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Abstract. A partial function f on an k-element set Ek is a partial Sheffer function if
every partial function on Ek is definable in terms of f . Since this holds if and only if f

belongs to no maximal partial clone on Ek, a characterization of partial Sheffer functions
reduces to finding families of minimal coverings of maximal partial clones on Ek. We show
that for each k ≥ 2 there exists a unique minimal covering.

1. Introduction

In many-valued logic the set of truth values is finite and without loss of generality
we can assume it to be Ek := {0, 1, . . . , k − 1}, k ∈ N, k ≥ 2.

The set Pk := {f (n) | f (n) : Enk → Ek, n ≥ 1} is the set of all total functions on
Ek. Let D ⊆ Enk , n ≥ 1 and f (n) : D → Ek. Then f (n) is called an n-ary partial
function on Ek with domain D. We also write dom(f) = D. If the arity of the
function is known we omit the upper index and write f instead of f (n). Denote by
P̃

(n)
k the set of all n-ary partial functions on Ek and set

P̃k :=
⋃
n≥1

P̃
(n)
k .

Let C∅ :=
{
f ∈ P̃k

∣∣∣ dom(f) = ∅
}
.

For i ∈ {1, . . . , n} the n-ary function e(n)
i defined by setting e(n)

i (x1, . . . , xn) := xi
for all x1, . . . , xn ∈ Ek is called the n-ary projection onto the i-th coordinate. Let
Jk :=

{
e
(n)
i

∣∣∣ n ∈ N, 1 ≤ i ≤ n
}

be the set of all projections.

For f ∈ P̃ (n)
k and g1, . . . , gn ∈ P̃ (m)

k let f(g1, . . . , gn) ∈ P̃ (m)
k be the composition

as given in [2], i.e.,

x ∈ dom(f(g1, . . . , gn)) ⇐⇒

(
x ∈

n⋂
i=1

dom(gi)

)
∧ (g1(x), . . . , gn(x)) ∈ dom(f)

and f(g1, . . . , gn)(x) := f(g1(x), . . . , gn(x)) for all x ∈ dom(f(g1, . . . , gn)). A partial
clone (clone) on Ek is a composition closed subset of P̃k (Pk) containing the set of
projections Jk.
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The set of all partial clones on Ek (clones on Ek), ordered by inclusion, forms
an algebraic lattice LP̃k (LPk), whose smallest element is the set of all projections
and greatest element is P̃k (Pk), respectively. A maximal partial clone (a maximal
clone) on Ek is a co-atom of P̃k and Pk, respectively. Thus a partial clone (clone)
M is a maximal partial clone (maximal clone) if the inclusions M ⊂ C ⊂ P̃k
(M ⊂ C ⊂ Pk) hold for no partial clone (hold for no clone) C on Ek.

For F ⊆ P̃k (F ⊆ Pk), we denote by [F ]P ([F ]) the partial clone (clone) on Ek
generated by F , i.e., the intersection of all partial clones (clones) containing the set
F on Ek. Clearly [F ]P ([F ]) is the least partial clone (clone) on Ek containing F .

A set F of partial functions (functions) on Ek is complete if [F ]P = P̃k ([F ] = Pk),
respectively. It is well known that a set F ⊆ P̃k (F ⊆ Pk) is complete if and only
if F is contained in no maximal partial clone (maximal clone) on Ek (see, e.g., [6]
for the partial case and e.g., [7], Theorem 1.5.4.1, for the total case). Therefore
maximal clones fully described in [9, 10] (see also [11]) play a fundamental role for
completeness.

Similarly, maximal partial clones play a very important role for the completeness
problem of finite partial algebras. The description of all maximal partial clones on
a finite set can be found in the literature. We refer the reader to the papers of
Haddad and Rosenberg [3, 5] for the description of all maximal partial clones.

Sheffer [17] described two binary functions f ∈ P2 such that [{f}] = P2, i.e.,
such that every function on E2 can be expressed in terms of f only. A function
f ∈ Pk is a Sheffer function if every function on Ek can be obtained by composition
from f and the projections, i.e., if [f ] := [{f}] = Pk.

Next Webb [18] showed that the function f defined by

f(x, y) := min(x, y) + 1 (mod k)

is a Sheffer function for Pk. Sheffer functions have been well studied and character-
ized by Rousseau [12] and Schofield [13]. We refer the reader to [11] for a detailed
list of references on the subject.

Partial Sheffer functions are defined similarly. A partial function f on Ek is a
partial Sheffer function if every partial function on Ek can be obtained by compo-
sition from f and the projections, i.e., if [f ]P = P̃k. However due to the difficulty
of the problem, very little is known about partial Sheffer functions for P̃k. Already
the family of all maximal partial clones on Ek is far more complex than the family
of all maximal clones on Ek. This is already shown in the following table where
|Mk| and |pMk| denote the number of maximal clones (see [7] p. 185) and maximal
partial clones (see [15]), respectively.

k |Mk| |pMk|
2 5 8
3 18 58
4 82 1 102
5 643 325 722
6 15 182 5 242 621 816
7 7 848 984 ?
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Results on partial Sheffer functions can be found in the papers by Haddad and
Rosenberg [4], Romov [8], and Haddad and Lau [2]. Many examples of partial
Sheffer functions are known, see e.g. [1] and [4].

The completeness problem for partial Sheffer functions is the question if for a
given partial function f ∈ P̃k the identity [f ]P = P̃k holds. That means, criteria
are investigated to decide if a partial function is a partial Sheffer function. The
problem has been solved for k = 2 by Haddad and Rosenberg [4], for k = 3 by
Haddad and Lau [2], and for k = 4 by the author in [14] (see also [16]). A specific
notion used there is a minimal covering of the maximal partial clones, which for
k ∈ {2, 3, 4} has been shown to be unique and has been determined in the papers
mentioned above. The aim of this paper is to show that for all k ≥ 2 there is a
unique minimal covering.

2. Definitions and the Theorem of Haddad and Rosenberg

Relations are useful to describe the clones in P̃k. We often write the elements
of relations as columns and a relation can then be given as a matrix. For example,
the ternary relation % = {(0, 1, 2), (1, 2, 0), (3, 4, 5), (2, 3, 1)} can also be written as

% =

 0 1 3 2
1 2 4 3
2 0 5 1

 .

Denote by Ea×bk be the set of all (a× b)–matrices over Ek. Let a matrix be given
by C = (cij)h,n ∈ Eh×nk . Then denote by ci∗ = (ci1, . . . , cin) the i-th row of the
matrix where i ∈ {1, . . . , h}), and denote by c∗j = (c1j , . . . , chj)T the j-th column
of the matrix where j ∈ {1, . . . , n}.

Let R(h)
k be the set of all h-ary relations on Ek and Rk :=

⋃
h≥1R

(h)
k . For a

relation % ∈ Rk we write %(h) to indicate that % ∈ R(h)
k , i.e., that % is an h-ary

relation.
An n-ary function f (n) ∈ P̃k preserves an h-ary relation %(h) ∈ Rk iff for all

c∗1, c∗2, . . . , c∗n ∈ % with c1∗, . . . , ch∗ ∈ dom(f) holds

f(c∗1, . . . , c∗n) :=


f(c1∗)
f(c2∗)

...
f(ch∗)

 :=


f(c11, c12, . . . , c1n)
f(c21, c22, . . . , c2n)

...
f(ch1, ch2, . . . , chn)

 ∈ %.
Denote by pPOLk % the set of all functions f ∈ P̃k which preserve the relation
% ∈ Rk. For example, for h = 1 and % = {0} the set pPOLk{0} is the set of all
functions f ∈ P̃k for which f(0, . . . , 0) = 0 or (0, . . . , 0) 6∈ dom f .

For each m ∈ N set ηm := (0, 1, . . . ,m− 1)T.
Denote by ω(v) the set of distinct entries of v = (v1, . . . , vh) ∈ Ehk , that means,

ω(v) = ω((v1, . . . , vh)) := {v1, . . . , vh}. Additionally for some relation % ⊆ Ehk we
set ω(%) =

⋃
v∈% ω(v). For example, for v = (0, 0, 1) ∈ E3

k we get ω(v) = {0, 1}.
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Definition 2.1. Set for all h with 1 ≤ h ≤ k
%1 := {(a, a, b, b), (a, b, a, b) | a, b ∈ Ek} ,
%2 := {(a, a, b, b), (a, b, a, b), (a, b, b, a) | a, b ∈ Ek} ,
ιhk :=

{
x ∈ Ehk

∣∣ |ω(x)| ≤ h− 1
}
.

Definition 2.2. For an arbitrary equivalence relation ε on Eh define

δ
(h)
k,ε :=

{
(a0, . . . , ah−1) ∈ Ehk

∣∣ (i, j) ∈ ε =⇒ ai = aj
}
.

If h or k is understood from the context we just write δε or δ
(h)
ε or δk,ε. If ε1, . . . , εr

are the non-singular equivalence classes of the relation ε then we write δ(h)k;ε1,...,εr
or

δε1,...,εr instead of δ(h)k,ε . For example, δ(h)k;Eh
=
{

(x, x, . . . , x) ∈ Ehk
∣∣ x ∈ Ek}.

These relations are called diagonal relations. Especially Ehk for any h is a diagonal
relation.

Definition 2.3. For %(h) ⊆ Ehk we set σ(%) := % \ ιhk and δ(%) := % ∩ ιhk = % \ σ(%).
If δ(%) = δγ for some equivalence relation γ on Eh then we write ε(%) := γ.

Definition 2.4. A relation %(h) ⊆ Ehk is
• areflexive, if h ≥ 2 and δ(%) = ∅, i.e., % = σ(%) meaning that for each

(x1, . . . , xh) ∈ % we have that xi 6= xj for all 1 ≤ i < j ≤ h.
• quasi-diagonal, if σ(%) is a non-empty areflexive relation, and δ(%) = δε

where ε 6= ι2h is an equivalence relation on Eh.

Definition 2.5. For %(h) ⊆ Ehk set σ := σ(%), δ := δ(%), and denote by Sh the set
of all permutations on Eh.

For r = (r0, . . . , rh−1) ∈ % and π ∈ Sh we write

r[π] := (rπ(0), rπ(1), . . . , rπ(n−1)), and %[π] :=
{
r[π]

∣∣∣ r ∈ %} .
Let Γσ :=

{
π ∈ Sh

∣∣ σ ∩ σ[π] 6= ∅
}
.

The model of % is the h-ary relation M(%) :=
{
η
[π]
h

∣∣∣ π ∈ Γσ
}
∪ (δ ∩Ehh) on Eh.

The relation % is coherent, if the following conditions hold:
(1) % 6= Ehk , % 6= ∅,
(2) (a) % is a unary relation, i.e., h = 1, or

(b) % is areflexive with 2 ≤ h ≤ k, or
(c) % is quasi-diagonal with 2 ≤ h ≤ k, or
(d) δ = ιhk with 3 ≤ h ≤ k, or
(e) h = 4 and δ = %i with i ∈ {1, 2} (see Definition 2.1),

(3) r[π] ∈ σ for all r ∈ σ and all π ∈ Γσ,
(4) for every σ′ with ∅ 6= σ′ ⊆ σ there is a relational homomorphism ϕ : Ek →

Eh from σ′ toM(%), such that ϕ(r) = ηh for some r ∈ σ′, i.e., there is some
r = (r0, . . . , rh−1) ∈ σ′ with (ϕ(r0), . . . , ϕ(rh−1)) = (0, . . . , h− 1),

(5) (a) if δ = ιhk and h ≥ 3 then Γσ = Sh,
(b) if δ = %1 then Γσ = 〈(0231), (12)〉 (Γσ is the permutation group which

is generated by the cycles (0231) and (12)),
(c) if δ = %2 then Γσ = S4.
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We remark that all non-empty non-diagonal totally reflexive, totally symmetric
relations are coherent.

Denote by R̃max
k the set of all coherent relations. Due to [15] (Chapter: Different

Relations – Different Clones) we can assume that pPOLk % 6= pPOLk χ for all
%(h), χ(h) ∈ R̃max

k with % 6= χ. Let

pMk := {Pk ∪ C∅} ∪
{

pPOLk %
∣∣∣ % ∈ R̃max

k

}
.

Theorem 2.6 (of Haddad and Rosenberg; [3, 5]). Let k ≥ 2. For each A ⊂ P̃k
with A = [A]P there is a maximal partial clone MA with A ⊆MA. A clone M is a
maximal partial clone of P̃k if and only if M ∈ pMk, i.e., in other words pMk is
the set of all maximal partial clones of P̃k.

Theorem 2.7 (Completeness criterion for P̃k; [5]). Let C ⊆ P̃k. Then [C]P = P̃k
if and only if C 6⊆M for all M ∈ pMk.

Definition 2.8. The set of coherent relations R̃max
k can be divided into the follow-

ing sets:

U := {χ(µ) ∈ R̃max
k | µ = 1},

A := {χ(µ) ∈ R̃max
k | µ ≥ 2 ∧ χ is areflexive},

Q := {χ(µ) ∈ R̃max
k | µ ≥ 2 ∧ χ is quasi-diagonal},

S := {χ(µ) ∈ R̃max
k | µ ≥ 3 ∧ δ(χ) = ιµk},

L := {χ(µ) ∈ R̃max
k | µ = 4 ∧ δ(χ) ∈ {%1, %2}}.

Definition 2.9. Let %(h) ∈ Rk and A = {a0, . . . , al−1} ⊆ Eh with ai < aj for all
i < j. Then set

prA % := pra0,...,al−1
%

:= {(xa0 , . . . , xal−1) | ∃x0, . . . , xh−1 ∈ Ek : (x0, . . . , xh−1) ∈ %}.

Definition 2.10. For %(h) ∈ Q denote by %? the union of the non-singleton classes
of the equivalence relation ε(%). We define

pp % := pr%? %,

‖%‖ := |%?|,

Q0 := {χ(µ) ∈ Q | ε(χ) has no singular equivalence class}(
= {χ(µ) ∈ Q | ppχ = χ} = {χ(µ) ∈ Q | ‖χ‖ = µ}

)
,

Q1 := Q \ Q0.

If % ∈ Q1 then define

Q% :=
{
χ ∈ Q1

∣∣∣∣ (‖χ‖ < ‖%‖) ∨
(‖χ‖ = ‖%‖ ∧ ppχ 6⊆ pp %)

}
. (2.1)

Because pPOLk % = pPOLk %[π] for all π ∈ Sh we use the convention pp % =
prE‖%‖ % for all % ∈ Q.
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The relations in Q1 are exactly the coherent quasi-diagonal relations % where
ε(%) has at least one singular class.

Example 2.11. Let k = 10 and

%(5) :=


0 5
1 6
2 7
3 8
4 9

 ∪ δ(5){0,1},{2,3}.
Then % ∈ Q, ε(%) has the blocks {0, 1}, {2, 3}, {4},

%? = {0, 1, 2, 3},
‖%‖ = 4, and

pp % =


0 5
1 6
2 7
3 8

 ∪ δ(4){0,1},{2,3}.
Then % ∈ Q1, since ε(%) has a singleton block {4}, and pp % = prE4

% ∈ Q0.

3. Minimal covering

We want to determine which maximal partial clones in the criterion in Theorem
2.7 are needed to characterize partial Sheffer functions. According to Theorem 2.7
a function f ∈ P̃k is a partial Sheffer function if and only if f ∈ P̃k \ (

⋃
pMk). It

turns out that the union
⋃
pMk of maximal partial clones is also

⋃
X for a proper

subset X of pMk. This leads to the following definition.

Definition 3.1. A set X ⊆ pMk is a minimal covering of pMk, if for every f ∈ P̃k
holds

[f ]P = P̃k ⇐⇒ ∀A ∈X : f /∈ A
and for each A ∈X there is some f ∈ P̃k with

[f ]P 6= P̃k ∧ (∀B ∈X \ {A} : f /∈ B) .

Lemma 3.2. Let C be a maximal partial clone and f ∈ C with f 6∈ B for all
B ∈ pMk \ {C}. Then C is in every minimal covering of pMk.

Proof. Let f ∈ C ∈ pMk with f 6∈ B for all B ∈ pMk \ {C}. Assume there is a
minimal covering X of pMk with C /∈ X . Then [f ]P ⊆ C ⊂ P̃k and f 6∈ A for
each A ∈ X ⊆ pMk \ {C}, in contradiction to the first condition of a minimal
covering. �

Lemma 3.3. Let C ∈ pMk and C ⊆ pMk \ {C} be such that every C ′ ∈ C
is contained in every minimal covering of pMk and for all f ∈ C there is some
C ′ ∈ C with f ∈ C ′. Then C is in no minimal covering of pMk.
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Proof. Assume C is in some minimal covering X of pMk. Then there is some
f ∈ P̃k with [f ]P 6= P̃k and f 6∈ B for all B ∈ X \ {C}. From C ⊆ X follows
f /∈ C. Thus f 6∈ A for all A ∈ X , and [f ]P 6= P̃k contradicting X minimal
covering of pMk. Thus C is in no minimal covering. �

4. A Product of Functions

Definition 4.1. Let D′ ∈ Ea×bk be an (a, b)-matrix on Ek, i.e.,

D′ =

 d11 . . . d1b

...
. . .

...
da1 . . . dab


with dij ∈ Ek for all i, j.

If a function f (n) ∈ P̃k is defined by

f(D′) := v = (v1, . . . , va)T

then

n := b,

dom f := D := {(di1, . . . , dib) | i ∈ {1, . . . , a}},
f(di1, . . . , dib) := vi

for all i ∈ {1, . . . , a}. If the domain D := dom f is given then D′ is a matrix whose
rows are the entries of D in lexicographical order.

Let χ(h) ∈ Rk and f (n) ∈ P̃k be defined by f(χ) = v then assume χ be given as
a matrix as explained before, i.e., n = |χ| and v ∈ Ehk .

Definition 4.2. Let f (n) ∈ P̃k with D = dom f and g(m) ∈ P̃k with E = dom g.
Then D′ ∈ E|D|×nk and E′ ∈ E|E|×mk .

Define F (N) := (f ⊗ g) ∈ P̃ (n·m)
k by

F (D′ ⊗ E′) := F

(
D′∗1 . . . D′∗n
E′ . . . E′

)
:=
(
f(D′)
g(E′)

)
. (4.1)

We assume E′ has no constant rows so F is well-defined. Then

domF = {(a1, . . . , a1︸ ︷︷ ︸
m times

, . . . , ai, . . . , ai︸ ︷︷ ︸
m times

, . . . , an, . . . , an︸ ︷︷ ︸
m times

) | (a1, . . . , an) ∈ D}

∪ {(b1, b2, . . . , bm, b1, b2, . . . , bm, . . . , b1, b2, . . . , bm) | (b1, . . . , bm) ∈ E}.

Let c = (c1, . . . , cN ) ∈ domF . Then we say it is from the E-part or g-part of
F if c = pri(E′, E′, . . . , E′) for some i. Otherwise we say it is from the D-part or
f -part of F .

Likewise we inductively set f ⊗ g1 ⊗ · · · ⊗ gl−1 ⊗ gl := (f ⊗ g1 ⊗ · · · ⊗ gl−1)⊗ gl
with gi ∈ P̃k for all i ∈ {1, . . . , l}.
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Example 4.3. Let f, g ∈ P̃k be given by

f

(
0 0
0 1

)
:=
(

1
2

)
, g

(
0 2 3
2 4 5

)
:=
(

4
0

)
.

where

D′ =
(

0 0
0 1

)
, D = dom f = {(0, 0), (0, 1)},

E = dom g = {(0, 2, 3), (2, 4, 5)}.

Then

(f ⊗ g)


0 0 0 0 0 0
0 0 0 1 1 1
0 2 3 0 2 3
2 4 5 2 4 5

 =


1
2
4
0


and

dom(f ⊗ g) = {(0, 0, 0, 0, 0, 0), (0, 0, 0, 1, 1, 1),

(0, 2, 3, 0, 2, 3), (2, 4, 5, 2, 4, 5)}.

5. Criteria

For the remainder of this paper we will assume k ≥ 3 as the case k = 2 is already
solved.

Lemma 5.1 (Lemma 4 [2]). The maximal partial clone Pk ∪ C∅ belongs to every
minimal covering of pMk.

Lemma 5.2 (Lemmas 5, 7 [2]). Let % ∈ U , i.e., ∅ ⊂ % ⊂ Ek. Then pPOLk %
belongs to every minimal covering of pMk.

Lemma 5.3. Let %(h) ∈ R̃max
k with h ≥ 2 and f (n) ∈ P̃k. Let c∗1, c∗2, . . . , c∗n ∈ %

with c1∗, . . . , ch∗ ∈ dom(f) and ci′∗ = ci′′∗ for some i′, i′′ ∈ {1, . . . , h} with i′ < i′′.
Then d := f(c∗1, c∗2, . . . , c∗n) ∈ %.

Proof. Because two rows are equal we have c∗i ∈ δ(%) ⊆ ιhk for all i ∈ {1, 2, . . . , n}.
Because % is coherent there are the following cases for δ := δ(%):

δ = ∅ : Then % is areflexive and c∗1 6∈ % contradicting the assumption.
δ = δε for some equivalence relation ε 6= ι2h : Then c∗1, c∗2, . . . , c∗n ∈ δε and thus
d ∈ δε ⊆ %.

δ = ιhk : Then di′ = f(ci′∗) = f(ci′′∗) = di′′ , i.e., d ∈ ιhk ⊆ %.
δ = %1 : Then

δ = {(a, a, b, b) | a, b ∈ Ek, a 6= b} ∪ {(a, b, a, b) | a, b ∈ Ek, a 6= b} ∪
{(a, a, a, a) | a ∈ Ek}

and there are the following subcases:
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i′ = 1 and i′′ = 2 : Then

c∗j ∈ δ \ {(a, b, a, b) | a, b ∈ Ek, a 6= b} = δ{0,1},{2,3}

for all j ∈ {1, 2, . . . , n} and thus d ∈ δ{0,1},{2,3} ⊂ %1 ⊆ %.
The case i′ = 3 and i′′ = 4 is analogous.

i′ = 1 and i′′ = 3 : Then

c∗j ∈ δ \ {(a, a, b, b) | a, b ∈ Ek, a 6= b} = δ{0,2},{1,3}

for all j ∈ {1, 2, . . . , n} and thus d ∈ δ{0,2},{1,3} ⊂ %1 ⊆ %.
The case i′ = 2 and i′′ = 4 is analogous.

i′ = 1 and i′′ = 4 : Then c∗j ∈ {(a, a, a, a) | a ∈ Ek} = δ{0,1,2,3} for all j ∈
{1, 2, . . . , n} and thus d ∈ δ{0,1,2,3} ⊂ %1 ⊆ %.
The case i′ = 2 and i′′ = 3 is analogous.

δ = %2 : is done analogously. �

Lemma 5.4. Let %(h) ∈ S (see Definition 2.8) with either

h ≥ 4, or

h = 3 and ∃x ∈ σ(E2
k) ∀a ∈ Ek \ ω(x) ∃y ∈ σ(%) : ω(x) ∪ {a} = ω(y). (5.1)

Then
∀f ∈ pPOLk % ∃γ ∈ U ∪ {χ} : f ∈ pPOLk γ (5.2)

with χ :=
{
x ∈ Eh−1

k

∣∣ {x} × Ek ⊆ %} and pPOLk χ ∈ pMk.

Proof. The definition of χ implies that χ is totally symmetric and totally reflexive.
We have to show that χ is non-diagonal. For h = 3 we have χ 6= ι2k because
of (5.1). Assume h ≥ 3 and χ = Eh−1

k to the contrary. Since % 6= Ehk , there
is an x := (x1, x2, . . . , xh) ∈ Ehk \ % and hence (x1, . . . , xh−1) 6∈ χ. Thus χ is a
non-diagonal totally symmetric totally reflexive relation and thus pPOLk χ ∈ pMk.

Let f (n) ∈ pPOLk % be arbitrary. Assume to the contrary, that f 6∈ pPOLk γ for
all γ ∈ U∪{χ}. Then there are c∗1, . . . , c∗n ∈ χ with c := f(c∗1, . . . , c∗n) ∈ Eh−1

k \χ.
This means,

∃q ∈ Ek \ ω(c) ∀y ∈ σ(%) : ω(c) ∪ {q} 6= ω(y).

Because f /∈ pPOLk(Ek \{q}) there are q1, . . . , qn ∈ Ek \{q} with f(q1, . . . , qn) = q.
Thus follows

f

(
c∗1 . . . c∗n
q1 . . . qn

)
=
(
c
q

)
=: t

with |ω(t)| = h, and therefore t /∈ ιhk . Because of ω(t) 6= ω(y) for every y ∈ σ(%)

by construction, t /∈ % holds. But c∗1, . . . , c∗n are chosen with
(
c∗i
qi

)
∈ % for all

i ∈ {1, . . . , n} contradicting f ∈ pPOLk %. Thus (5.2) holds. �

Let the set S ′ consist of all relations in S not fulfilling the conditions of Lemma
5.4, i.e., S ′ := {χ(µ) | χ ∈ S, µ = 3 and (5.1) is not fulfilled by χ}.
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Lemma 5.5. Let %(h) ∈ Q0 (see Definition 2.10) with h = 2 and

∃x ∈ Ek ∃π ∈ S2 : {x} × Ek ⊆ %[π].

Then pPOLk % belongs to no minimal covering of pMk.

Proof. Let f (n) ∈ pPOLk % be arbitrary. Assume to the contrary f 6∈ pPOLk θ for
all θ ∈ U .

Let A ⊂ Ek be a maximal set with A × Ek ⊆ %[π]. Let y ∈ Ek be arbitrary.
Because f 6∈ pPOLk A and f 6∈ pPOLk (Ek \ {y}) there are rows cA ∈ An and
cy ∈ (Ek \ {y})n with f(cA) =: a ∈ Ek \ A and f(cy) = y. Thus (a, y) ∈ %[π] and
because y is arbitrary we get (A ∪ {a}) × Ek ⊆ %[π] contradicting the maximality
of A.

Thus the assumption is wrong and f ∈ pPOLk θ for some θ ∈ U . This implies
pPOLk % is in no minimal covering, because pPOLk θ is in every minimal covering
of pMk by Lemma 5.2. �

Let the set Q′0 consist of all relations in Q0 not fulfilling the conditions of Lemma
5.5.

If % is symmetric, then Lemma 5.5 follows from Theorem 15, (b) in [2].

6. Sorting the minimal coverings

Definition 6.1. Let %, χ ∈ R̃max
k with % 6= χ, i.e., pPOLk % 6= pPOLk χ by defini-

tion of R̃max
k . We write %� χ iff

∀f ∈ pPOLk % ∃g ∈ pPOLk %(
(g 6∈ pPOLk χ) ∧

(
∀ψ ∈ R̃max

k (f 6∈ pPOLk ψ =⇒ g 6∈ pPOLk ψ)
))

.

Lemma 6.2. Let X = pPOLk % ∈ pMk, f ∈ X, and Y ,Z ⊆ pMk with f 6∈ Y for
all Y ∈ Y and Z = {pPOLk ψ | ψ ∈ R̃max

k ∧ %� ψ} 6= ∅.
Then there is some F ∈ X with F 6∈ Y for all Y ∈ Y ∪Z .

Proof. Let l := |Z | and Z =: {pPOLk ψ1, . . . ,pPOLk ψl}. If l = 1 then the
statement of this Lemma follows from Definition 6.1. Now let l ≥ 2. Assume there
is some fi ∈ X with i ∈ {1, . . . , l − 1}, fi 6∈ Y for all Y ∈ Y and fi 6∈ pPOLk χj
for all j ≤ i. Since i + 1 ≤ l and % � χi+1, there is some fi+1 ∈ X with
fi+1 6∈ pPOLk χi+1 and fi+1 6∈ Y for all Y ∈ Y ∪ {pPOLk χj | 1 ≤ j ≤ i}. Thus,
by induction on l, there is some F := fl ∈ X with F 6∈ Y for all Y ∈ Y ∪Z . �

Remark 6.3. With the help of � we can define a directed graph G = (pMk, E)
without loops such that (X,Y ) 6∈ E for all X,Y ∈ pMk with X = pPOLk %,
Y = pPOLk ψ and %� ψ.

If X ∈ pMk is a sink in G, then X is in every minimal covering of pMk. Assume
this is false. Then there is a minimal covering Y of pMk with X 6∈ Y and

∀f ∈ X ∃Y ∈ Y : f ∈ Y.
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Since X is a sink, i.e., (X,Y ) 6∈ E, we have % � ψ for all Y = pPOLk ψ ∈ Y and
thus by Lemma 6.2 there is some F ∈ X with F 6∈ Y for all Y ∈ Y contradicting
Y is a covering of pMk. Thus X is in every minimal covering of pMk.

If X ∈ pMk is not a sink in the graph G then X is covered by its successors
U(X) := {Y ∈ pMk | (X,Y ) ∈ E}, i.e.,

X ⊆
⋃

Y ∈U(X)

Y.

Assume this is false. Then there is some f ∈ X with f 6∈ X ′ for all X ′ ∈ U(X). By
Lemma 6.2 there is some F ∈ X with F 6∈ X ′ for all X ′ ∈ U(X) and F 6∈ Z for all
Z ∈ pMk with (X,Z) 6∈ E. Thus F 6∈ Y for all Y ∈X \ {X}. But then U(X) = ∅
because of the existence of F , i.e., X is a sink. Thus X is covered by U(X).

Then we show in following sections that G is acyclic. This implies if X is not
a sink then X is covered by sinks since G is transitive and finite, i.e., X is in no
minimal covering. Thus there is only one minimal covering.

Definition 6.4. Sometimes we write χ ⊂ % to mean χ ⊂ %[π] for some π ∈ Sh.
Because pPOLk % = pPOLk %[π] we can assume π = id in most cases where id is
the identity permutation in Sh.

Similarly if we write χ 6⊆ % then χ 6⊆ %[π] for all π ∈ Sh.

Lemma 6.5. Let %(h) ∈ A ∪Q′0 ∪ L and χ(µ) ∈ (Q∪ L ∪ S) \ {%}. Then %� χ.

Proof. Let σ := σ(%) and δ := δ(%). Let f ∈ pPOLk % be arbitrary. If f 6∈ pPOLk χ
then g := f fulfills the conditions of %� χ. Thus assume f ∈ pPOLk χ.

There are two cases:
µ ≤ h or χ ∈ S :

Let g0(χ) := v (see Definition 4.1) for some v ∈ %[π] \ χ if χ ⊂ %[π] for some
π ∈ Sh (w.l.o.g. π = id) and v ∈ Eµk \ χ otherwise. Then g0 6∈ pPOLk χ.

We have to show g0 ∈ pPOLk %. Assume g(n)
0 6∈ pPOLk %. Then there are some

rows c1∗, . . . , ch∗ with c∗1, . . . , c∗n ∈ % and g0(c∗1, . . . , c∗n) =: d 6∈ %. Because of
Lemma 5.3 all rows have to be different. Thus if µ = h then {c∗1, . . . , c∗n} ⊆ χ[π′]

for some π′ ∈ Sh.
There are some cases:

µ < h : Because g0 is only defined on µ different rows Lemma 5.3 applies.
µ = h and χ ⊂ % : Then π′ ∈ Γσ(%) because χ[π′] ⊂ % and χ ⊂ %. Thus we have
d = v[π′] ∈ % because v ∈ %.

µ = h and χ 6⊆ %[π] for all π ∈ Sh : Thus there is some j ∈ {1, 2, . . . , n} with
c∗j 6∈ % contradicting the assumption.

χ ∈ S and µ > h : Then Ehk = prA ι
µ
k = {c∗1, . . . , c∗n} ⊆ % contradicting that %

is coherent.
Thus g0 ∈ pPOLk %.

Let G0 := f ⊗ g0 and L = 0. By construction G0 6∈ pPOLk χ.
µ > h and χ 6∈ S :
Let σ0 := σ and define the relations σ1, σ2, . . . , σl, σl+1 recursively until σl+1 = ∅
and ∅ 6∈ {σ0, σ1, . . . , σl} hold.
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Let ∅ ⊂ σi ⊆ σ be given. Because % is coherent, there is a relational ho-
momorphism ϕi : Ek → Eh from σi to M(%) and an si ∈ σi with ϕi(si) = ηh.
Let σi+1 :=

{
s ∈ σi

∣∣ ϕi(s) ∈ δ ∩ Ehh}. From ϕi(si) = ηh /∈ δ ∩ Ehh follows
|σi+1| < |σi|. Because |σ| is finite there is an l ∈ N with σl+1 = ∅.

Define ϕ? : Eh → Ek by ϕ?(ηh) := s0. Then define for i ∈ {0, 1, . . . , l} the
function qi : Ek → Ek with qi(x) := ϕ?(ϕi(x)). Then qi is a relational homo-
morphism from σi to %. For v := (v0, v1, . . . , vm−1) ∈ Emk and m ∈ {1, 2, . . . , k}
let

Q−1(v) := δ
(m)
Em

,

Qi(v) := Qi−1(v) ∪ {(xv0 , xv1 , . . . , xvm−1) ∈ Emk | ϕi(a) = ϕi(b) =⇒ xa = xb},
Ql+j(v) := Ql(v) for all j ≥ 1.

Because of |ϕi(Ek)| = h we have |ω(x)| ≤ h for all x ∈ Qi(ηk).
Let

∀i ∈ {0, 1, 2, . . . , l} : gi({ηk} ∪Qi−1(ηk)) := qi(ηk),

∀j ∈ {1, 2, . . . , |Ekk |} : gl+j({ηk} ∪Ql(ηk)) := wj ,

where {w1, w2, . . . , w|Ekk |} = Ekk . Let L := l + |Ekk |.
We now show gi ∈ pPOLk % for i ∈ {0, 1, . . . , L}. Assume g(n)

i 6∈ pPOLk %.
Then there are rows c1∗, . . . , ch∗ with c∗1, . . . , c∗n ∈ % and gi(c∗1, . . . , c∗n) =: d ∈
Ehk \%. By construction of gi we can w.l.o.g. assume that c′ := c∗1 = prp1,...,ph ηk
with pairwise different coordinates p1, . . . , ph. Thus c′ ∈ σ(%). There are two
cases:
c′ ∈ σi : We have i ≤ l since σl+1 = ∅. Then d = gi(c′, c∗2, . . . , c∗n) = qi(c′) ∈ %
because qi is a relational homomorphism from σi to %. This is in contradiction
to d ∈ Ehk \ %.

c′ ∈ % \ σi : Then there is some j < i such that c′ ∈ σj and c′ 6∈ σj+1 hold. Then
ϕj(c′) ∈ σ(Ehk ). Thus

Ehk = Qj(c′) ⊆ Qi−1(c′) = prp1,...,ph Qi−1(ηk) = {c∗2, . . . , c∗n} ⊆ %,

i.e., % = Ehk in contradiction to % coherent.
Thus no such c′ can exist and therefore gi ∈ pPOLk % for all i ∈ {0, 1, . . . , L}.

Let Gi := f ⊗ g0 ⊗ g1 ⊗ · · · ⊗ gi for i ∈ {0, 1, . . . , L}.
We show GL 6∈ pPOLk χ. If gi 6∈ pPOLk χ for some i ∈ {0, 1, . . . , L}, then

GL 6∈ pPOLk χ. Otherwise Ql(v) ⊆ χ for some v ∈ χ by construction of Ql(v)
and gi ∈ pPOLk χ for i ∈ {0, 1, . . . , L}. Then gl+j({v} ∪ δ(µ)

Eµ
∪Ql(v)) ∈ χ for all

j ∈ {1, 2, . . . , |Ekk |} and thus Eµk ⊆ χ in contradiction to χ coherent.
Let G−1 = f and g = GL. Now we show that g ∈ pPOLk % by induction over

i ∈ {−1, 0, 1, . . . , L}.
The basis G−1 = f ∈ pPOLk % is given by choice of f .
The induction goes from i − 1 to i for i ∈ {0, 1, . . . , L}. Let Gi−1 ∈ pPOLk %.

We want to show Gi = Gi−1 ⊗ gi ∈ pPOLk %. Let D := domGi−1, E := dom gi
and D′, E′ the associated matrices (see Definition 4.1).
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Assume Gi 6∈ pPOLk %. Then there are some rows c1∗, . . . , ch∗ from D′⊗E′ with

F

 c1∗
...
ch∗

 =:

 s1
...
sh

 =: s 6∈ % (6.1)

and
∀j ∈ {1, 2, . . . , N} : c∗j ∈ %. (6.2)

By Lemma 5.3 all the rows ci∗ are pairwise different.
Because Gi−1 ∈ pPOLk % and gi ∈ pPOLk % some rows have to be from the

D-part and some from the E-part of D′ ⊗ E′.
Assume w.l.o.g. c1∗ is from theD-part and ch∗ is from the E-part. From δ(χ) 6= ∅

and χ coherent follows δ(µ)
Eµ
⊆ δ(χ) ⊆ χ.

There are three cases:
% ∈ A : Because Ek ⊆ ch∗ there is some column j with c1j = chj in contradiction

to % areflexive.
% ∈ Q′0 : If h = 2 then {x} × Ek ⊆ % in contradiction to % ∈ Q′0, i.e., % does not
fulfill the conditions of Lemma 5.5.

Let h ≥ 3 and i ∈ {2, . . . , h − 1} be arbitrary. Because c1∗ 6= ci∗ there is
column j with (c1j , cij , chj)T = (x, y, y)T and x 6= y. Because i is arbitrary and
δ(%) = δε for some equivalence relation ε we get that (0, a) 6∈ ε = ε(%) for all
a 6= 0, i.e., ε(%) has a singular equivalence class contradicting % ∈ Q0.

% ∈ L : If c1∗, c2∗, c3∗ (which are pairwise different) are from D and is c4∗ from
E, then there is there is a column c∗j = (x, y, z, w)T 6∈ % with |{x, y, z}| ≥ 2
and |{x, y, z, w}| = 3 in contradiction to (6.2). Otherwise there is some column
c∗j = (x, y, y, y)T 6∈ % with x 6= y contradicting (6.2).

Thus Gi ∈ pPOLk % and by induction g = GL ∈ pPOLk %. Because g 6∈ pPOLk χ
we get %� χ. �

Lemma 6.6. Let %(h) ∈ Q1 ∪ S ′ and χ(µ) ∈ S. Then %� χ.

Proof. Let f ∈ pPOLk % be arbitrary. If f 6∈ pPOLk χ then g := f fulfills the
conditions of �. Thus assume f ∈ pPOLk χ.

Let gχ(χ) := v (see Definition 4.1) for some v ∈ % \ χ if χ ⊆ % and v ∈ Eµk \ χ
otherwise. Then gχ ∈ pPOLk % and let g := f ⊗ gχ. We get g 6∈ pPOLk χ because
gχ 6∈ pPOLk χ. Let D := dom f and E := dom gχ as in Definition 4.2, n = |D|,
m = |E| and N = |D| · |E|.

It suffices to show F (N) := (f ⊗gχ) ∈ pPOLk %. Assume this is false. Then there
are some rows c1∗, . . . , ch∗ from D ⊗ E with si := F (ci∗), s := (s1, . . . , sh)T 6∈ %
and c∗j ∈ % for all j ∈ {1, 2, . . . , N}. By Lemma 5.3 all the rows ci∗ are pairwise
different.

If all rows ci∗ are from the D-part of D⊗E, then f(c∗1m, c∗2m, . . . , c∗nm) = s 6∈ %
in contradiction to f ∈ pPOLk %. Thus one row is from the E-part.

Assume there are rows from both parts of D ⊗E. Then w.l.o.g. % is given such
that c1∗ is from the D-part and ch∗ is from the E-part. Let ci1∗, . . . , ciq∗ with q < h

the rows of the E-part. Then δ(q)Eq
⊆ (cij)i=i1,...,iq,j=1,...,N .
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There are two cases:
% ∈ Q1 : Let ci1∗, ci2∗, ch∗ be three pairwise different rows. Then there are columns
j1 and j2 with (ci1j1 , ci2j1 , chj1)T = (x, y, x)T, (ci1j2 , ci2j2 , chj2)T = (x, y, y)T and
x 6= y. Thus (i1−1, i2−1), (i1−1, h−1), (i2−1, h−1) 6∈ ε(%). Because i1 6= i2 6= h

are arbitrary it follows that δ(%) = δ
(h)

ι2h
= Ehk in contradiction to % coherent.

% ∈ S ′ : If only c1∗ is from D, then {x} × E2
k ⊆ % for some x ∈ c1∗, and thus

(x, y)T × Ek ⊆ % with x 6= y. If only ch∗ is from E then (x, y)T × Ek ⊆ % with
x 6= y, x ∈ c1∗ and y ∈ c2∗. Thus Lemma 5.4 applies contradicting % ∈ S ′. �

Lemma 6.7. Let %(h) ∈ Q1 and χ(µ) ∈ Q%. Then %� χ.

Proof. Let f ∈ pPOLk % be arbitrary. If f 6∈ pPOLk χ then g := f fulfills the
conditions of �. Thus assume f ∈ pPOLk χ.

Let gχ(χ) := v (see Definition 4.1) for some v ∈ Eµk \ χ and let g := f ⊗ gχ. We
get g 6∈ pPOLk χ because gχ 6∈ pPOLk χ. It suffices to show

F (N) := (f ⊗ gχ) ∈ pPOLk %. (6.3)

Let D := dom f and E := dom g as in Definition 4.2, n = |D|, m = |E| and
N = |D| · |E|.

Assume (6.3) is false. Then there are c1∗, . . . , ch∗ from D⊗E with si := F (ci∗),
s := (s1, . . . , sh)T 6∈ % and c∗j ∈ % for all j ∈ {1, 2, . . . , N}. By Lemma 5.3 all the
rows ci∗ are pairwise different.

If all rows ci∗ are from the D-part of D ⊗ E, then f(c∗1m, c∗2m, c∗nm) = s 6∈ %
in contradiction to f ∈ pPOLk %. Thus at least one row is from the E-part.

Let l := ‖%‖. Let w.l.o.g. pp % be the first l rows of %. Assume there is some
row ci1∗ with 1 ≤ i1 ≤ l such that ci1∗ is not from the part of E representing ppχ.
Let i2 6= i1 with 1 ≤ i2 ≤ l be arbitrary. Then there are columns j1 and j2 with
(ci1j1 , ci2j1 , chj1)T = (x, y, x)T, (ci1j2 , ci2j2 , chj2)T = (x, y, y)T and x 6= y. Thus
(i2 − 1, i1 − 1) 6∈ ε(%), i.e., there is a singleton class in ε(pp %) in contradiction to
pp % ∈ Q0.

So we need ppχ ⊆ pp % in contradiction to the definition of Q%. �

Definition 6.8. Let f ∈ P̃
(1)
k be a unary function. Then we define recursively

f0 := e
(1)
1 and fn := f(fn−1) for all n ≥ 1.

For the proof of Theorem 6.13 some lemmas are needed using the following
condition on % ∈ A.

∃ϕ ∈ Pol(1)k % ∀l ∈ {1, 2, . . . , h− 1} ∀D ⊆ σ(Elk) ∀v ∈ σ(Eh−lk )

∀π ∈ Sh ∃m ≥ 0 : D × {ϕm(v)} 6⊆ %[π]. (6.4)

Proposition 6.9. Let %(h) ∈ A and % fulfills (6.4). Then there is some ϕ′ ∈ Pol(1)k %
which suffices the conditions in (6.4) and ϕ′ 6∈ pPOLk{x} for all x ∈ Ek.

Proof. There is some ϕ ∈ Pol(1)k % which fulfills (6.4). Let

ϕ′(x) =
{
y for some y ∈ Ek \ {x}, if x ∈ Ek \ ω(%),
ϕ(x) otherwise.
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Let x ∈ Ek \ ω(%). If x ∈ ω(D)∪ ω(v) then D× {(ϕ′)0(v)} = D× {v} 6⊆ %[π] for
all π. Thus ϕ′ fulfills the conditions of (6.4) because it coincides with ϕ on ω(%).

Let x ∈ ω(%). Then there is some D ⊆ σ(Eh−1
k ) with D × {x} ⊆ %[π] for some

π ∈ Sh. But there is some m ≥ 0 with D × {(ϕ′)m(x)} 6⊆ %[π] because of (6.4).
Thus ϕ′(x) 6= x. For x 6∈ ω(%) follows ϕ′(x) 6= x by definition of ϕ′. �

Lemma 6.10. Let %(h) ∈ A and % fulfills (6.4). Then pPOLk % is in every minimal
covering of pMk.

Proof. Because of Lemma 6.5 we just have to find a function f ∈ pPOLk % with

∀χ ∈ (U ∪ A) \ {%} : f 6∈ pPOLk χ.

Then there is some function g ∈ pPOLk % with

∀χ ∈ R̃max
k \ {%} : g 6∈ pPOLk χ

and by construction also g 6∈ Pk ∪ C∅. Thus pPOLk % is in every minimal covering
of pMk by Lemma 3.2.

We will now construct the function f mentioned above.
We can assume π = id ∈ Sh in (6.4) because pPOLk % = pPOLk %[π]. Because of

Proposition 6.9 we can assume ϕ 6∈ pPOLk{x} for all x ∈ Ek.
Let f0 := ϕ and define fj := fj−1 ⊗ fχj recursively with

X := {χ1, . . . , χN} := {χ ∈ U ∪ A | ϕ ∈ pPOLk χ}.

Let χ(µ) = χj ∈ X. There are two cases:
µ ≤ h : Let fχ(χ) := z (see Definition 4.1) with z ∈ % \ χ if χ ⊂ % and z ∈ Eµk \ χ
otherwise. Then fχ 6∈ pPOLk χ and by construction fχ ∈ pPOLk %.

µ > h : Because % is coherent there is a relational homomorphism θ0 : Ek → Ek
from % to M(%). Let θ1 : Eh → Ek with θ1(ηh) = v1 for some v1 ∈ %. Then
θ ∈ pPOLk % for θ : Ek → Ek with θ(x) = θ1(θ0(x)).

Let v ∈ χ be arbitrary and let fχ(χ) := θ(v) (see Definition 4.1). Because
|ω(θ(v))| ≤ h < µ we have θ 6∈ pPOLk χ, and thus fχ 6∈ pPOLk χ.

By construction θ is a relational homomorphism from % to %. Thus fχ ∈
pPOLk %.
Because fj = fj−1 ⊗ fχj and fχj 6∈ pPOLk χj we get fj 6∈ pPOLk χj .
Assume f (n)

j 6∈ pPOLk %. Then there are rows c1∗, . . . , ch∗ with c∗1, . . . , c∗n ∈ %
and f(c∗1, . . . , c∗n) = d ∈ Ehk \%. Then the rows ci∗ are pairwise different and some
rows belong to the fj−1 part of fj and some to the fχ part. The rows can w.l.o.g.
be sorted in a way such that the first l rows for some l ∈ {1, 2, . . . , h− 1} are from
the fj−1 part of fj = fj−1 ⊗ fχj .

Let D := pr0,...,l−1{c∗1, . . . , c∗n} and W := prl,...,h−1{c∗1, . . . , c∗n}. Because the
rows cl∗, cl+1∗, . . . , ch−1∗ are from the fχ part and fχ is only defined on χ we get
W = prpl,pl+1,...,ph−1

χ for pairwise different pi. Let v ∈ W ⊆ Ek be arbitrary.
Then there is some v′ ∈ χ with v = prpl,pl+1,...,ph−1

v′. Thus {ϕm(v) | m ≥ 0} ⊆W
because ϕ ∈ pPOLk χ, i.e., {ϕm(v′) | m ≥ 0} ⊆ χ.

But then D × {ϕm(v) | m ≥ 0} ⊆ % in contradiction to (6.4). �
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Let Γ′ ⊆ Sh and l ≤ h. Then we define Γ′|El ⊆ Sl by

Γ′|El := {π ∈ Sl | ∃π′ ∈ Γ′ : (∀x ∈ El : π(x) = π′(x)) ∧ (∀x ∈ Eh \ El : π′(x) = x)}.

Lemma 6.11. Let %(h) ∈ A, χ̄(l) ⊆ Elk, V ⊆ E
h−l
k , l ∈ {1, . . . , h−1} and χ×V ⊆ %.

Let Γ′ := {π ∈ Γσ | ∀x ∈ Eh \ El : π(x) = x} and χ′ := {c[π] | c ∈ χ̄, π ∈ Γ′|El}.
Then χ′ is coherent and χ′ × V ⊆ %.

Proof. From the definition of Γ′ and % coherent follows χ′ × V ⊆ %.
We now show that χ′ is coherent.

• If l ≥ 2 then χ′ 6= Elk because χ′ ⊆ σ(Elk) ⊂ Elk.
Let l = 1 and χ′ = Elk = Ek.
If h = 2 then V 6= Ek because otherwise E2

k ⊆ % contradicting % coherent.
Let V ′ with V ⊆ V ′ ⊂ Ek be maximal with respect to inclusion such that
χ′ × V ′ ⊆ %. Because f 6∈ pPOLk V ′ there are b1, . . . , bn ∈ V ′ and y ∈ Ek \ V ′
with f(b1, . . . , bn) = y. Then there is some x ∈ Ek such that (x, y)T 6∈ % and there
are a1, . . . , an ∈ Ek \ {x} with f(a1, . . . , an) = x because f 6∈ pPOLk(Ek \ {x})
and Ek \ (Ek \ {x}) = {x}. Thus

f

(
a1 . . . an
b1 . . . bn

)
=
(
x
y

)
6∈ %

but (ai, bi)T ∈ % for all i ∈ {1, . . . , n} contradicting f ∈ pPOLk %.

If h ≥ 3 then
(

x
w

)
6∈ % for all w ∈ V ⊆ σ(Eh−lk ) and x ∈ ω(w).

Thus χ′ 6= Elk.
• χ′ ⊆ σ(Elk), i.e., χ′ is areflexive and 1 ≤ l < k,
• r[π] ∈ χ′ for all r ∈ χ′ and π ∈ Γχ′ because π ∈ Γ′ for any π ∈ Γχ′ .
• M(χ′) = {η[π]

l | π ∈ Γχ′ = Γ′|El}. Let ψ with ∅ ⊂ ψ ⊆ χ′ and w ∈ V be arbitrary.
Because % is coherent there exists a relational homomorphism λ : Ek → Eh from
ψ × {w} to M(%) with

λ

(
c
w

)
= ηh,

i.e., λ(c) = ηl, for some c ∈ ψ. For any c′ ∈ ψ we have

λ

(
c′

w

)
∈M(%) = {η[π]

h | π ∈ Γσ}

and because λ(w) = (l, . . . , h− 1)T we get

λ

(
c′

w

)
∈ {η[π]

h | π ∈ Γ′}

and thus λ(c′) ∈M(χ′).
Let λ′ : Ek → El be defined by

λ′(x) :=
{
λ(x) if x ∈ ω(χ′),
0 otherwise.
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Then λ′ : Ek → El is a relational homomorphism from χ′ to M(χ′) such that
λ′(c) = ηl for some c ∈ χ′.

Thus χ′ is coherent, i.e., χ′ ∈ U ∪ A. �

Lemma 6.12. Let %(h) ∈ A and % does not fulfill (6.4). Then pPOLk % is in no
minimal covering of pMk.

Proof. Let f (n) ∈ pPOLk % be arbitrary with

∀χ(µ) ∈ U ∪ A : (µ < h =⇒ f 6∈ pPOLk χ) . (6.5)

Let ϕ(x) := f(x, . . . , x). Then ϕ ∈ pPOL(1)
k % and by (6.5) we have ϕ(x) ∈

Ek \ {x} for all x ∈ Ek, specifically ϕ ∈ Pol(1)k %. Because (6.4) is false, there exist
l, D = {D∗1, . . . , D∗|D|} ⊆ σ(Elk), v ∈ σ(Eh−lk ) and π ∈ Sh with 0 < l < h and

∀m ≥ 0 : D × {ϕm(v)} ⊆ %[π].

Because pPOLk % = pPOLk %[π] we assume w.l.o.g. π = id, i.e.,

∀m ≥ 0 : D × {ϕm(v)} ⊆ %. (6.6)

We show ϕm(v) ∈ σ(Eh−lk ) for all m ≥ 0. Assume otherwise. Then(
D∗1
ϕm(v)

)
∈ ιhk

for some m, but this contradicts (6.6) because % ⊆ σ(Ehk ).
Because σ(Eh−lk ) is finite, there are 0 ≤ m1 < m2 such that ϕm1(v) = ϕm2(v).

Let V := {ϕm1+m(v) | m ≥ 0}. Then for any w ∈ V there is some w′ ∈ V with
ϕ(w′) = w.

Let χ ∈
{
ψ(µ) ∈ U ∪ A

∣∣ µ = l
}
with χ×V ⊆ %. Then there are rows c1∗, . . . , cl∗

with c∗1, . . . , c∗n ∈ χ and f(c∗1, . . . , c∗n) =: d ∈ Elk \ χ.
Let w′ ∈ V arbitrary and w = ϕ(w′) ∈ V . Then χ× {w′} ⊆ % and

f

(
c∗1 . . . c∗n
w′ . . . w′

)
=
(

d
w

)
∈ Ehk ,

i.e., (
d
w

)
∈ %

because f ∈ pPOLk %. Thus (χ ∪ {d})× V ⊆ %. This also implies χ ∪ {d} ⊆ σ(Elk)
as shown before.

Let Γ′ := {π ∈ Γσ | ∀x ∈ Eh \ El : π(x) = x} and χ′ := {c[π] | c ∈ χ ∪ {d}, π ∈
Γ′|El}.

By Lemma 6.11 with χ̄ = χ∪{d} we get χ′ coherent, i.e., χ′ ∈ U ∪A, and χ ⊂ χ′
with χ′ × V ⊆ %.

Now let χ0 := {D∗1} then χ0 is coherent and χ0 × V ⊆ %. By the argument
above there is an infinite chain χ0 ⊂ χ1 ⊂ χ2 ⊂ . . . with χi ∈ U ∪A and χi×V ⊆ %
for all i ∈ N. But this contradicts |U ∪ A| < ∞ and thus the assumption (6.5) is
wrong.
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Thus for any f ∈ pPOLk % there is some χ(µ) ∈ U ∪ A with µ < h and f ∈
pPOLk χ. By induction there is some ψ(µ′) ∈ U ∪A with µ′ ≤ µ, f ∈ pPOLk ψ and
pPOLk ψ is in every minimal covering of pMk.

Thus pPOLk % is in no minimal covering of pMk. �

Theorem 6.13. Let %(h) ∈ A. Then pPOLk % is in any minimal covering of pMk

if and only if % fulfills (6.4).

Proof. If % fulfills (6.4) then pPOLk % is in every minimal covering by Lemma 6.10.
If % does not fulfill (6.4) then pPOLk % is no minimal covering by Lemma 6.12. �

7. Uniqueness of minimal coverings

Lemma 7.1. Let X ,Y be two different minimal coverings of pMk. Then
pPOLk % ∈X if and only if pPOLk % ∈ Y for all % ∈ U ∪ A.

Proof. By Lemma 5.2 we have pPOLk % ∈ X and pPOLk % ∈ Y for all % ∈ U . By
Theorem 6.13

∀% ∈ A (pPOLk % ∈X ⇐⇒ pPOLk % ∈ Y ).

�

Lemma 7.2. Let X ,Y be two different minimal coverings of pMk. Then
pPOLk % ∈X if and only if pPOLk % ∈ Y for all % ∈ Q0 ∪ L.

Proof. Assume this is false. Then there exists some % ∈ Q0 ∪ L such that
X := pPOLk % ∈ X \ Y . Because X is in some minimal covering of pMk we
obtain % ∈ Q′0 ∪ L. By Lemma 6.5 we have

Z := {pPOLk ψ | ψ ∈ R̃max
k ∧ %� ψ} ⊇ {pPOLk ψ | ψ ∈ (Q∪ L ∪ S) \ {%}}.

Since X is a minimal covering there exists some f ∈ X with f 6∈ X ′ for all
X ′ ∈X \{X}. By Lemma 6.2 there is some F ∈ X with F 6∈ Y for all X ′ ∈X ∪Z
and X ′ 6= X. Since Y is a covering there is some Y ∈ Y with F ∈ Y . But then
Y ∈ Y \ (X ∪Z ) = (Y \Z ) \X = (Y ∩ {pPOLk χ | χ ∈ U ∪ A}) \X = ∅ by
Lemma 7.1. This is a contradiction. �

Lemma 7.3. Let X ⊆ pMk be a minimal covering of pMk. Then pPOLk % 6∈ X
for all % ∈ S \ S ′.

Proof. Assume X := pPOLk % ∈ X for some % ∈ S \ S ′. Then there is some
f ∈ X with f 6∈ Y for all Y ∈ X \ {X}. Applying Lemma 5.4 recursively on
X implies f ∈ pPOLk χ for some χ ∈ U ∪ Q ∪ S ′. By Lemmas 6.5 and 6.6 there
is some g ∈ pPOLk χ with g 6∈ Y for all Y ∈ X in contradiction to X minimal
covering. �

Lemma 7.4. Let X ,Y be two different minimal coverings of pMk. Then
pPOLk % ∈X if and only if pPOLk % ∈ Y for all % ∈ S.



UNIQUE MINIMAL COVERING 19

Proof. Assume this is false. Then there is some % ∈ S with X := pPOLk % ∈X \Y .
In particular is % ∈ S ′ by Lemma 7.3. Then there is some f ∈ X with f 6∈ X ′ for
all X ′ ∈X \ {X}.

Then f 6∈ Y for all Y ∈ Y with Y = pPOLk χ and χ ∈ U∪A∪Q0∪L by Lemmas
7.1 and 7.2. Thus there is some Z ∈ Y with Z = pPOLk ψ and ψ ∈ Q1 ∪ S ′ and
f ∈ Z. By Lemma 6.6 there is some g ∈ Z with g 6∈ X and g 6∈ X ′ for all
X ′ ∈ X \ {X}, i.e., g 6∈ X ′ for all X ′ ∈ X . This contradicts X minimal covering
because g ∈ Z ∈ Y . �

Theorem 7.5. Let X ,Y be two different minimal coverings of pMk. Then
X \ Y ⊆ {pPOLk ψ | ψ ∈ Q1}.

Proof. The theorem follows from Lemmas 7.1, 7.2 and 7.4, and Lemma 5.2 for the
partial clone Pk ∪ C∅. �

Lemma 7.6. Let X ,Y be different minimal coverings of pMk. Furthermore let
X := pPOLk % ∈ X \ Y for some % ∈ Q1. Then there is some χ ∈ Q1 with
Y := pPOLk χ ∈ Y \X and ppχ = pp %.

Proof. By X 6= Y and Theorem 7.5 we have ∅ ⊂ X \ Y ⊆ {pPOLk ψ | ψ ∈ Q1}.
Let X := pPOLk % ∈ X \ Y be arbitrary with % ∈ Q1. Then there is some f ∈ X
with f 6∈ X ′ for all X ′ ∈ X \ {X}. Then f ∈ Y with Y := pPOLk χ ∈ Y \X for
some χ ∈ Q1.

Assume ppχ 6= pp %. Then χ ∈ Q% or % ∈ Qχ. If χ ∈ Q% then there is some
g ∈ X with g 6∈ X ′ for all X ′ ∈ X \ {X} and g 6∈ pPOLk χ by Lemma 6.7. Thus
% ∈ Qχ has to be true. But then there is some G ∈ Y = pPOLk χ with G 6∈ X ′ for
all X ′ ∈X again by Lemma 6.7 contradicting X minimal covering. �

Definition 7.7. Let %(h) ∈ Q1. We call % irreducible iff

∀∅ ⊂ A ⊂ Eh ∀v ∈ σ(Eh−|A|k ) ∀π ∈ Sh : (prA %)× {v} 6⊆ %[π].

Otherwise we call it reducible.

Example 7.8. Let k = 4 and h = 3. Let

% =

 0 0
1 2
2 3

 ∪ δ(3){0,1}.
We show that % is irreducible. There are three cases:
|A| = 1 : Then prA % = E4 and v = (v1, v2) ∈ σ(E2

4). Assume (prA %)× {v} ⊆ %[π].
Then (v1, v1, v2), (v2, v1, v2) ∈ %[π]. Thus δ(3){0,1} ∪ δ{0,2} ⊆ % because % coherent.
But this contradicts % ∈ Q1.

A = {0, 1} : If π 6= id then δ
(3)
X ⊆ % with X ⊂ E3, |X| = 2 and X 6= {0, 1} in

contradiction to % ∈ Q1. Thus π = id.
Because for all x ∈ Ek 0 0

1 2
x x

 6⊆ % and prA % =
(

0 0
1 2

)
∪ δ(2){0,1},
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we get (prA %)× {v} 6⊆ %.
|A| = 2 and A 6= {0, 1} : Then prA % = E2

4 . Let v = (x). Assume that the inclusion
(prA %) × {v} ⊆ %[π] holds. Then (x, y, x), (y, x, x), (y, y, x) ∈ %[π] and thus we
have ι34 ⊆ %[π] because % is coherent. But this contradicts % ∈ Q1.

Thus % is irreducible.
Now let

% =

 0 1
1 0
2 2

 ∪ δ(3){0,1}.
Then % is reducible because

(prA %)× {v} =

 0 1 0 1 2 3
1 0 0 1 2 3
2 2 2 2 2 2

 ⊆ % = %[π]

holds with A = {0, 1}, v = (2) and π = id.

Lemma 7.9. Let %(h) ∈ Q1 be reducible. Then for every f ∈ pPOLk % there is
some

χ ∈ X% := {{a} | a ∈ Ek} ∪ {ψ(µ) ∈ Q | ppψ = pp % ∧ µ < h}
with f ∈ pPOLk χ.

Proof. Let σ := σ(%). Assume there is some f (n) ∈ pPOLk % such that f 6∈ pPOLk χ
for all χ ∈ X%. Then f(x, . . . , x) ∈ Ek \ {x} for each x ∈ Ek.

Because % is reducible there are some A with ∅ ⊂ A ⊂ Eh, and π ∈ Sh and
v ∈ σ(Eh−|A|k ) such that

(prA %)× {v} ⊆ %[π].

Because pPOLk % = pPOLk %[π] we assume w.l.o.g. π = id.
We show that pp prA % = pp %. If |A| = 1 then prA % = Ek and thus Ek×{v} ⊆ %.

This implies δ(h){0,i} ⊆ % for all i ∈ Eh \ {0} contradicting % ∈ Q. Let |A| ≥ 2. We
know s0 = (0, . . . , 0), s1 = (1, . . . , 1) ∈ δ(prA %). Then {s0, s1} × {v} ⊆ δ(%), i.e.,
for all i ∈ Eh and j ∈ Eh \ (A ∪ {i}) we get (i, j) 6∈ ε(%). Thus all non-singular
classes of ε(%) are covered by A, i.e., the projection prA preserves them, and this
implies pp prA % = pp %.

We show that (prA σ)× {v} ⊆ σ. Assume the contrary. Then there exists some
s ∈ prA σ with {s}× {v} ⊆ δ(%). But this contradicts prA δ(%)∩ prA σ = ∅ because
pp prA % = pp %. So s 6∈ prA δ(%) in contradiction to the assumption. We proved
(prA σ)× {v} ⊆ σ, and thus ω(prA σ) ∩ ω(v) = ∅.

Now we show that γ := prA % ∈ Q, i.e., that it is coherent. Let θ ∈ Γσ(γ) and
w ∈ γ arbitrarily. There is some ŵ ∈ γ with ŵ[θ] ∈ γ. Then {ŵ, ŵ[θ]} × {v} ⊆ %,
i.e., θ ∈ Γσ and thus {w,w[θ]} × {v} ⊆ %. This implies w[θ] ∈ γ.
M(γ) = prAM(%) because pp prA % = pp %.
Let γ′ ⊆ σ(γ). Then γ′ × {v} ⊆ σ. Thus there is a relational homomorphism

ϕ : Ek → Eh from γ′ × {v} to M(%) and some w ∈ γ′ with ϕ

(
w
v

)
= ηh. Let
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ϕ̂ : Ek → E|A| be given by

ϕ̂(x) =
{
ϕ(x) if ϕ(x) ∈ E|A|,
0 otherwise.

Then ϕ̂ is a relational homomorphism from γ′ to M(γ) with ϕ̂(w) = η|A|. Thus
γ is a coherent relation and γ ∈ X% because pp γ = pp % and |A| < h. Since
f 6∈ pPOLk χ for all χ ∈ X% there are rows c1∗, . . . , c|A|∗ with c∗1, . . . , c∗n ∈ γ and
f(c∗1 . . . c∗n) = d ∈ E|A|k \ γ.

Then

f

(
c∗1 . . . c∗n
v . . . v

)
∈ Ehk \ %,

i.e., f 6∈ pPOLk % contradicting the assumption. �

Proposition 7.10. Let %(h), χ(µ) ∈ Q with µ ≥ 3, f, g ∈ pPOLk χ with g(%) ∈ Ehk ,
and g is not defined anywhere else, and F (n) := f ⊗ g 6∈ pPOLk χ.

Then there are rows c1∗, . . . , cµ∗
(1) with c∗1, . . . , c∗n ∈ χ and F (c∗1 . . . c∗n) = d ∈ Eµk \ χ, and
(2) there is some j with c∗j ∈ σ(Eµk ), and
(3) the rows c1∗, . . . , c‖χ‖∗ belong to the g-part of F , and
(4) if pp % = ppχ, then the rows c1∗, . . . , c‖χ‖∗ belong to the first ‖χ‖ rows of

the g-part of F .

Proof. Statement (1) follows directly from F 6∈ pPOLk χ. Choose some rows
c1∗, . . . , cµ∗ such that (1) holds.
(2) : Assume (2) is false. Then {c∗1, . . . , c∗n} ⊆ δ(χ) = δε(χ) contradicting all rows
ci∗ are pairwise different by Lemma 5.3. Thus for any two rows there is a column
in which they differ.

(3) : Because % ∈ Q we have δ(h)Eh
⊆ %. Because g ∈ pPOLk χ there is at least one

row from the f -part of F and because f ∈ pPOLk χ there is at least one row
from the g-part of F . Let cif∗ be an arbitrary row from the f -part and cig∗ be an
arbitrary row from the g-part. Because µ ≥ 3 there is a third row ci′∗ different
from cif∗ and cig∗. Let ci′∗ be arbitrary with this condition.

There are two cases to consider:
The row ci′∗ is from the f -part : Then there is some column j in which the rows
cif∗ and ci′∗, i.e., cif j = x, ci′j = y and x 6= y. By construction and % ∈ Q,
i.e., δ(h)Eh

⊂ %, we can choose j more specifically such that cif j
ci′j
cigj

 =

 x
y
y

 .

The row ci′∗ is from the g-part : Then there is some j with cif j
ci′j
cigj

 =

 x
y
y
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and x 6= y by construction and % ∈ Q, i.e., δ(h)Eh
⊂ %.

Thus (if , ig), (if , i′) 6∈ ε(χ). Because if , ig and i′ are chosen arbitrarily any row
cif∗ from the f -part belongs to a singular class of ε(χ). Because the first ‖χ‖
rows of χ belong to non-singular classes of ε(χ) the first ‖χ‖ rows c1∗, . . . , c‖χ‖∗
belong to the g-part of F . Thus (3) is true.

(4) : Let pp % = ppχ. Assume one of the rows c1∗, . . . , c‖χ‖∗ does not belong to
the first ‖χ‖ rows of the g-part of F , w.l.o.g. let this be the row c1∗. As shown
before c1∗ belongs to the g-part of F . Because pp % = ppχ the row c1∗ belongs
to a singular class of ε(%). Now let ci1∗, ci2∗ be two arbitrarily chosen different
rows. Then there are three different cases:
ci1∗ and ci2∗ are both from the f -part : Then they differ at some point and by
construction we get columns c∗j , c∗j′ with c1j c1j′

ci1j ci1j′

ci2j ci2j′

 =

 x y
x x
y y


and x 6= y.

ci1∗ is from the f -part and ci2∗ from the g-part : Then by construction and be-
cause c1∗ belongs to a singular class of ε(%) there is some column c∗j with c1j

ci1j
ci2j

 =

 x
y
y


and x 6= y.

ci1∗ and ci2∗ are both from the g-part : Then because c1∗ belongs to a singular
class of ε(%) there is some column c∗j with c1j

ci1j
ci2j

 =

 x
y
y


and x 6= y.

Thus for all cases (1, i1), (1, i2) 6∈ ε(χ). Because i1 and i2 are chosen arbitrarily
the row c1∗ belongs to a singular class of ε(χ) in contradiction to the conven-
tion that the first ‖χ‖ rows of χ belong to the non-singular classes of ε(χ), see
Definition 2.10. Thus (4) is true.

�

Definition 7.11. Let % ∈ Q1. Define T% ⊆ R̃max
k by

T% := {ψ ∈ Q1 | ppψ = pp %}.

Lemma 7.12. Let % ∈ Q1, T ⊆ T%, |T | ≥ 2 and f ∈ P̃k with(
∀ψ ∈ R̃max

k \ T : f 6∈ pPOLk ψ
)
∧ (∃χ ∈ T : f ∈ pPOLk χ) .

Then
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(1) there are χ0 ∈ T and F ∈ pPOLk χ0 with

∀ψ ∈ R̃max
k \ {χ0} : F 6∈ pPOLk ψ,

or
(2) there are F ∈ P̃k and T ′ ⊂ T , T ′ 6= ∅ with(

∀ψ ∈ R̃max
k \ T ′ : F 6∈ pPOLk ψ

)
∧ (∃χ ∈ T ′ : F ∈ pPOLk χ) .

Proof. Assume (1) is false. By this assumption there exists some ψ1 ∈ T with
f ∈ pPOLk ψ1. Then there is some ψ2 ∈ R̃max

k \ {ψ1} with f ∈ pPOLk ψ2 because
(1) is false. Because f 6∈ pPOLk ψ for all ψ ∈ R̃max

k \ T we get ψ2 ∈ T . Thus there
are ψ(µ1)

1 , ψ
(µ2)
2 ∈ T with ψ1 6= ψ2 and f ∈ (pPOLk ψ1) ∩ (pPOLk ψ2). We can

choose ψ1 such that µ1 is minimal. This implies

∀χ ∈ {{a} | a ∈ Ek} ∪ {ψ(µ) ∈ Q | ppψ = pp % ∧ µ < µ1} : f 6∈ pPOLk χ.

Thus ψ1 is irreducible because f ∈ pPOLk ψ1 and Lemma 7.9.
Furthermore µ1 ≤ µ2. If µ2 = µ1 then ψ2 is also irreducible by the same

argument.
We construct a function F (n) := f ⊗ g such that F ∈ pPOLk ψ1 and F 6∈

pPOLk ψ2 holds (or the other way round).
For any set E let P (E) := {A ⊆ E | A 6= ∅ ∧A 6= E}.
There are the following cases:

∃A ∈ P (Eµ1) ∃v ∈ σ(Eµ2−|A|
k ) ∃π ∈ Sµ2 : (prA ψ1)× {v} ⊆ ψ[π]

2 :
Without loss of generality π = id.

Assume to the contrary that pp(prA ψ1) 6= ppψ1 holds. Then the inequality
‖(prA ψ1) × {v}‖ = ‖prA ψ1‖ < ‖ψ1‖ = ‖ψ2‖ holds in contradiction to the fact
δ(prA ψ1)× {v} ⊆ δ ((prA %)× {v}) ⊆ δ(ψ2). Thus pp(prA ψ1) = ppψ1 = ppψ2.

Let g(prA ψ1) := d (see Definition 4.1) for some d ∈ E|A|k with the property
g(pp(prA ψ1)) ∈ E‖ψ2‖

k \ ppψ2. Then F 6∈ pPOLk ψ2 because

F

(
prA ψ1

v

)
︸ ︷︷ ︸

⊆ψ2

∈ (E‖ψ2‖
k \ ppψ2)× Eµ2−‖ψ2‖

k ⊆ Eµ2
k \ ψ2.

We have g ∈ pPOLk ψ1 because g is defined on less than µ1 rows. Assume
F 6∈ pPOLk ψ1. Then there are rows c1∗, . . . , cµ1∗ with c∗1, . . . , c∗n ∈ ψ1 and
the first ‖ψ1‖ rows belong to the g-part of F , and a column c∗j ∈ σ(Eµ1

k ) by
Proposition 7.10. Let w.l.o.g. the rows c1∗, . . . , cl∗ belong to the g-part of F and
cl+1∗, . . . , cµ1∗ to the f -part of F with ‖χ‖ ≤ l < µ1. Then let

v :=

 cl+1j

. . .
cµ1j


and

C ′ := pr1,2,...,l{c∗1, . . . , c∗n}.
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Then C ′ = prA′ ψ1 for some A′ ∈ P (Eµ1) with A′ ⊆ A by construction of g. By
construction of F we get

(prA′ ψ1 × {v}) = C ′ × {v} ⊆ {c∗1, . . . , c∗n} ⊆ ψ1

contradicting ψ1 irreducible.
Thus there is some T ′ with {ψ1} ⊆ T ′ ⊆ T \ {ψ2} and(

∀ψ ∈ R̃max
k \ T ′ : F 6∈ pPOLk ψ

)
∧ (∃χ ∈ T ′ : F ∈ pPOLk χ) .

µ1 = µ2 ∧
(
∃A ∈ P (Eµ2) ∃v ∈ σ(Eµ1−|A|

k ) ∃π ∈ Sµ1 : (prA ψ2)× {v} ⊆ ψ[π]
1

)
:

This is a restriction of the previous case with the roles of ψ1 and ψ2 switched.
Thus there is some T ′ with {ψ2} ⊆ T ′ ⊆ T \ {ψ1} and(

∀ψ ∈ R̃max
k \ T ′ : F 6∈ pPOLk ψ

)
∧ (∃χ ∈ T ′ : F ∈ pPOLk χ) .

µ1 < µ2 ∧
(
∃v ∈ σ(Eµ2−µ1

k ) ∃π ∈ Sµ2 : ψ1 × {v} ⊆ ψ[π]
2

)
:

Without loss of generality π = id.
Because ψ1 is coherent there is some relational homomorphism ϕ : Ek → Eµ1

from σ(ψ1) toM(ψ1) and some s ∈ σ(ψ1) with ϕ(s) = ηµ1 . Define ϕ? : Eµ1 → Ek
by ϕ?(ηµ1) = s.

Let

g ((σ(ψ1)× {v}) ∪ δ(ψ2)) := d := ϕ?
(
ϕ

(
s
v

))
(see Definition 4.1). Then g ∈ pPOLk ψ1 by construction.

Assume g ∈ pPOLk ψ2. Then d ∈ δ(ψ2) because |ω(d)| = |ω(s)| = µ1 < µ2.
But |ω(prE‖ψ2‖

d)| = ‖ψ2‖ in contradiction to the assumption that the first ‖ψ2‖
rows belong to the non-singular classes of ε(ψ2). Thus g 6∈ pPOLk ψ2 and this
implies F 6∈ pPOLk ψ2.

Because σ(ψ1)× {v} ⊆ ψ2 and the first ‖ψ1‖ rows belong to the non-singular
classes of ε(ψ2) we get σ(ψ1) × {v} ⊆ σ(ψ2) and thus ω(v) ∩ ω(σ(ψ1)) = ∅.
Assume F 6∈ pPOLk ψ1. Then there are rows c1∗, . . . , cµ1∗ with c∗1, . . . , c∗n ∈ ψ1

and F (c∗1, . . . , c∗n) ∈ Eµ1
k \ ψ1. By Proposition 7.10 the rows c1∗, . . . , c‖ψ1‖∗ are

the first rows in the definition of g. Thus the other rows can not belong to the
last (µ2 − µ1) rows in the definition of g because ω(v)∩ω(σ(ψ1)) = ∅. Thus this
part of the definition of g can be ignored here, and thus F ∈ pPOLk ψ1 because
ψ1 is irreducible.

Thus there is some T ′ with {ψ1} ⊆ T ′ ⊆ T \ {ψ2} and(
∀ψ ∈ R̃max

k \ T ′ : F 6∈ pPOLk ψ
)
∧ (∃χ ∈ T ′ : F ∈ pPOLk χ) .

µ1 = µ2 ∧
(
∃π ∈ Sµ2 : ψ1 ⊂ ψ[π]

2

)
:

Without loss of generality π = id.
Let g(ψ2) := d (see Definition 4.1) for some d ∈ Eµ2

k \ ψ2. Because prA ψ1 ⊆
prA ψ2 for all A ∈ P (Eµ1), ψ1 irreducible and g ∈ pPOLk ψ1 we get F ∈
pPOLk ψ1. Furthermore g 6∈ pPOLk ψ2 implies F 6∈ pPOLk ψ2.
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Thus there is some T ′ with {ψ1} ⊆ T ′ ⊆ T \ {ψ2} and(
∀ψ ∈ R̃max

k \ T ′ : F 6∈ pPOLk ψ
)
∧ (∃χ ∈ T ′ : F ∈ pPOLk χ) .

µ1 = µ2 ∧
(
∃π ∈ Sµ1 : ψ2 ⊂ ψ[π]

1

)
:

Analogous to the previous case because ψ2 is irreducible in this case. Thus there
is some T ′ with {ψ2} ⊆ T ′ ⊆ T \ {ψ1} and(

∀ψ ∈ R̃max
k \ T ′ : F 6∈ pPOLk ψ

)
∧ (∃χ ∈ T ′ : F ∈ pPOLk χ) .

Otherwise :
Then we have

∀A ∈ P (Eµ1) ∀v ∈ σ(Eµ2−|A|
k ) ∀π ∈ Sµ2 : (prA ψ1)× {v} 6⊆ ψ[π]

2 ,

µ1 < µ2 ∨
(
∀A ∈ P (Eµ2) ∀v ∈ σ(Eµ1−|A|

k ) ∀π ∈ Sµ1 : (prA ψ2)× {v} 6⊆ ψ[π]
1

)
,

µ1 = µ2 ∨
(
∀v ∈ σ(Eµ2−µ1

k ) ∀π ∈ Sµ2 : ψ1 × {v} 6⊆ ψ[π]
2

)
,

µ1 < µ2 ∨
(
∀π ∈ Sµ2 : ψ1 6⊆ ψ[π]

2

)
,

µ1 < µ2 ∨
(
∀π ∈ Sµ1 : ψ2 6⊆ ψ[π]

1

)
.

Let g(ψ1) := d (see Definition 4.1) for some d ∈ Eµ1
k \ ψ1. Because ψ2 6⊆

ψ
[π]
1 for all π ∈ Sµ1 , and µ1 ≤ µ2 we have g ∈ pPOLk ψ2. Assume F (n) =
f ⊗ g 6∈ pPOLk ψ2. Then there are c1∗, . . . , cµ2∗ with c∗1, . . . , c∗n ∈ ψ2 and
F (c∗1, . . . , c∗n) 6∈ ψ2 and the rows c1∗, . . . , c‖ψ2‖∗ belong to the g-part of F by
Proposition 7.10, i.e., one of the following cases apply
• there is some A ⊂ Eµ1 and v ∈ σ(Eµ2−|A|

k ) with (prA ψ1) × {v} ⊆ ψ2 contra-
dicting the first assumption, or
• µ1 < µ2 and there is some v ∈ σ(Eµ2−|A|

k ) with ψ1 × {v} ⊆ ψ2 contradicting
the third assumption.

Thus F ∈ pPOLk ψ2. Furthermore F 6∈ pPOLk ψ1 because g 6∈ pPOLk ψ1.
Thus there is some T ′ with {ψ2} ⊆ T ′ ⊆ T \ {ψ1} and(

∀ψ ∈ R̃max
k \ T ′ : F 6∈ pPOLk ψ

)
∧ (∃χ ∈ T ′ : F ∈ pPOLk χ) .

Thus in every case there is some T ′ ⊂ T with(
∀ψ ∈ R̃max

k \ T ′ : F 6∈ pPOLk ψ
)
∧ (∃χ ∈ T ′ : F ∈ pPOLk χ) ,

i.e., (2) is true. �

Theorem 7.13. For every k ≥ 2 there is exactly one minimal covering of pMk.

Proof. For k = 2 one finds this statement in [4]. Thus we can assume k ≥ 3.
Assume the statement is false. Then there are pairwise different minimal coverings
X1, . . . ,Xl with l ≥ 2. Choose % ∈ R̃max

k with pPOLk % ∈ X1 \X2 arbitrarily.
Then % ∈ Q1 because of Theorem 7.5. Let

T := {ψ ∈ Q1 | ppψ = pp % ∧ (∃a, b ∈ {1, . . . , l} : pPOLk ψ ∈Xa \Xb)} ⊆ T%.
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Then % ∈ T and |T | ≥ 2 by Lemma 7.6. Additionally there is some f ∈ P̃k\(Pk∪C∅)
with

(∀ψ ∈ R̃max
k \ T : f 6∈ pPOLk ψ) ∧ (∃χ ∈ T : f ∈ pPOLk χ). (7.1)

Otherwise pPOLk % would be in no minimal covering contradicting the assumption.
Now we can assume that T̂ ⊆ T has minimal size |T̂ | ≥ 2 and fulfills (7.1) (with

T̂ instead of T ).
By Lemma 7.12 there are two cases:

• There are χ0 ∈ T̂ and F ∈ pPOLk χ0 with

∀ψ ∈ R̃max
k \ {χ0} : F 6∈ pPOLk ψ.

Then pPOLk χ0 is in every minimal covering of pMk by Lemma 3.2 in contra-
diction to the definition of T and the assumption.
• There are F ∈ P̃k, T ′ with ∅ ⊂ T ′ ⊂ T̂ and

(∀ψ ∈ R̃max
k \ T ′ : F 6∈ pPOLk ψ) ∧ (∃χ ∈ T ′ : F ∈ pPOLk χ).

Because T̂ is minimal under the condition |T̂ | ≥ 2 we conclude |T ′| = 1. Then
T ′ = {χ0}, F ∈ pPOLk χ0 and

∀ψ ∈ R̃max
k \ {χ0} : F 6∈ pPOLk ψ.

Thus pPOLk χ0 is in every minimal covering of pMk by Lemma 3.2, in contra-
diction to the definition of T and the assumption.

Thus there are no two different minimal coverings of pMk. �

Let pCk be the unique minimal covering of pMk. Using the uniqueness of minimal
coverings we can improve the statements of Lemmas 3.3 and 3.2.

Lemma 7.14. Let C ∈ pMk and C ⊆ pMk \ {C} such that for all f ∈ C there is
some C ′ ∈ C with f ∈ C ′. Then C 6∈ pCk.

Proof. Assume C is in the minimal covering pCk of pMk. Let Y := (pCk\{C})∪C .
Then Y is a covering of pMk because for all f ∈ X ∈ pMk there is
• some Y ∈ pCk \ {C} with f ∈ Y , or
• f ∈ C and then there is some Y ∈ C with f ∈ Y .
Then there is some minimal covering Ỹ ⊆ Y of pMk. But Y ∩ pCk ⊂ pCk and
thus Ỹ 6= pCk contradicting Theorem 7.13. �

Lemma 7.15. Let C ∈ pMk. Then

C ∈ pCk ⇐⇒ (∃f ∈ C ∀B ∈ pMk \ {C} : f 6∈ B).

Proof. We split the proof into two directions:
⇐ : Follows from Lemma 3.2 and Theorem 7.13.
⇒ : Let C ∈ pCk. Assume,

∀f ∈ C ∃B ∈ pMk \ {C} : f ∈ B.
By Lemma 7.14 with C = pMk \ {C} follows C 6∈ pCk in contradiction to the
assumption. �
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Lemma 7.16. Let %(h) ∈ Q1 be reducible. Then pPOLk % is not in the minimal
covering pCk of pMk.

Proof. This follows directly from Lemma 7.9 with the help of Lemma 7.14. �

8. Conclusion

The minimal coverings for k = 2, 3, 4 have been given and shown to be unique in
[4], [2] and [14] respectively. In following table the sizes of these minimal coverings
pCk are given with respect to the number of all maximal partial clones |pMk|.

k |pMk| |pCk|
2 8 4
3 58 26
4 1 102 449

We have now shown that the minimal coverings of pMk are unique for each
k ≥ 2. Many elements of the minimal coverings have been determined (see e.g.
[2, 16]) and for some maximal partial clones we have shown in this paper that they
are not in a minimal covering (see Lemmas 5.5, 7.3 and 7.16). Furthermore for
maximal partial clones pPOLk % with % ∈ A we have a criterion which only needs
to check the functions from Pol(1)k % to see if pPOLk % belongs to pCk (see Theorem
6.13). Still many elements of the minimal coverings have to be determined, and it
seems to be a very hard problem, especially for the relations Q1.
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