \mathscr{X}$ for some $\varrho \in \mathcal{S} \setminus \mathcal{S}'$. Then there is some $f \in X$ with $f \notin Y$ for all $Y \in \mathscr{X} \setminus \{X\}$. Applying Lemma 5.4 recursively on X implies $f \in \text{pPOL}_k \chi$ for some $\chi \in \mathcal{U} \cup \mathcal{Q} \cup \mathcal{S}'$. By Lemmas 6.5 and 6.6 there is some $g \in \text{pPOL}_k \chi$ with $g \notin Y$ for all $Y \in \mathscr{X}$ in contradiction to \mathscr{X} minimal covering.

Lemma 7.4. Let \mathscr{X}, \mathscr{Y} be two different minimal coverings of $p\mathscr{M}_k$. Then $\operatorname{pPOL}_k \varrho \in \mathscr{X}$ if and only if $\operatorname{pPOL}_k \varrho \in \mathscr{Y}$ for all $\varrho \in \mathcal{S}$.

Proof. Assume this is false. Then there is some $\rho \in S$ with $X := \text{pPOL}_k \rho \in \mathscr{X} \setminus \mathscr{Y}$. In particular is $\rho \in S'$ by Lemma 7.3. Then there is some $f \in X$ with $f \notin X'$ for all $X' \in \mathscr{X} \setminus \{X\}$.

Then $f \notin Y$ for all $Y \in \mathscr{Y}$ with $Y = \operatorname{pPOL}_k \chi$ and $\chi \in \mathcal{U} \cup \mathcal{A} \cup \mathcal{Q}_0 \cup \mathcal{L}$ by Lemmas 7.1 and 7.2. Thus there is some $Z \in \mathscr{Y}$ with $Z = \operatorname{pPOL}_k \psi$ and $\psi \in \mathcal{Q}_1 \cup \mathcal{S}'$ and $f \in Z$. By Lemma 6.6 there is some $g \in Z$ with $g \notin X$ and $g \notin X'$ for all $X' \in \mathscr{X} \setminus \{X\}$, i.e., $g \notin X'$ for all $X' \in \mathscr{X}$. This contradicts \mathscr{X} minimal covering because $g \in Z \in \mathscr{Y}$.

Theorem 7.5. Let \mathscr{X}, \mathscr{Y} be two different minimal coverings of $p\mathscr{M}_k$. Then $\mathscr{X} \setminus \mathscr{Y} \subseteq \{ \operatorname{pPOL}_k \psi \mid \psi \in \mathcal{Q}_1 \}.$

Proof. The theorem follows from Lemmas 7.1, 7.2 and 7.4, and Lemma 5.2 for the partial clone $P_k \cup C_{\emptyset}$.

Lemma 7.6. Let \mathscr{X}, \mathscr{Y} be different minimal coverings of $p\mathscr{M}_k$. Furthermore let $X := \operatorname{pPOL}_k \varrho \in \mathscr{X} \setminus \mathscr{Y}$ for some $\varrho \in \mathcal{Q}_1$. Then there is some $\chi \in \mathcal{Q}_1$ with $Y := \operatorname{pPOL}_k \chi \in \mathscr{Y} \setminus \mathscr{X}$ and $\operatorname{pp} \chi = \operatorname{pp} \varrho$.

Proof. By $\mathscr{X} \neq \mathscr{Y}$ and Theorem 7.5 we have $\emptyset \subset \mathscr{X} \setminus \mathscr{Y} \subseteq \{ \operatorname{pPOL}_k \psi \mid \psi \in \mathcal{Q}_1 \}$. Let $X := \operatorname{pPOL}_k \varrho \in \mathscr{X} \setminus \mathscr{Y}$ be arbitrary with $\varrho \in \mathcal{Q}_1$. Then there is some $f \in X$ with $f \notin X'$ for all $X' \in \mathscr{X} \setminus \{X\}$. Then $f \in Y$ with $Y := \operatorname{pPOL}_k \chi \in \mathscr{Y} \setminus \mathscr{X}$ for some $\chi \in \mathcal{Q}_1$.

Assume $\operatorname{pp} \chi \neq \operatorname{pp} \varrho$. Then $\chi \in \mathcal{Q}_{\varrho}$ or $\varrho \in \mathcal{Q}_{\chi}$. If $\chi \in \mathcal{Q}_{\varrho}$ then there is some $g \in X$ with $g \notin X'$ for all $X' \in \mathscr{X} \setminus \{X\}$ and $g \notin \operatorname{pPOL}_k \chi$ by Lemma 6.7. Thus $\varrho \in \mathcal{Q}_{\chi}$ has to be true. But then there is some $G \in Y = \operatorname{pPOL}_k \chi$ with $G \notin X'$ for all $X' \in \mathscr{X}$ again by Lemma 6.7 contradicting \mathscr{X} minimal covering. \Box

Definition 7.7. Let $\rho^{(h)} \in \mathcal{Q}_1$. We call ρ *irreducible* iff

$$\forall \emptyset \subset A \subset E_h \ \forall v \in \sigma(E_k^{h-|A|}) \ \forall \pi \in S_h : (\operatorname{pr}_A \varrho) \times \{v\} \not\subseteq \varrho^{[\pi]}.$$

Otherwise we call it *reducible*.

Example 7.8. Let k = 4 and h = 3. Let

$$\varrho = \begin{pmatrix} 0 & 0\\ 1 & 2\\ 2 & 3 \end{pmatrix} \cup \delta^{(3)}_{\{0,1\}}.$$

We show that ρ is irreducible. There are three cases:

$$\begin{split} |A| &= 1 \text{: Then } \operatorname{pr}_A \varrho = E_4 \text{ and } v = (v_1, v_2) \in \sigma(E_4^2). \text{ Assume } (\operatorname{pr}_A \varrho) \times \{v\} \subseteq \varrho^{[\pi]}. \\ \text{Then } (v_1, v_1, v_2), (v_2, v_1, v_2) \in \varrho^{[\pi]}. \text{ Thus } \delta^{(3)}_{\{0,1\}} \cup \delta_{\{0,2\}} \subseteq \varrho \text{ because } \varrho \text{ coherent.} \\ \text{But this contradicts } \varrho \in \mathcal{Q}_1. \end{split}$$

 $A = \{0, 1\}$: If $\pi \neq id$ then $\delta_X^{(3)} \subseteq \varrho$ with $X \subset E_3$, |X| = 2 and $X \neq \{0, 1\}$ in contradiction to $\varrho \in Q_1$. Thus $\pi = id$.

Because for all $x \in E_k$

$$\left(\begin{array}{cc} 0 & 0 \\ 1 & 2 \\ x & x \end{array} \right) \not\subseteq \varrho \quad \text{and} \quad \mathrm{pr}_A \, \varrho = \left(\begin{array}{cc} 0 & 0 \\ 1 & 2 \end{array} \right) \cup \delta^{(2)}_{\{0,1\}},$$

we get $(\operatorname{pr}_A \varrho) \times \{v\} \not\subseteq \varrho$.

 $|A| = 2 \text{ and } A \neq \{0,1\}$: Then $\operatorname{pr}_A \varrho = E_4^2$. Let v = (x). Assume that the inclusion $(\operatorname{pr}_A \varrho) \times \{v\} \subseteq \varrho^{[\pi]}$ holds. Then $(x, y, x), (y, x, x), (y, y, x) \in \varrho^{[\pi]}$ and thus we have $\iota_4^3 \subseteq \varrho^{[\pi]}$ because ϱ is coherent. But this contradicts $\varrho \in Q_1$.

Thus ϱ is irreducible.

Now let

$$\varrho = \begin{pmatrix} 0 & 1\\ 1 & 0\\ 2 & 2 \end{pmatrix} \cup \delta^{(3)}_{\{0,1\}}$$

Then ϱ is reducible because

$$(\mathrm{pr}_A\,\varrho)\times\{v\}=\left(\begin{array}{rrrr} 0 & 1 & 0 & 1 & 2 & 3\\ 1 & 0 & 0 & 1 & 2 & 3\\ 2 & 2 & 2 & 2 & 2 & 2 \end{array}\right)\subseteq \varrho=\varrho^{[\pi]}$$

holds with $A = \{0, 1\}, v = (2)$ and $\pi = id$.

Lemma 7.9. Let $\varrho^{(h)} \in Q_1$ be reducible. Then for every $f \in pPOL_k \varrho$ there is some

$$\chi \in \mathcal{X}_{\varrho} := \{\{a\} \mid a \in E_k\} \cup \{\psi^{(\mu)} \in \mathcal{Q} \mid \operatorname{pp} \psi = \operatorname{pp} \varrho \land \mu < h\}$$

with $f \in \text{pPOL}_k \chi$.

Proof. Let $\sigma := \sigma(\varrho)$. Assume there is some $f^{(n)} \in \text{pPOL}_k \varrho$ such that $f \notin \text{pPOL}_k \chi$ for all $\chi \in \mathcal{X}_{\varrho}$. Then $f(x, \ldots, x) \in E_k \setminus \{x\}$ for each $x \in E_k$.

Because ρ is reducible there are some A with $\emptyset \subset A \subset E_h$, and $\pi \in S_h$ and $v \in \sigma(E_k^{h-|A|})$ such that

$$(\operatorname{pr}_A \varrho) \times \{v\} \subseteq \varrho^{[\pi]}.$$

Because $pPOL_k \rho = pPOL_k \rho^{[\pi]}$ we assume w.l.o.g. $\pi = id$.

We show that pp $\operatorname{pr}_A \varrho = \operatorname{pp} \varrho$. If |A| = 1 then $\operatorname{pr}_A \varrho = E_k$ and thus $E_k \times \{v\} \subseteq \varrho$. This implies $\delta_{\{0,i\}}^{(h)} \subseteq \varrho$ for all $i \in E_h \setminus \{0\}$ contradicting $\varrho \in \mathcal{Q}$. Let $|A| \ge 2$. We know $s_0 = (0, \ldots, 0), s_1 = (1, \ldots, 1) \in \delta(\operatorname{pr}_A \varrho)$. Then $\{s_0, s_1\} \times \{v\} \subseteq \delta(\varrho)$, i.e., for all $i \in E_h$ and $j \in E_h \setminus (A \cup \{i\})$ we get $(i, j) \notin \varepsilon(\varrho)$. Thus all non-singular classes of $\varepsilon(\varrho)$ are covered by A, i.e., the projection pr_A preserves them, and this implies $\operatorname{pp} \operatorname{pr}_A \varrho = \operatorname{pp} \varrho$.

We show that $(\operatorname{pr}_A \sigma) \times \{v\} \subseteq \sigma$. Assume the contrary. Then there exists some $s \in \operatorname{pr}_A \sigma$ with $\{s\} \times \{v\} \subseteq \delta(\varrho)$. But this contradicts $\operatorname{pr}_A \delta(\varrho) \cap \operatorname{pr}_A \sigma = \emptyset$ because $\operatorname{pp}\operatorname{pr}_A \varrho = \operatorname{pp} \varrho$. So $s \notin \operatorname{pr}_A \delta(\varrho)$ in contradiction to the assumption. We proved $(\operatorname{pr}_A \sigma) \times \{v\} \subseteq \sigma$, and thus $\omega(\operatorname{pr}_A \sigma) \cap \omega(v) = \emptyset$.

Now we show that $\gamma := \operatorname{pr}_A \varrho \in \mathcal{Q}$, i.e., that it is coherent. Let $\theta \in \Gamma_{\sigma(\gamma)}$ and $w \in \gamma$ arbitrarily. There is some $\hat{w} \in \gamma$ with $\hat{w}^{[\theta]} \in \gamma$. Then $\{\hat{w}, \hat{w}^{[\theta]}\} \times \{v\} \subseteq \varrho$, i.e., $\theta \in \Gamma_{\sigma}$ and thus $\{w, w^{[\theta]}\} \times \{v\} \subseteq \varrho$. This implies $w^{[\theta]} \in \gamma$.

 $M(\gamma) = \operatorname{pr}_A M(\varrho) \text{ because } \operatorname{pp} \operatorname{pr}_A \varrho = \operatorname{pp} \varrho.$

Let $\gamma' \subseteq \sigma(\gamma)$. Then $\gamma' \times \{v\} \subseteq \sigma$. Thus there is a relational homomorphism $\varphi \colon E_k \to E_h$ from $\gamma' \times \{v\}$ to $M(\varrho)$ and some $w \in \gamma'$ with $\varphi \begin{pmatrix} w \\ v \end{pmatrix} = \eta_h$. Let

 $\hat{\varphi} \colon E_k \to E_{|A|}$ be given by

$$\hat{\varphi}(x) = \begin{cases} \varphi(x) & \text{if } \varphi(x) \in E_{|A|} \\ 0 & \text{otherwise.} \end{cases}$$

Then $\hat{\varphi}$ is a relational homomorphism from γ' to $M(\gamma)$ with $\hat{\varphi}(w) = \eta_{|A|}$. Thus γ is a coherent relation and $\gamma \in \mathcal{X}_{\varrho}$ because $\operatorname{pp} \gamma = \operatorname{pp} \varrho$ and |A| < h. Since $f \notin \operatorname{pPOL}_k \chi$ for all $\chi \in \mathcal{X}_{\varrho}$ there are rows $c_{1*}, \ldots, c_{|A|*}$ with $c_{*1}, \ldots, c_{*n} \in \gamma$ and $f(c_{*1} \ldots c_{*n}) = d \in E_k^{|A|} \setminus \gamma$.

Then

$$f\left(\begin{array}{ccc}c_{*1}&\ldots&c_{*n}\\v&\ldots&v\end{array}\right)\in E_k^h\setminus\varrho_*$$

i.e., $f \not\in \operatorname{pPOL}_k \varrho$ contradicting the assumption.

Proposition 7.10. Let $\varrho^{(h)}, \chi^{(\mu)} \in \mathcal{Q}$ with $\mu \geq 3$, $f, g \in \operatorname{pPOL}_k \chi$ with $g(\varrho) \in E_k^h$, and g is not defined anywhere else, and $F^{(n)} := f \otimes g \notin \operatorname{pPOL}_k \chi$.

Then there are rows $c_{1*}, \ldots, c_{\mu*}$

- (1) with $c_{*1}, \ldots, c_{*n} \in \chi$ and $F(c_{*1} \ldots c_{*n}) = d \in E_k^{\mu} \setminus \chi$, and
- (2) there is some j with $c_{*j} \in \sigma(E_k^{\mu})$, and
- (3) the rows $c_{1*}, \ldots, c_{\|\chi\|_*}$ belong to the g-part of F, and
- (4) if $pp \rho = pp \chi$, then the rows $c_{1*}, \ldots, c_{\|\chi\|*}$ belong to the first $\|\chi\|$ rows of the g-part of F.

Proof. Statement (1) follows directly from $F \notin \text{pPOL}_k \chi$. Choose some rows $c_{1*}, \ldots, c_{\mu*}$ such that (1) holds.

- (2): Assume (2) is false. Then $\{c_{*1}, \ldots, c_{*n}\} \subseteq \delta(\chi) = \delta_{\varepsilon(\chi)}$ contradicting all rows c_{i*} are pairwise different by Lemma 5.3. Thus for any two rows there is a column in which they differ.
- (3): Because $\varrho \in \mathcal{Q}$ we have $\delta_{E_h}^{(h)} \subseteq \varrho$. Because $g \in \text{pPOL}_k \chi$ there is at least one row from the *f*-part of *F* and because $f \in \text{pPOL}_k \chi$ there is at least one row from the *g*-part of *F*. Let $c_{i_{f*}}$ be an arbitrary row from the *f*-part and $c_{i_{g*}}$ be an arbitrary row from the *g*-part. Because $\mu \geq 3$ there is a third row $c_{i'*}$ different from $c_{i_{f*}}$ and $c_{i_{g*}}$. Let $c_{i'*}$ be arbitrary with this condition.

There are two cases to consider:

The row $c_{i'*}$ is from the *f*-part: Then there is some column *j* in which the rows $c_{i_{f*}}$ and $c_{i'*}$, i.e., $c_{i_fj} = x$, $c_{i'j} = y$ and $x \neq y$. By construction and $\varrho \in \mathcal{Q}$, i.e., $\delta_{E_h}^{(h)} \subset \varrho$, we can choose *j* more specifically such that

$$\left(\begin{array}{c}c_{i_fj}\\c_{i'j}\\c_{i_gj}\end{array}\right) = \left(\begin{array}{c}x\\y\\y\end{array}\right).$$

The row $c_{i'*}$ is from the g-part: Then there is some j with

$$\left(\begin{array}{c} c_{i_fj} \\ c_{i'j} \\ c_{i_gj} \end{array}\right) = \left(\begin{array}{c} x \\ y \\ y \end{array}\right)$$

``

and $x \neq y$ by construction and $\varrho \in \mathcal{Q}$, i.e., $\delta_{E_h}^{(h)} \subset \varrho$. Thus $(i_f, i_g), (i_f, i') \notin \varepsilon(\chi)$. Because i_f, i_g and i' are chosen arbitrarily any row $c_{i_{f^*}}$ from the f-part belongs to a singular class of $\varepsilon(\chi)$. Because the first $\|\chi\|$ rows of χ belong to non-singular classes of $\varepsilon(\chi)$ the first $\|\chi\|$ rows $c_{1*}, \ldots, c_{\|\chi\|*}$ belong to the g-part of F. Thus (3) is true.

(4): Let $pp \rho = pp \chi$. Assume one of the rows $c_{1*}, \ldots, c_{\parallel\chi\parallel*}$ does not belong to the first $\|\chi\|$ rows of the *g*-part of *F*, w.l.o.g. let this be the row c_{1*} . As shown before c_{1*} belongs to the *g*-part of *F*. Because pp $\rho = pp \chi$ the row c_{1*} belongs to a singular class of $\varepsilon(\varrho)$. Now let c_{i_1*}, c_{i_2*} be two arbitrarily chosen different rows. Then there are three different cases:

 $c_{i_{1}*}$ and $c_{i_{2}*}$ are both from the *f*-part: Then they differ at some point and by construction we get columns c_{*j} , $c_{*j'}$ with

$$\begin{pmatrix} c_{1j} & c_{1j'} \\ c_{i_1j} & c_{i_1j'} \\ c_{i_2j} & c_{i_2j'} \end{pmatrix} = \begin{pmatrix} x & y \\ x & x \\ y & y \end{pmatrix}$$

and $x \neq y$.

 $c_{i_{1}*}$ is from the f-part and $c_{i_{2}*}$ from the g-part: Then by construction and because c_{1*} belongs to a singular class of $\varepsilon(\varrho)$ there is some column c_{*j} with

$$\begin{pmatrix} c_{1j} \\ c_{i_1j} \\ c_{i_2j} \end{pmatrix} = \begin{pmatrix} x \\ y \\ y \end{pmatrix}$$

and $x \neq y$.

 $c_{i_{1*}}$ and $c_{i_{2*}}$ are both from the g-part: Then because c_{1*} belongs to a singular class of $\varepsilon(\varrho)$ there is some column c_{*j} with

$$\left(\begin{array}{c}c_{1j}\\c_{i_{1}j}\\c_{i_{2}j}\end{array}\right) = \left(\begin{array}{c}x\\y\\y\end{array}\right)$$

and $x \neq y$.

Thus for all cases $(1, i_1), (1, i_2) \notin \varepsilon(\chi)$. Because i_1 and i_2 are chosen arbitrarily the row c_{1*} belongs to a singular class of $\varepsilon(\chi)$ in contradiction to the convention that the first $\|\chi\|$ rows of χ belong to the non-singular classes of $\varepsilon(\chi)$, see Definition 2.10. Thus (4) is true.

Definition 7.11. Let $\rho \in \mathcal{Q}_1$. Define $\mathcal{T}_{\rho} \subseteq \widetilde{\mathcal{R}}_k^{\max}$ by

$$\mathcal{T}_{\varrho} := \{\psi \in \mathcal{Q}_1 \mid \operatorname{pp} \psi = \operatorname{pp} \varrho\}$$

Lemma 7.12. Let $\varrho \in Q_1$, $\mathcal{T} \subseteq \mathcal{T}_{\varrho}$, $|\mathcal{T}| \geq 2$ and $f \in \widetilde{P}_k$ with

$$\left(\forall \psi \in \widetilde{\mathcal{R}}_k^{\max} \setminus \mathcal{T} : f \notin \operatorname{pPOL}_k \psi \right) \land \left(\exists \chi \in \mathcal{T} : f \in \operatorname{pPOL}_k \chi \right).$$

Then

(1) there are $\chi_0 \in \mathcal{T}$ and $F \in \text{pPOL}_k \chi_0$ with

$$\forall \psi \in \mathcal{R}_k^{\max} \setminus \{\chi_0\} : F \notin \operatorname{pPOL}_k \psi,$$

(2) or
(2) there are
$$F \in \widetilde{P}_k$$
 and $\mathcal{T}' \subset \mathcal{T}, \ \mathcal{T}' \neq \emptyset$ with
 $\left(\forall \psi \in \widetilde{\mathcal{R}}_k^{\max} \setminus \mathcal{T}' : F \notin \mathrm{pPOL}_k \psi \right) \land (\exists \chi \in \mathcal{T}' : F \in \mathrm{pPOL}_k \chi).$

Proof. Assume (1) is false. By this assumption there exists some $\psi_1 \in \mathcal{T}$ with $f \in \text{pPOL}_k \psi_1$. Then there is some $\psi_2 \in \widetilde{\mathcal{R}}_k^{\max} \setminus \{\psi_1\}$ with $f \in \text{pPOL}_k \psi_2$ because (1) is false. Because $f \notin \text{pPOL}_k \psi$ for all $\psi \in \widetilde{\mathcal{R}}_k^{\max} \setminus \mathcal{T}$ we get $\psi_2 \in \mathcal{T}$. Thus there are $\psi_1^{(\mu_1)}, \psi_2^{(\mu_2)} \in \mathcal{T}$ with $\psi_1 \neq \psi_2$ and $f \in (\text{pPOL}_k \psi_1) \cap (\text{pPOL}_k \psi_2)$. We can choose ψ_1 such that μ_1 is minimal. This implies

$$\forall \chi \in \{\{a\} \mid a \in E_k\} \cup \{\psi^{(\mu)} \in \mathcal{Q} \mid \operatorname{pp} \psi = \operatorname{pp} \varrho \land \mu < \mu_1\} : f \notin \operatorname{pPOL}_k \chi.$$

Thus ψ_1 is irreducible because $f \in \text{pPOL}_k \psi_1$ and Lemma 7.9.

Furthermore $\mu_1 \leq \mu_2$. If $\mu_2 = \mu_1$ then ψ_2 is also irreducible by the same argument.

We construct a function $F^{(n)} := f \otimes g$ such that $F \in \text{pPOL}_k \psi_1$ and $F \notin \text{pPOL}_k \psi_2$ holds (or the other way round).

For any set E let $\mathcal{P}(E) := \{A \subseteq E \mid A \neq \emptyset \land A \neq E\}$. There are the following cases:

 $\exists A \in \mathcal{P} \left(E_{\mu_1} \right) \ \exists v \in \sigma(E_k^{\mu_2 - |A|}) \ \exists \pi \in S_{\mu_2} : \left(\operatorname{pr}_A \psi_1 \right) \times \{v\} \subseteq \psi_2^{[\pi]} :$ Without loss of generality $\pi = \operatorname{id}.$

Assume to the contrary that $\operatorname{pp}(\operatorname{pr}_A \psi_1) \neq \operatorname{pp} \psi_1$ holds. Then the inequality $\|(\operatorname{pr}_A \psi_1) \times \{v\}\| = \|\operatorname{pr}_A \psi_1\| < \|\psi_1\| = \|\psi_2\|$ holds in contradiction to the fact $\delta(\operatorname{pr}_A \psi_1) \times \{v\} \subseteq \delta((\operatorname{pr}_A \varrho) \times \{v\}) \subseteq \delta(\psi_2)$. Thus $\operatorname{pp}(\operatorname{pr}_A \psi_1) = \operatorname{pp} \psi_1 = \operatorname{pp} \psi_2$.

Let $g(\operatorname{pr}_A \psi_1) := d$ (see Definition 4.1) for some $d \in E_k^{|A|}$ with the property $g(\operatorname{pp}(\operatorname{pr}_A \psi_1)) \in E_k^{\|\psi_2\|} \setminus \operatorname{pp} \psi_2$. Then $F \notin \operatorname{pPOL}_k \psi_2$ because

$$F\underbrace{\begin{pmatrix} \operatorname{pr}_A\psi_1\\ v \end{pmatrix}}_{\subseteq\psi_2} \in (E_k^{\|\psi_2\|} \setminus \operatorname{pp}\psi_2) \times E_k^{\mu_2 - \|\psi_2\|} \subseteq E_k^{\mu_2} \setminus \psi_2.$$

We have $g \in \text{pPOL}_k \psi_1$ because g is defined on less than μ_1 rows. Assume $F \notin \text{pPOL}_k \psi_1$. Then there are rows $c_{1*}, \ldots, c_{\mu_1*}$ with $c_{*1}, \ldots, c_{*n} \in \psi_1$ and the first $\|\psi_1\|$ rows belong to the g-part of F, and a column $c_{*j} \in \sigma(E_k^{\mu_1})$ by Proposition 7.10. Let w.l.o.g. the rows c_{1*}, \ldots, c_{l*} belong to the g-part of F and $c_{l+1*}, \ldots, c_{\mu_1*}$ to the f-part of F with $\|\chi\| \leq l < \mu_1$. Then let

$$v := \left(\begin{array}{c} c_{l+1j} \\ \dots \\ c_{\mu_1j} \end{array}\right)$$

and

$$C' := \operatorname{pr}_{1,2,\ldots,l} \{ c_{*1}, \ldots, c_{*n} \}.$$

Then $C' = \operatorname{pr}_{A'} \psi_1$ for some $A' \in \mathcal{P}(E_{\mu_1})$ with $A' \subseteq A$ by construction of g. By construction of F we get

$$\operatorname{pr}_{A'}\psi_1 \times \{v\}) = C' \times \{v\} \subseteq \{c_{*1}, \dots, c_{*n}\} \subseteq \psi_1$$

contradicting ψ_1 irreducible.

Thus there is some \mathcal{T}' with $\{\psi_1\} \subseteq \mathcal{T}' \subseteq \mathcal{T} \setminus \{\psi_2\}$ and

$$\left(\forall \psi \in \widetilde{\mathcal{R}}_k^{\max} \setminus \mathcal{T}' : F \notin \operatorname{pPOL}_k \psi\right) \land \left(\exists \chi \in \mathcal{T}' : F \in \operatorname{pPOL}_k \chi\right).$$

 $\mu_1 = \mu_2 \wedge \left(\exists A \in \mathcal{P} \left(E_{\mu_2} \right) \exists v \in \sigma(E_k^{\mu_1 - |A|}) \exists \pi \in S_{\mu_1} : (\operatorname{pr}_A \psi_2) \times \{v\} \subseteq \psi_1^{[\pi]} \right):$ This is a restriction of the previous case with the roles of ψ_1 and ψ_2 switched.

This is a restriction of the previous case with the roles of ψ_1 and ψ_2 switched. Thus there is some \mathcal{T}' with $\{\psi_2\} \subseteq \mathcal{T}' \subseteq \mathcal{T} \setminus \{\psi_1\}$ and

$$\left(\forall \psi \in \widetilde{\mathcal{R}}_k^{\max} \setminus \mathcal{T}' : F \notin \mathrm{pPOL}_k \psi \right) \land \left(\exists \chi \in \mathcal{T}' : F \in \mathrm{pPOL}_k \chi \right).$$

 $\mu_1 < \mu_2 \land \left(\exists v \in \sigma(E_k^{\mu_2 - \mu_1}) \ \exists \pi \in S_{\mu_2} : \psi_1 \times \{v\} \subseteq \psi_2^{[\pi]} \right) :$ Without loss of generality $\pi = \text{id.}$

Because ψ_1 is coherent there is some relational homomorphism $\varphi \colon E_k \to E_{\mu_1}$ from $\sigma(\psi_1)$ to $M(\psi_1)$ and some $s \in \sigma(\psi_1)$ with $\varphi(s) = \eta_{\mu_1}$. Define $\varphi^* \colon E_{\mu_1} \to E_k$ by $\varphi^*(\eta_{\mu_1}) = s$.

Let

$$g\left(\left(\sigma(\psi_1) \times \{v\}\right) \cup \delta(\psi_2)\right) := d := \varphi^{\star}\left(\varphi \left(\begin{array}{c} s \\ v \end{array}\right)\right)$$

(see Definition 4.1). Then $g \in \text{pPOL}_k \psi_1$ by construction.

Assume $g \in \text{pPOL}_k \psi_2$. Then $d \in \delta(\psi_2)$ because $|\omega(d)| = |\omega(s)| = \mu_1 < \mu_2$. But $|\omega(\text{pr}_{E_{\parallel\psi_2\parallel}} d)| = \|\psi_2\|$ in contradiction to the assumption that the first $\|\psi_2\|$ rows belong to the non-singular classes of $\varepsilon(\psi_2)$. Thus $g \notin \text{pPOL}_k \psi_2$ and this implies $F \notin \text{pPOL}_k \psi_2$.

Because $\sigma(\psi_1) \times \{v\} \subseteq \psi_2$ and the first $\|\psi_1\|$ rows belong to the non-singular classes of $\varepsilon(\psi_2)$ we get $\sigma(\psi_1) \times \{v\} \subseteq \sigma(\psi_2)$ and thus $\omega(v) \cap \omega(\sigma(\psi_1)) = \emptyset$. Assume $F \notin \operatorname{pPOL}_k \psi_1$. Then there are rows $c_{1*}, \ldots, c_{\mu_1*}$ with $c_{*1}, \ldots, c_{*n} \in \psi_1$ and $F(c_{*1}, \ldots, c_{*n}) \in E_k^{\mu_1} \setminus \psi_1$. By Proposition 7.10 the rows $c_{1*}, \ldots, c_{\|\psi_1\|}$ are the first rows in the definition of g. Thus the other rows can not belong to the last $(\mu_2 - \mu_1)$ rows in the definition of g because $\omega(v) \cap \omega(\sigma(\psi_1)) = \emptyset$. Thus this part of the definition of g can be ignored here, and thus $F \in \operatorname{pPOL}_k \psi_1$ because ψ_1 is irreducible.

Thus there is some \mathcal{T}' with $\{\psi_1\} \subseteq \mathcal{T}' \subseteq \mathcal{T} \setminus \{\psi_2\}$ and

$$\left(\forall \psi \in \widetilde{\mathcal{R}}_k^{\max} \setminus \mathcal{T}' : F \notin \mathrm{pPOL}_k \psi\right) \land \left(\exists \chi \in \mathcal{T}' : F \in \mathrm{pPOL}_k \chi\right).$$

 $\mu_1 = \mu_2 \land \left(\exists \pi \in S_{\mu_2} : \psi_1 \subset \psi_2^{[\pi]} \right) :$

Without loss of generality $\pi = id$.

Let $g(\psi_2) := d$ (see Definition 4.1) for some $d \in E_k^{\mu_2} \setminus \psi_2$. Because $\operatorname{pr}_A \psi_1 \subseteq \operatorname{pr}_A \psi_2$ for all $A \in \mathcal{P}(E_{\mu_1}), \psi_1$ irreducible and $g \in \operatorname{pPOL}_k \psi_1$ we get $F \in \operatorname{pPOL}_k \psi_1$. Furthermore $g \notin \operatorname{pPOL}_k \psi_2$ implies $F \notin \operatorname{pPOL}_k \psi_2$.

Thus there is some \mathcal{T}' with $\{\psi_1\} \subseteq \mathcal{T}' \subseteq \mathcal{T} \setminus \{\psi_2\}$ and

$$\left(\forall \psi \in \widetilde{\mathcal{R}}_k^{\max} \setminus \mathcal{T}' : F \notin \mathrm{pPOL}_k \psi\right) \land (\exists \chi \in \mathcal{T}' : F \in \mathrm{pPOL}_k \chi)$$

 $\mu_1 = \mu_2 \land \left(\exists \pi \in S_{\mu_1} : \psi_2 \subset \psi_1^{[\pi]} \right) :$

Analogous to the previous case because ψ_2 is irreducible in this case. Thus there is some \mathcal{T}' with $\{\psi_2\} \subseteq \mathcal{T}' \subseteq \mathcal{T} \setminus \{\psi_1\}$ and

$$\left(\forall \psi \in \widetilde{\mathcal{R}}_{k}^{\max} \setminus \mathcal{T}' : F \notin \mathrm{pPOL}_{k} \psi\right) \land (\exists \chi \in \mathcal{T}' : F \in \mathrm{pPOL}_{k} \chi)$$

Otherwise: Then we have

$$\forall A \in \mathcal{D}(E) \quad \forall a \in \mathcal{A}$$

$$\begin{aligned} \forall A \in \mathcal{P} \left(E_{\mu_1} \right) \, \forall v \in \sigma(E_k^{\mu_2 - |A|}) \, \forall \pi \in S_{\mu_2} : \left(\operatorname{pr}_A \psi_1 \right) \times \{ v \} \not\subseteq \psi_2^{[\pi]}, \\ \mu_1 < \mu_2 \lor \left(\forall A \in \mathcal{P} \left(E_{\mu_2} \right) \, \forall v \in \sigma(E_k^{\mu_1 - |A|}) \, \forall \pi \in S_{\mu_1} : \left(\operatorname{pr}_A \psi_2 \right) \times \{ v \} \not\subseteq \psi_1^{[\pi]} \right), \\ \mu_1 = \mu_2 \lor \left(\forall v \in \sigma(E_k^{\mu_2 - \mu_1}) \, \forall \pi \in S_{\mu_2} : \psi_1 \times \{ v \} \not\subseteq \psi_2^{[\pi]} \right), \\ \mu_1 < \mu_2 \lor \left(\forall \pi \in S_{\mu_2} : \psi_1 \not\subseteq \psi_2^{[\pi]} \right), \\ \mu_1 < \mu_2 \lor \left(\forall \pi \in S_{\mu_1} : \psi_2 \not\subseteq \psi_1^{[\pi]} \right). \end{aligned}$$

Let $g(\psi_1) := d$ (see Definition 4.1) for some $d \in E_k^{\mu_1} \setminus \psi_1$. Because $\psi_2 \not\subseteq$ $\psi_1^{[\pi]}$ for all $\pi \in S_{\mu_1}$, and $\mu_1 \leq \mu_2$ we have $g \in \text{pPOL}_k \psi_2$. Assume $F^{(n)} =$ $f \otimes g \notin \text{pPOL}_k \psi_2$. Then there are $c_{1*}, \ldots, c_{\mu_2*}$ with $c_{*1}, \ldots, c_{*n} \in \psi_2$ and $F(c_{*1},\ldots,c_{*n}) \notin \psi_2$ and the rows $c_{1*},\ldots,c_{\|\psi_2\|_*}$ belong to the g-part of F by Proposition 7.10, i.e., one of the following cases apply

- there is some $A \subset E_{\mu_1}$ and $v \in \sigma(E_k^{\mu_2 |A|})$ with $(\operatorname{pr}_A \psi_1) \times \{v\} \subseteq \psi_2$ contradicting the first assumption, or
- $\mu_1 < \mu_2$ and there is some $v \in \sigma(E_k^{\mu_2 |A|})$ with $\psi_1 \times \{v\} \subseteq \psi_2$ contradicting the third assumption.

Thus $F \in pPOL_k \psi_2$. Furthermore $F \notin pPOL_k \psi_1$ because $g \notin pPOL_k \psi_1$. Thus there is some \mathcal{T}' with $\{\psi_2\} \subseteq \mathcal{T}' \subseteq \mathcal{T} \setminus \{\psi_1\}$ and

$$\left(\forall \psi \in \widetilde{\mathcal{R}}_k^{\max} \setminus \mathcal{T}' : F \notin \mathrm{pPOL}_k \psi\right) \land \left(\exists \chi \in \mathcal{T}' : F \in \mathrm{pPOL}_k \chi\right).$$

Thus in every case there is some $\mathcal{T}' \subset \mathcal{T}$ with

$$\left(\forall \psi \in \widetilde{\mathcal{R}}_k^{\max} \setminus \mathcal{T}' : F \notin \mathrm{pPOL}_k \psi\right) \land \left(\exists \chi \in \mathcal{T}' : F \in \mathrm{pPOL}_k \chi\right),$$

i.e., (2) is true.

Theorem 7.13. For every $k \ge 2$ there is exactly one minimal covering of $p\mathcal{M}_k$.

Proof. For k = 2 one finds this statement in [4]. Thus we can assume $k \ge 3$. Assume the statement is false. Then there are pairwise different minimal coverings $\mathscr{X}_1, \ldots, \mathscr{X}_l$ with $l \geq 2$. Choose $\varrho \in \widetilde{\mathcal{R}}_k^{\max}$ with $\operatorname{pPOL}_k \varrho \in \mathscr{X}_1 \setminus \mathscr{X}_2$ arbitrarily. Then $\rho \in \mathcal{Q}_1$ because of Theorem 7.5. Let

$$\mathcal{T} := \{ \psi \in \mathcal{Q}_1 \mid \mathrm{pp}\,\psi = \mathrm{pp}\,\varrho \land (\exists a, b \in \{1, \dots, l\} : \mathrm{pPOL}_k\,\psi \in \mathscr{X}_a \setminus \mathscr{X}_b) \} \subseteq \mathcal{T}_{\varrho}.$$

KARSTEN SCHÖLZEL

Then $\rho \in \mathcal{T}$ and $|\mathcal{T}| \geq 2$ by Lemma 7.6. Additionally there is some $f \in \widetilde{P}_k \setminus (P_k \cup C_{\emptyset})$ with

$$(\forall \psi \in \mathcal{R}_k^{\max} \setminus \mathcal{T} : f \notin pPOL_k \psi) \land (\exists \chi \in \mathcal{T} : f \in pPOL_k \chi).$$
(7.1)

Otherwise $\operatorname{pPOL}_k \rho$ would be in no minimal covering contradicting the assumption. Now we can assume that $\widehat{\mathcal{T}} \subseteq \mathcal{T}$ has minimal size $|\widehat{\mathcal{T}}| \geq 2$ and fulfills (7.1) (with

 $\widehat{\mathcal{T}}$ instead of \mathcal{T}).

By Lemma 7.12 there are two cases:

• There are $\chi_0 \in \widehat{\mathcal{T}}$ and $F \in \text{pPOL}_k \chi_0$ with

$$\forall \psi \in \mathcal{R}_k^{\max} \setminus \{\chi_0\} : F \notin \mathrm{pPOL}_k \psi.$$

Then $pPOL_k \chi_0$ is in every minimal covering of $p\mathcal{M}_k$ by Lemma 3.2 in contradiction to the definition of \mathcal{T} and the assumption.

• There are $F \in \widetilde{P}_k$, \mathcal{T}' with $\emptyset \subset \mathcal{T}' \subset \widehat{\mathcal{T}}$ and

$$(\forall \psi \in \mathcal{R}_k^{\max} \setminus \mathcal{T}' : F \notin \text{pPOL}_k \psi) \land (\exists \chi \in \mathcal{T}' : F \in \text{pPOL}_k \chi).$$

Because $\widehat{\mathcal{T}}$ is minimal under the condition $|\widehat{\mathcal{T}}| \geq 2$ we conclude $|\mathcal{T}'| = 1$. Then $\mathcal{T}' = \{\chi_0\}, F \in \text{pPOL}_k \chi_0$ and

$$\forall \psi \in \widetilde{\mathcal{R}}_k^{\max} \setminus \{\chi_0\} : F \notin \mathrm{pPOL}_k \psi.$$

Thus $pPOL_k \chi_0$ is in every minimal covering of $p\mathcal{M}_k$ by Lemma 3.2, in contradiction to the definition of \mathcal{T} and the assumption.

Thus there are no two different minimal coverings of $p\mathcal{M}_k$.

Let $p\mathcal{C}_k$ be the unique minimal covering of $p\mathcal{M}_k$. Using the uniqueness of minimal coverings we can improve the statements of Lemmas 3.3 and 3.2.

Lemma 7.14. Let $C \in p\mathcal{M}_k$ and $\mathcal{C} \subseteq p\mathcal{M}_k \setminus \{C\}$ such that for all $f \in C$ there is some $C' \in \mathcal{C}$ with $f \in C'$. Then $C \notin p\mathcal{C}_k$.

Proof. Assume C is in the minimal covering $p\mathscr{C}_k$ of $p\mathscr{M}_k$. Let $\mathscr{Y} := (p\mathscr{C}_k \setminus \{C\}) \cup \mathscr{C}$. Then \mathscr{Y} is a covering of $p\mathscr{M}_k$ because for all $f \in X \in p\mathscr{M}_k$ there is

• some $Y \in p\mathscr{C}_k \setminus \{C\}$ with $f \in Y$, or

• $f \in C$ and then there is some $Y \in \mathscr{C}$ with $f \in Y$.

Then there is some minimal covering $\tilde{\mathscr{Y}} \subseteq \mathscr{Y}$ of $p\mathscr{M}_k$. But $\mathscr{Y} \cap p\mathscr{C}_k \subset p\mathscr{C}_k$ and thus $\tilde{\mathscr{Y}} \neq p\mathscr{C}_k$ contradicting Theorem 7.13.

Lemma 7.15. Let $C \in p\mathcal{M}_k$. Then

$$C \in p\mathscr{C}_k \iff (\exists f \in C \,\forall B \in p\mathscr{M}_k \setminus \{C\} : f \notin B).$$

Proof. We split the proof into two directions:

 \Leftarrow : Follows from Lemma 3.2 and Theorem 7.13.

 \Rightarrow : Let $C \in p\mathscr{C}_k$. Assume,

$$\forall f \in C \exists B \in p\mathcal{M}_k \setminus \{C\} : f \in B$$

By Lemma 7.14 with $\mathscr{C} = p\mathscr{M}_k \setminus \{C\}$ follows $C \notin p\mathscr{C}_k$ in contradiction to the assumption. \Box

Lemma 7.16. Let $\rho^{(h)} \in Q_1$ be reducible. Then $pPOL_k \rho$ is not in the minimal covering $p\mathcal{C}_k$ of $p\mathcal{M}_k$.

Proof. This follows directly from Lemma 7.9 with the help of Lemma 7.14. \Box

8. Conclusion

The minimal coverings for k = 2, 3, 4 have been given and shown to be unique in [4], [2] and [14] respectively. In following table the sizes of these minimal coverings $p\mathscr{C}_k$ are given with respect to the number of all maximal partial clones $|p\mathscr{M}_k|$.

k	$ p\mathcal{M}_k $	$ p\mathscr{C}_k $
2	8	4
3	58	26
4	1 102	449

We have now shown that the minimal coverings of $p\mathcal{M}_k$ are unique for each $k \geq 2$. Many elements of the minimal coverings have been determined (see e.g. [2, 16]) and for some maximal partial clones we have shown in this paper that they are not in a minimal covering (see Lemmas 5.5, 7.3 and 7.16). Furthermore for maximal partial clones pPOL_k ϱ with $\varrho \in \mathcal{A}$ we have a criterion which only needs to check the functions from $\operatorname{Pol}_k^{(1)} \varrho$ to see if pPOL_k ϱ belongs to $p\mathcal{C}_k$ (see Theorem 6.13). Still many elements of the minimal coverings have to be determined, and it seems to be a very hard problem, especially for the relations \mathcal{Q}_1 .

References

- R.V. Freivald, Completeness criteria for partial functions of the algebra of logic and many-valued logics, Dokl. AN SSSR 167 (1966), 1249–1250 (Russian).
- [2] L. Haddad and D. Lau, Some criteria for partial Sheffer functions in k-valued logic, Mult.-Valued Logic and Soft Computing 13 (2007), no. 4–6, 415–446.
- [3] L. Haddad and I.G. Rosenberg, Maximal partial clones determined by the areflexive relations, Discrete Appl. Math. 24 (1989), no. 1–3, 133–143.
- [4] _____, Partial Sheffer operations, Eur. J. Comb. 12 (1991), no. 1, 9–21.
- [5] _____, Completeness theory for finite partial algebras, Algebra Univers. 29 (1992), no. 3, 378–401.
- [6] L. Haddad, I.G. Rosenberg and D. Schweigert, A maximal partial clone and a Slupecki-type criterion, Acta Sci. Math. 54 (1990), no. 1–2, 89–98.
- [7] D. Lau, Function algebras on finite sets. A basic course on many-valued logic and clone theory, Springer Monographs in Mathematics, Springer, Berlin, 2006.
- [8] B.A. Romov, The algebras of partial functions and their invariants, Cybernetics 17 (1981), 157–167.
- [9] I.G. Rosenberg, La structure des fonctions de plusieurs variables sur un ensemble fini, C. R. Acad. Sci., Paris 260 (1965), 3817–3819 (French).
- [10] _____, Über die funktionale Vollständigkeit in den mehrwertigen Logiken, Rozpravy Československe Akad. Ved. Řada Mat. Přirod. Věd 80 (1970), 3–93 (German).
- [11] _____, Composition of functions on finite sets, completeness and relations, a short survey, in Multiple-valued Logic and Computer Science, second edition, ed. D. Rine, North-Holland, Amsterdam, 1984, pp. 150–192.
- [12] G. Rousseau, Completeness in finite algebras with a single operation, Proc. Amer. Math. Soc. 18 (1967), 1009–1013.

KARSTEN SCHÖLZEL

- [13] P. Schofield, Independent conditions for completeness of finite algebras with a single generator, J. Lond. Math. Soc. 44 (1969), 413–423.
- [14] K. Schölzel, *Ein Kriterium für partielle Sheffer-Funktionen in 4-wertiger Logik*, Diploma thesis, University of Rostock, May 2008 (German).
- [15] _____, Counting the maximal partial clones on a finite set, Multiple-Valued Logic and Soft Computing, (to appear).
- [16] _____, A Sheffer-Criterion for partial 4-valued logic, Multiple-Valued Logic and Soft Computing, (to appear).
- [17] H.M. Sheffer, A set of five independent postulates for Boolean algebras, with application to logical constants, Transactions of the American Mathematical Society, 14 (1913), 481–488.
- [18] D.L. Webb, Generation of an n-valued logic by one binary operation, Bull. Amer. Math. Soc. 41 (1935).

 $E\text{-}mail\ address:\ \texttt{karsten.schoelzel@uni-rostock.de}\ URL:\ \texttt{http://www.math.uni-rostock.de/~schoelzel}$

INSTITUTE FOR MATHEMATICS, UNIVERSITY OF ROSTOCK, 18051 ROSTOCK, GERMANY