Uniqueness of minimal coverings of maximal partial clones

Karsten Schölzel

Abstract

A partial function f on an k-element set E_{k} is a partial Sheffer function if every partial function on E_{k} is definable in terms of f. Since this holds if and only if f belongs to no maximal partial clone on E_{k}, a characterization of partial Sheffer functions reduces to finding families of minimal coverings of maximal partial clones on E_{k}. We show that for each $k \geq 2$ there exists a unique minimal covering.

1. Introduction

In many-valued logic the set of truth values is finite and without loss of generality we can assume it to be $E_{k}:=\{0,1, \ldots, k-1\}, k \in \mathbb{N}, k \geq 2$.

The set $P_{k}:=\left\{f^{(n)} \mid f^{(n)}: E_{k}^{n} \rightarrow E_{k}, n \geq 1\right\}$ is the set of all total functions on E_{k}. Let $D \subseteq E_{k}^{n}, n \geq 1$ and $f^{(n)}: D \rightarrow E_{k}$. Then $f^{(n)}$ is called an n-ary partial function on E_{k} with domain D. We also write $\operatorname{dom}(f)=D$. If the arity of the function is known we omit the upper index and write f instead of $f^{(n)}$. Denote by $\widetilde{P}_{k}^{(n)}$ the set of all n-ary partial functions on E_{k} and set

$$
\widetilde{P}_{k}:=\bigcup_{n \geq 1} \widetilde{P}_{k}^{(n)}
$$

Let $C_{\emptyset}:=\left\{f \in \widetilde{P}_{k} \mid \operatorname{dom}(f)=\emptyset\right\}$.
For $i \in\{1, \ldots, n\}$ the n-ary function $e_{i}^{(n)}$ defined by setting $e_{i}^{(n)}\left(x_{1}, \ldots, x_{n}\right):=x_{i}$ for all $x_{1}, \ldots, x_{n} \in E_{k}$ is called the n-ary projection onto the i-th coordinate. Let $J_{k}:=\left\{e_{i}^{(n)} \mid n \in \mathbb{N}, 1 \leq i \leq n\right\}$ be the set of all projections.

For $f \in \widetilde{P}_{k}^{(n)}$ and $g_{1}, \ldots, g_{n} \in \widetilde{P}_{k}^{(m)}$ let $f\left(g_{1}, \ldots, g_{n}\right) \in \widetilde{P}_{k}^{(m)}$ be the composition as given in [2], i.e.,

$$
x \in \operatorname{dom}\left(f\left(g_{1}, \ldots, g_{n}\right)\right) \Longleftrightarrow\left(x \in \bigcap_{i=1}^{n} \operatorname{dom}\left(g_{i}\right)\right) \wedge\left(g_{1}(x), \ldots, g_{n}(x)\right) \in \operatorname{dom}(f)
$$

and $f\left(g_{1}, \ldots, g_{n}\right)(x):=f\left(g_{1}(x), \ldots, g_{n}(x)\right)$ for all $x \in \operatorname{dom}\left(f\left(g_{1}, \ldots, g_{n}\right)\right)$. A partial clone (clone) on E_{k} is a composition closed subset of $\widetilde{P}_{k}\left(P_{k}\right)$ containing the set of projections J_{k}.

[^0]The set of all partial clones on E_{k} (clones on E_{k}), ordered by inclusion, forms an algebraic lattice $\mathbb{L} \widetilde{P}_{k}\left(\mathbb{L} P_{k}\right)$, whose smallest element is the set of all projections and greatest element is $\widetilde{P}_{k}\left(P_{k}\right)$, respectively. A maximal partial clone (a maximal clone) on E_{k} is a co-atom of \widetilde{P}_{k} and P_{k}, respectively. Thus a partial clone (clone) M is a maximal partial clone (maximal clone) if the inclusions $M \subset C \subset \widetilde{P}_{k}$ ($M \subset C \subset P_{k}$) hold for no partial clone (hold for no clone) C on E_{k}.

For $F \subseteq \widetilde{P}_{k}\left(F \subseteq P_{k}\right)$, we denote by $[F]_{\mathrm{P}}([F])$ the partial clone (clone) on E_{k} generated by F, i.e., the intersection of all partial clones (clones) containing the set F on E_{k}. Clearly $[F]_{\mathrm{P}}([F])$ is the least partial clone (clone) on E_{k} containing F.

A set F of partial functions (functions) on E_{k} is complete if $[F]_{\mathrm{P}}=\widetilde{P}_{k}\left([F]=P_{k}\right)$, respectively. It is well known that a set $F \subseteq \widetilde{P}_{k}\left(F \subseteq P_{k}\right)$ is complete if and only if F is contained in no maximal partial clone (maximal clone) on E_{k} (see, e.g., [6] for the partial case and e.g., [7], Theorem 1.5.4.1, for the total case). Therefore maximal clones fully described in $[9,10$] (see also [11]) play a fundamental role for completeness.

Similarly, maximal partial clones play a very important role for the completeness problem of finite partial algebras. The description of all maximal partial clones on a finite set can be found in the literature. We refer the reader to the papers of Haddad and Rosenberg [3,5] for the description of all maximal partial clones.

Sheffer [17] described two binary functions $f \in P_{2}$ such that $[\{f\}]=P_{2}$, i.e., such that every function on E_{2} can be expressed in terms of f only. A function $f \in P_{k}$ is a Sheffer function if every function on E_{k} can be obtained by composition from f and the projections, i.e., if $[f]:=[\{f\}]=P_{k}$.

Next Webb [18] showed that the function f defined by

$$
f(x, y):=\min (x, y)+1 \quad(\bmod k)
$$

is a Sheffer function for P_{k}. Sheffer functions have been well studied and characterized by Rousseau [12] and Schofield [13]. We refer the reader to [11] for a detailed list of references on the subject.

Partial Sheffer functions are defined similarly. A partial function f on E_{k} is a partial Sheffer function if every partial function on E_{k} can be obtained by composition from f and the projections, i.e., if $[f]_{\mathrm{P}}=\widetilde{P}_{k}$. However due to the difficulty of the problem, very little is known about partial Sheffer functions for \widetilde{P}_{k}. Already the family of all maximal partial clones on E_{k} is far more complex than the family of all maximal clones on E_{k}. This is already shown in the following table where $\left|\mathscr{M}_{k}\right|$ and $\left|p \mathscr{M}_{k}\right|$ denote the number of maximal clones (see [7] p. 185) and maximal partial clones (see [15]), respectively.

k	$\left\|\mathscr{M}_{k}\right\|$	$\left\|p \mathscr{M}_{k}\right\|$
2	5	8
3	18	58
4	82	1102
5	643	325722
6	15182	5242621816
7	7848984	$?$

Results on partial Sheffer functions can be found in the papers by Haddad and Rosenberg [4], Romov [8], and Haddad and Lau [2]. Many examples of partial Sheffer functions are known, see e.g. [1] and [4].

The completeness problem for partial Sheffer functions is the question if for a given partial function $f \in \widetilde{P}_{k}$ the identity $[f]_{\mathrm{P}}=\widetilde{P}_{k}$ holds. That means, criteria are investigated to decide if a partial function is a partial Sheffer function. The problem has been solved for $k=2$ by Haddad and Rosenberg [4], for $k=3$ by Haddad and Lau [2], and for $k=4$ by the author in [14] (see also [16]). A specific notion used there is a minimal covering of the maximal partial clones, which for $k \in\{2,3,4\}$ has been shown to be unique and has been determined in the papers mentioned above. The aim of this paper is to show that for all $k \geq 2$ there is a unique minimal covering.

2. Definitions and the Theorem of Haddad and Rosenberg

Relations are useful to describe the clones in \widetilde{P}_{k}. We often write the elements of relations as columns and a relation can then be given as a matrix. For example, the ternary relation $\varrho=\{(0,1,2),(1,2,0),(3,4,5),(2,3,1)\}$ can also be written as

$$
\varrho=\left(\begin{array}{llll}
0 & 1 & 3 & 2 \\
1 & 2 & 4 & 3 \\
2 & 0 & 5 & 1
\end{array}\right)
$$

Denote by $E_{k}^{a \times b}$ be the set of all $(a \times b)$-matrices over E_{k}. Let a matrix be given by $C=\left(c_{i j}\right)_{h, n} \in E_{k}^{h \times n}$. Then denote by $c_{i *}=\left(c_{i 1}, \ldots, c_{i n}\right)$ the i-th row of the matrix where $i \in\{1, \ldots, h\}$), and denote by $c_{* j}=\left(c_{1 j}, \ldots, c_{h j}\right)^{\mathrm{T}}$ the j-th column of the matrix where $j \in\{1, \ldots, n\}$.

Let $\mathcal{R}_{k}^{(h)}$ be the set of all h-ary relations on E_{k} and $\mathcal{R}_{k}:=\bigcup_{h \geq 1} \mathcal{R}_{k}^{(h)}$. For a relation $\varrho \in \mathcal{R}_{k}$ we write $\varrho^{(h)}$ to indicate that $\varrho \in \mathcal{R}_{k}^{(h)}$, i.e., that ϱ is an h-ary relation.

An n-ary function $f^{(n)} \in \widetilde{P}_{k}$ preserves an h-ary relation $\varrho^{(h)} \in \mathcal{R}_{k}$ iff for all $c_{* 1}, c_{* 2}, \ldots, c_{* n} \in \varrho$ with $c_{1 *}, \ldots, c_{h *} \in \operatorname{dom}(f)$ holds

$$
f\left(c_{* 1}, \ldots, c_{* n}\right):=\left(\begin{array}{c}
f\left(c_{1 *}\right) \\
f\left(c_{2 *}\right) \\
\vdots \\
f\left(c_{h *}\right)
\end{array}\right):=\left(\begin{array}{c}
f\left(c_{11}, c_{12}, \ldots, c_{1 n}\right) \\
f\left(c_{21}, c_{22}, \ldots, c_{2 n}\right) \\
\vdots \\
f\left(c_{h 1}, c_{h 2}, \ldots, c_{h n}\right)
\end{array}\right) \in \varrho .
$$

Denote by $\operatorname{pPOL}_{k} \varrho$ the set of all functions $f \in \widetilde{P}_{k}$ which preserve the relation $\varrho \in \mathcal{R}_{k}$. For example, for $h=1$ and $\varrho=\{0\}$ the set $\operatorname{pPOL}_{k}\{0\}$ is the set of all functions $f \in \widetilde{P}_{k}$ for which $f(0, \ldots, 0)=0$ or $(0, \ldots, 0) \notin \operatorname{dom} f$.

For each $m \in \mathbb{N}$ set $\eta_{m}:=(0,1, \ldots, m-1)^{\mathrm{T}}$.
Denote by $\omega(v)$ the set of distinct entries of $v=\left(v_{1}, \ldots, v_{h}\right) \in E_{k}^{h}$, that means, $\omega(v)=\omega\left(\left(v_{1}, \ldots, v_{h}\right)\right):=\left\{v_{1}, \ldots, v_{h}\right\}$. Additionally for some relation $\varrho \subseteq E_{k}^{h}$ we set $\omega(\varrho)=\bigcup_{v \in \varrho} \omega(v)$. For example, for $v=(0,0,1) \in E_{k}^{3}$ we get $\omega(v)=\{0,1\}$.

Definition 2.1. Set for all h with $1 \leq h \leq k$

$$
\begin{aligned}
& \varrho_{1}:=\left\{(a, a, b, b),(a, b, a, b) \mid a, b \in E_{k}\right\}, \\
& \varrho_{2}:=\left\{(a, a, b, b),(a, b, a, b),(a, b, b, a) \mid a, b \in E_{k}\right\}, \\
& \iota_{k}^{h}:=\left\{x \in E_{k}^{h}| | \omega(x) \mid \leq h-1\right\} .
\end{aligned}
$$

Definition 2.2. For an arbitrary equivalence relation ε on E_{h} define

$$
\delta_{k, \varepsilon}^{(h)}:=\left\{\left(a_{0}, \ldots, a_{h-1}\right) \in E_{k}^{h} \mid(i, j) \in \varepsilon \Longrightarrow a_{i}=a_{j}\right\}
$$

If h or k is understood from the context we just write δ_{ε} or $\delta_{\varepsilon}^{(h)}$ or $\delta_{k, \varepsilon}$. If $\varepsilon_{1}, \ldots, \varepsilon_{r}$ are the non-singular equivalence classes of the relation ε then we write $\delta_{k ; \varepsilon_{1}, \ldots, \varepsilon_{r}}^{(h)}$ or $\delta_{\varepsilon_{1}, \ldots, \varepsilon_{r}}$ instead of $\delta_{k, \varepsilon}^{(h)}$. For example, $\delta_{k ; E_{h}}^{(h)}=\left\{(x, x, \ldots, x) \in E_{k}^{h} \mid x \in E_{k}\right\}$.
These relations are called diagonal relations. Especially E_{k}^{h} for any h is a diagonal relation.
Definition 2.3. For $\varrho^{(h)} \subseteq E_{k}^{h}$ we set $\sigma(\varrho):=\varrho \backslash \iota_{k}^{h}$ and $\delta(\varrho):=\varrho \cap \iota_{k}^{h}=\varrho \backslash \sigma(\varrho)$. If $\delta(\varrho)=\delta_{\gamma}$ for some equivalence relation γ on E_{h} then we write $\varepsilon(\varrho):=\gamma$.
Definition 2.4. A relation $\varrho^{(h)} \subseteq E_{k}^{h}$ is

- areflexive, if $h \geq 2$ and $\delta(\varrho)=\emptyset$, i.e., $\varrho=\sigma(\varrho)$ meaning that for each $\left(x_{1}, \ldots, x_{h}\right) \in \varrho$ we have that $x_{i} \neq x_{j}$ for all $1 \leq i<j \leq h$.
- quasi-diagonal, if $\sigma(\varrho)$ is a non-empty areflexive relation, and $\delta(\varrho)=\delta_{\varepsilon}$ where $\varepsilon \neq \iota_{h}^{2}$ is an equivalence relation on E_{h}.
Definition 2.5. For $\varrho^{(h)} \subseteq E_{k}^{h}$ set $\sigma:=\sigma(\varrho), \delta:=\delta(\varrho)$, and denote by S_{h} the set of all permutations on E_{h}.

For $r=\left(r_{0}, \ldots, r_{h-1}\right) \in \varrho$ and $\pi \in S_{h}$ we write

$$
r^{[\pi]}:=\left(r_{\pi(0)}, r_{\pi(1)}, \ldots, r_{\pi(n-1)}\right), \text { and } \varrho^{[\pi]}:=\left\{r^{[\pi]} \mid r \in \varrho\right\} .
$$

Let $\Gamma_{\sigma}:=\left\{\pi \in S_{h} \mid \sigma \cap \sigma^{[\pi]} \neq \emptyset\right\}$.
The model of ϱ is the h-ary relation $M(\varrho):=\left\{\eta_{h}^{[\pi]} \mid \pi \in \Gamma_{\sigma}\right\} \cup\left(\delta \cap E_{h}^{h}\right)$ on E_{h}.
The relation ϱ is coherent, if the following conditions hold:
(1) $\varrho \neq E_{k}^{h}, \varrho \neq \emptyset$,
(2) (a) ϱ is a unary relation, i.e., $h=1$, or
(b) ϱ is areflexive with $2 \leq h \leq k$, or
(c) ϱ is quasi-diagonal with $2 \leq h \leq k$, or
(d) $\delta=\iota_{k}^{h}$ with $3 \leq h \leq k$, or
(e) $h=4$ and $\delta=\varrho_{i}$ with $i \in\{1,2\}$ (see Definition 2.1),
(3) $r^{[\pi]} \in \sigma$ for all $r \in \sigma$ and all $\pi \in \Gamma_{\sigma}$,
(4) for every σ^{\prime} with $\emptyset \neq \sigma^{\prime} \subseteq \sigma$ there is a relational homomorphism $\varphi: E_{k} \rightarrow$ E_{h} from σ^{\prime} to $M(\varrho)$, such that $\varphi(r)=\eta_{h}$ for some $r \in \sigma^{\prime}$, i.e., there is some $r=\left(r_{0}, \ldots, r_{h-1}\right) \in \sigma^{\prime}$ with $\left(\varphi\left(r_{0}\right), \ldots, \varphi\left(r_{h-1}\right)\right)=(0, \ldots, h-1)$,
(5) (a) if $\delta=\iota_{k}^{h}$ and $h \geq 3$ then $\Gamma_{\sigma}=S_{h}$,
(b) if $\delta=\varrho_{1}$ then $\Gamma_{\sigma}=\langle(0231),(12)\rangle\left(\Gamma_{\sigma}\right.$ is the permutation group which is generated by the cycles (0231) and (12)),
(c) if $\delta=\varrho_{2}$ then $\Gamma_{\sigma}=S_{4}$.

We remark that all non-empty non-diagonal totally reflexive, totally symmetric relations are coherent.

Denote by $\widetilde{\mathcal{R}}_{k}^{\max }$ the set of all coherent relations. Due to [15] (Chapter: Different Relations - Different Clones) we can assume that $\mathrm{pPOL}_{k} \varrho \neq \mathrm{pPOL}_{k} \chi$ for all $\varrho^{(h)}, \chi^{(h)} \in \widetilde{\mathcal{R}}_{k}^{\max }$ with $\varrho \neq \chi$. Let

$$
p \mathscr{M}_{k}:=\left\{P_{k} \cup C_{\emptyset}\right\} \cup\left\{\mathrm{pPOL}_{k} \varrho \mid \varrho \in \widetilde{\mathcal{R}}_{k}^{\max }\right\} .
$$

Theorem 2.6 (of Haddad and Rosenberg; [3, 5]). Let $k \geq 2$. For each $A \subset \widetilde{P}_{k}$ with $A=[A]_{\mathrm{P}}$ there is a maximal partial clone M_{A} with $A \subseteq M_{A}$. A clone M is a maximal partial clone of \widetilde{P}_{k} if and only if $M \in p \mathscr{M}_{k}$, i.e., in other words $p \mathscr{M}_{k}$ is the set of all maximal partial clones of \widetilde{P}_{k}.

Theorem 2.7 (Completeness criterion for $\left.\widetilde{P}_{k} ;[5]\right)$. Let $C \subseteq \widetilde{P}_{k}$. Then $[C]_{\mathrm{P}}=\widetilde{P}_{k}$ if and only if $C \nsubseteq M$ for all $M \in p \mathscr{M}_{k}$.
Definition 2.8. The set of coherent relations $\widetilde{\mathcal{R}}_{k}^{\max }$ can be divided into the following sets:

$$
\begin{aligned}
\mathcal{U} & :=\left\{\chi^{(\mu)} \in \widetilde{\mathcal{R}}_{k}^{\max } \mid \mu=1\right\} \\
\mathcal{A} & :=\left\{\chi^{(\mu)} \in \widetilde{\mathcal{R}}_{k}^{\max } \mid \mu \geq 2 \wedge \chi \text { is areflexive }\right\} \\
\mathcal{Q} & :=\left\{\chi^{(\mu)} \in \widetilde{\mathcal{R}}_{k}^{\max } \mid \mu \geq 2 \wedge \chi \text { is quasi-diagonal }\right\}, \\
\mathcal{S} & :=\left\{\chi^{(\mu)} \in \widetilde{\mathcal{R}}_{k}^{\max } \mid \mu \geq 3 \wedge \delta(\chi)=\iota_{k}^{\mu}\right\} \\
\mathcal{L} & :=\left\{\chi^{(\mu)} \in \widetilde{\mathcal{R}}_{k}^{\max } \mid \mu=4 \wedge \delta(\chi) \in\left\{\varrho_{1}, \varrho_{2}\right\}\right\} .
\end{aligned}
$$

Definition 2.9. Let $\varrho^{(h)} \in \mathcal{R}_{k}$ and $A=\left\{a_{0}, \ldots, a_{l-1}\right\} \subseteq E_{h}$ with $a_{i}<a_{j}$ for all $i<j$. Then set

$$
\begin{aligned}
\operatorname{pr}_{A} \varrho & :=\operatorname{pr}_{a_{0}, \ldots, a_{l-1}} \varrho \\
& :=\left\{\left(x_{a_{0}}, \ldots, x_{a_{l-1}}\right) \mid \exists x_{0}, \ldots, x_{h-1} \in E_{k}:\left(x_{0}, \ldots, x_{h-1}\right) \in \varrho\right\} .
\end{aligned}
$$

Definition 2.10. For $\varrho^{(h)} \in \mathcal{Q}$ denote by ϱ^{\star} the union of the non-singleton classes of the equivalence relation $\varepsilon(\varrho)$. We define

$$
\begin{aligned}
\operatorname{pp} \varrho & :=\operatorname{pr}_{\varrho^{\star}} \varrho, \\
\|\varrho\| & :=\left|\varrho^{\star}\right| \\
\mathcal{Q}_{0} & :=\left\{\chi^{(\mu)} \in \mathcal{Q} \mid \varepsilon(\chi) \text { has no singular equivalence class }\right\} \\
(& \left.=\left\{\chi^{(\mu)} \in \mathcal{Q} \mid \operatorname{pp} \chi=\chi\right\}=\left\{\chi^{(\mu)} \in \mathcal{Q} \mid\|\chi\|=\mu\right\}\right), \\
\mathcal{Q}_{1} & :=\mathcal{Q} \backslash \mathcal{Q}_{0} .
\end{aligned}
$$

If $\varrho \in \mathcal{Q}_{1}$ then define

$$
\mathcal{Q}_{\varrho}:=\left\{\begin{array}{l|l}
\chi \in \mathcal{Q}_{1} & \begin{array}{l}
(\|\chi\|<\|\varrho\|) \vee \\
(\|\chi\|=\|\varrho\| \wedge \mathrm{pp} \chi \nsubseteq \mathrm{pp} \varrho)
\end{array} \tag{2.1}
\end{array}\right\} .
$$

Because $\operatorname{pPOL}_{k} \varrho=\operatorname{pPOL}_{k} \varrho^{[\pi]}$ for all $\pi \in S_{h}$ we use the convention pp $\varrho=$ $\operatorname{pr}_{E_{\|\varrho\|}} \varrho$ for all $\varrho \in \mathcal{Q}$.

The relations in \mathcal{Q}_{1} are exactly the coherent quasi-diagonal relations ϱ where $\varepsilon(\varrho)$ has at least one singular class.
Example 2.11. Let $k=10$ and

$$
\varrho^{(5)}:=\left(\begin{array}{cc}
0 & 5 \\
1 & 6 \\
2 & 7 \\
3 & 8 \\
4 & 9
\end{array}\right) \cup \delta_{\{0,1\},\{2,3\}}^{(5)} .
$$

Then $\varrho \in \mathcal{Q}, \varepsilon(\varrho)$ has the blocks $\{0,1\},\{2,3\},\{4\}$,

$$
\begin{aligned}
\varrho^{\star} & =\{0,1,2,3\}, \\
\|\varrho\| & =4, \text { and } \\
\operatorname{pp} \varrho & =\left(\begin{array}{ll}
0 & 5 \\
1 & 6 \\
2 & 7 \\
3 & 8
\end{array}\right) \cup \delta_{\{0,1\},\{2,3\}}^{(4)} .
\end{aligned}
$$

Then $\varrho \in \mathcal{Q}_{1}$, since $\varepsilon(\varrho)$ has a singleton block $\{4\}$, and $\mathrm{pp} \varrho=\operatorname{pr}_{E_{4}} \varrho \in \mathcal{Q}_{0}$.

3. Minimal covering

We want to determine which maximal partial clones in the criterion in Theorem 2.7 are needed to characterize partial Sheffer functions. According to Theorem 2.7 a function $f \in \widetilde{P}_{k}$ is a partial Sheffer function if and only if $f \in \widetilde{P}_{k} \backslash\left(\bigcup p \mathscr{M}_{k}\right)$. It turns out that the union $\bigcup p \mathscr{M}_{k}$ of maximal partial clones is also $\bigcup \mathscr{X}$ for a proper subset \mathscr{X} of $p \mathscr{M}_{k}$. This leads to the following definition.
Definition 3.1. A set $\mathscr{X} \subseteq p \mathscr{M}_{k}$ is a minimal covering of $p \mathscr{M}_{k}$, if for every $f \in \widetilde{P}_{k}$ holds

$$
[f]_{\mathrm{P}}=\widetilde{P}_{k} \Longleftrightarrow \forall A \in \mathscr{X}: f \notin A
$$

and for each $A \in \mathscr{X}$ there is some $f \in \widetilde{P}_{k}$ with

$$
[f]_{\mathrm{P}} \neq \widetilde{P}_{k} \wedge(\forall B \in \mathscr{X} \backslash\{A\}: f \notin B) .
$$

Lemma 3.2. Let C be a maximal partial clone and $f \in C$ with $f \notin B$ for all $B \in p \mathscr{M}_{k} \backslash\{C\}$. Then C is in every minimal covering of $p \mathscr{M}_{k}$.
Proof. Let $f \in C \in p \mathscr{M}_{k}$ with $f \notin B$ for all $B \in p \mathscr{M}_{k} \backslash\{C\}$. Assume there is a minimal covering \mathscr{X} of $p \mathscr{M}_{k}$ with $C \notin \mathscr{X}$. Then $[f]_{\mathrm{P}} \subseteq C \subset \widetilde{P}_{k}$ and $f \notin A$ for each $A \in \mathscr{X} \subseteq p \mathscr{M}_{k} \backslash\{C\}$, in contradiction to the first condition of a minimal covering.

Lemma 3.3. Let $C \in p \mathscr{M}_{k}$ and $\mathscr{C} \subseteq p \mathscr{M}_{k} \backslash\{C\}$ be such that every $C^{\prime} \in \mathscr{C}$ is contained in every minimal covering of $p \mathscr{M}_{k}$ and for all $f \in C$ there is some $C^{\prime} \in \mathscr{C}$ with $f \in C^{\prime}$. Then C is in no minimal covering of $p \mathscr{M}_{k}$.

Proof. Assume C is in some minimal covering \mathscr{X} of $p \mathscr{M}_{k}$. Then there is some $f \in \widetilde{P}_{k}$ with $[f]_{\mathrm{P}} \neq \widetilde{P}_{k}$ and $f \notin B$ for all $B \in \mathscr{X} \backslash\{C\}$. From $\mathscr{C} \subseteq \mathscr{X}$ follows $f \notin C$. Thus $f \notin A$ for all $A \in \mathscr{X}$, and $[f]_{\mathrm{P}} \neq \widetilde{P}_{k}$ contradicting \mathscr{X} minimal covering of $p \mathscr{M}_{k}$. Thus C is in no minimal covering.

4. A Product of Functions

Definition 4.1. Let $D^{\prime} \in E_{k}^{a \times b}$ be an (a, b)-matrix on E_{k}, i.e.,

$$
D^{\prime}=\left(\begin{array}{ccc}
d_{11} & \ldots & d_{1 b} \\
\vdots & \ddots & \vdots \\
d_{a 1} & \ldots & d_{a b}
\end{array}\right)
$$

with $d_{i j} \in E_{k}$ for all i, j.
If a function $f^{(n)} \in \widetilde{P}_{k}$ is defined by

$$
f\left(D^{\prime}\right):=v=\left(v_{1}, \ldots, v_{a}\right)^{\mathrm{T}}
$$

then

$$
\begin{aligned}
n & :=b \\
\operatorname{dom} f:=D & :=\left\{\left(d_{i 1}, \ldots, d_{i b}\right) \mid i \in\{1, \ldots, a\}\right\} \\
f\left(d_{i 1}, \ldots, d_{i b}\right) & :=v_{i}
\end{aligned}
$$

for all $i \in\{1, \ldots, a\}$. If the domain $D:=\operatorname{dom} f$ is given then D^{\prime} is a matrix whose rows are the entries of D in lexicographical order.

Let $\chi^{(h)} \in \mathcal{R}_{k}$ and $f^{(n)} \in \widetilde{P}_{k}$ be defined by $f(\chi)=v$ then assume χ be given as a matrix as explained before, i.e., $n=|\chi|$ and $v \in E_{k}^{h}$.

Definition 4.2. Let $f^{(n)} \in \widetilde{P}_{k}$ with $D=\operatorname{dom} f$ and $g^{(m)} \in \widetilde{P}_{k}$ with $E=\operatorname{dom} g$. Then $D^{\prime} \in E_{k}^{|D| \times n}$ and $E^{\prime} \in{\underset{\sim}{P}}_{k}^{|E| \times m}$.

Define $F^{(N)}:=(f \otimes g) \in \widetilde{P}_{k}^{(n \cdot m)}$ by

$$
F\left(D^{\prime} \otimes E^{\prime}\right):=F\left(\begin{array}{c|c|c}
D_{* 1}^{\prime} & \ldots & D_{* n}^{\prime} \tag{4.1}\\
\hline E^{\prime} & \ldots & E^{\prime}
\end{array}\right):=\binom{f\left(D^{\prime}\right)}{\hline g\left(E^{\prime}\right)} .
$$

We assume E^{\prime} has no constant rows so F is well-defined. Then

$$
\begin{aligned}
\operatorname{dom} F & =\{(\underbrace{a_{1}, \ldots, a_{1}}_{m \text { times }}, \ldots, \underbrace{a_{i}, \ldots, a_{i}}_{m \text { times }}, \ldots, \underbrace{a_{n}, \ldots, a_{n}}_{m \text { times }}) \mid\left(a_{1}, \ldots, a_{n}\right) \in D\} \\
& \cup\left\{\left(b_{1}, b_{2}, \ldots, b_{m}, b_{1}, b_{2}, \ldots, b_{m}, \ldots, b_{1}, b_{2}, \ldots, b_{m}\right) \mid\left(b_{1}, \ldots, b_{m}\right) \in E\right\} .
\end{aligned}
$$

Let $c=\left(c_{1}, \ldots, c_{N}\right) \in \operatorname{dom} F$. Then we say it is from the E-part or g-part of F if $c=\operatorname{pr}_{i}\left(E^{\prime}, E^{\prime}, \ldots, E^{\prime}\right)$ for some i. Otherwise we say it is from the D-part or f-part of F.

Likewise we inductively set $f \otimes g_{1} \otimes \cdots \otimes g_{l-1} \otimes g_{l}:=\left(f \otimes g_{1} \otimes \cdots \otimes g_{l-1}\right) \otimes g_{l}$ with $g_{i} \in \widetilde{P}_{k}$ for all $i \in\{1, \ldots, l\}$.

Example 4.3. Let $f, g \in \widetilde{P}_{k}$ be given by

$$
f\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right):=\binom{1}{2}, g\left(\begin{array}{lll}
0 & 2 & 3 \\
2 & 4 & 5
\end{array}\right):=\binom{4}{0}
$$

where

$$
\begin{aligned}
D^{\prime}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), D & =\operatorname{dom} f
\end{aligned}=\{(0,0),(0,1)\}, ~ 子=\operatorname{dom} g=\{(0,2,3),(2,4,5)\} .
$$

Then

$$
(f \otimes g)\left(\begin{array}{ccc|ccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
\hline 0 & 2 & 3 & 0 & 2 & 3 \\
2 & 4 & 5 & 2 & 4 & 5
\end{array}\right)=\left(\begin{array}{c}
1 \\
2 \\
\hline 4 \\
0
\end{array}\right)
$$

and

$$
\begin{aligned}
\operatorname{dom}(f \otimes g)=\{ & (0,0,0,0,0,0),(0,0,0,1,1,1) \\
& (0,2,3,0,2,3),(2,4,5,2,4,5)\}
\end{aligned}
$$

5. Criteria

For the remainder of this paper we will assume $k \geq 3$ as the case $k=2$ is already solved.

Lemma 5.1 (Lemma 4 [2]). The maximal partial clone $P_{k} \cup C_{\emptyset}$ belongs to every minimal covering of $p \mathscr{M}_{k}$.

Lemma 5.2 (Lemmas 5, $7[2])$. Let $\varrho \in \mathcal{U}$, i.e., $\emptyset \subset \varrho \subset E_{k}$. Then $\mathrm{pPOL}_{k} \varrho$ belongs to every minimal covering of $p \mathscr{M}_{k}$.
Lemma 5.3. Let $\varrho^{(h)} \in \widetilde{\mathcal{R}}_{k}^{\max }$ with $h \geq 2$ and $f^{(n)} \in \widetilde{P}_{k}$. Let $c_{* 1}, c_{* 2}, \ldots, c_{* n} \in \varrho$ with $c_{1 *}, \ldots, c_{h *} \in \operatorname{dom}(f)$ and $c_{i^{\prime} *}=c_{i^{\prime \prime} *}$ for some $i^{\prime}, i^{\prime \prime} \in\{1, \ldots, h\}$ with $i^{\prime}<i^{\prime \prime}$. Then $d:=f\left(c_{* 1}, c_{* 2}, \ldots, c_{* n}\right) \in \varrho$.

Proof. Because two rows are equal we have $c_{* i} \in \delta(\varrho) \subseteq \iota_{k}^{h}$ for all $i \in\{1,2, \ldots, n\}$.
Because ϱ is coherent there are the following cases for $\delta:=\delta(\varrho)$:
$\delta=\emptyset:$ Then ϱ is areflexive and $c_{* 1} \notin \varrho$ contradicting the assumption.
$\delta=\delta_{\varepsilon}$ for some equivalence relation $\varepsilon \neq \iota_{h}^{2}$: Then $c_{* 1}, c_{* 2}, \ldots, c_{* n} \in \delta_{\varepsilon}$ and thus $d \in \delta_{\varepsilon} \subseteq \varrho$.
$\delta=\iota_{k}^{h}:$ Then $d_{i^{\prime}}=f\left(c_{i^{\prime} *}\right)=f\left(c_{i^{\prime \prime} *}\right)=d_{i^{\prime \prime}}$, i.e., $d \in \iota_{k}^{h} \subseteq \varrho$.
$\delta=\varrho_{1}$: Then

$$
\begin{aligned}
\delta= & \left\{(a, a, b, b) \mid a, b \in E_{k}, a \neq b\right\} \cup\left\{(a, b, a, b) \mid a, b \in E_{k}, a \neq b\right\} \cup \\
& \left\{(a, a, a, a) \mid a \in E_{k}\right\}
\end{aligned}
$$

and there are the following subcases:
$i^{\prime}=1$ and $i^{\prime \prime}=2$: Then

$$
c_{* j} \in \delta \backslash\left\{(a, b, a, b) \mid a, b \in E_{k}, a \neq b\right\}=\delta_{\{0,1\},\{2,3\}}
$$

for all $j \in\{1,2, \ldots, n\}$ and thus $d \in \delta_{\{0,1\},\{2,3\}} \subset \varrho_{1} \subseteq \varrho$.
The case $i^{\prime}=3$ and $i^{\prime \prime}=4$ is analogous. $i^{\prime}=1$ and $i^{\prime \prime}=3$: Then

$$
c_{* j} \in \delta \backslash\left\{(a, a, b, b) \mid a, b \in E_{k}, a \neq b\right\}=\delta_{\{0,2\},\{1,3\}}
$$

for all $j \in\{1,2, \ldots, n\}$ and thus $d \in \delta_{\{0,2\},\{1,3\}} \subset \varrho_{1} \subseteq \varrho$.
The case $i^{\prime}=2$ and $i^{\prime \prime}=4$ is analogous.
$i^{\prime}=1$ and $i^{\prime \prime}=4$: Then $c_{* j} \in\left\{(a, a, a, a) \mid a \in E_{k}\right\}=\delta_{\{0,1,2,3\}}$ for all $j \in$ $\{1,2, \ldots, n\}$ and thus $d \in \delta_{\{0,1,2,3\}} \subset \varrho_{1} \subseteq \varrho$.
The case $i^{\prime}=2$ and $i^{\prime \prime}=3$ is analogous.
$\delta=\varrho_{2}$: is done analogously.
Lemma 5.4. Let $\varrho^{(h)} \in \mathcal{S}$ (see Definition 2.8) with either

$$
h \geq 4, \text { or }
$$

$$
\begin{equation*}
h=3 \text { and } \exists x \in \sigma\left(E_{k}^{2}\right) \forall a \in E_{k} \backslash \omega(x) \exists y \in \sigma(\varrho): \omega(x) \cup\{a\}=\omega(y) \tag{5.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\forall f \in \mathrm{pPOL}_{k} \varrho \exists \gamma \in \mathcal{U} \cup\{\chi\}: f \in \mathrm{pPOL}_{k} \gamma \tag{5.2}
\end{equation*}
$$

with $\chi:=\left\{x \in E_{k}^{h-1} \mid\{x\} \times E_{k} \subseteq \varrho\right\}$ and $\mathrm{pPOL}_{k} \chi \in p \mathscr{M}_{k}$.
Proof. The definition of χ implies that χ is totally symmetric and totally reflexive. We have to show that χ is non-diagonal. For $h=3$ we have $\chi \neq \iota_{k}^{2}$ because of (5.1). Assume $h \geq 3$ and $\chi=E_{k}^{h-1}$ to the contrary. Since $\varrho \neq E_{k}^{h}$, there is an $x:=\left(x_{1}, x_{2}, \ldots, x_{h}\right) \in E_{k}^{h} \backslash \varrho$ and hence $\left(x_{1}, \ldots, x_{h-1}\right) \notin \chi$. Thus χ is a non-diagonal totally symmetric totally reflexive relation and thus $\mathrm{pPOL}_{k} \chi \in p \mathscr{M}_{k}$.

Let $f^{(n)} \in \mathrm{pPOL}_{k} \varrho$ be arbitrary. Assume to the contrary, that $f \notin \mathrm{pPOL}_{k} \gamma$ for all $\gamma \in \mathcal{U} \cup\{\chi\}$. Then there are $c_{* 1}, \ldots, c_{* n} \in \chi$ with $c:=f\left(c_{* 1}, \ldots, c_{* n}\right) \in E_{k}^{h-1} \backslash \chi$. This means,

$$
\exists q \in E_{k} \backslash \omega(c) \forall y \in \sigma(\varrho): \omega(c) \cup\{q\} \neq \omega(y)
$$

Because $f \notin \operatorname{pPOL}_{k}\left(E_{k} \backslash\{q\}\right)$ there are $q_{1}, \ldots, q_{n} \in E_{k} \backslash\{q\}$ with $f\left(q_{1}, \ldots, q_{n}\right)=q$. Thus follows

$$
f\left(\begin{array}{ccc}
c_{* 1} & \ldots & c_{* n} \\
q_{1} & \ldots & q_{n}
\end{array}\right)=\binom{c}{q}=: t
$$

with $|\omega(t)|=h$, and therefore $t \notin \iota_{k}^{h}$. Because of $\omega(t) \neq \omega(y)$ for every $y \in \sigma(\varrho)$ by construction, $t \notin \varrho$ holds. But $c_{* 1}, \ldots, c_{* n}$ are chosen with $\binom{c_{* i}}{q_{i}} \in \varrho$ for all $i \in\{1, \ldots, n\}$ contradicting $f \in \mathrm{pPOL}_{k} \varrho$. Thus (5.2) holds.

Let the set \mathcal{S}^{\prime} consist of all relations in \mathcal{S} not fulfilling the conditions of Lemma 5.4, i.e., $\mathcal{S}^{\prime}:=\left\{\chi^{(\mu)} \mid \chi \in \mathcal{S}, \mu=3\right.$ and (5.1) is not fulfilled by $\left.\chi\right\}$.

Lemma 5.5. Let $\varrho^{(h)} \in \mathcal{Q}_{0}$ (see Definition 2.10) with $h=2$ and

$$
\exists x \in E_{k} \exists \pi \in S_{2}:\{x\} \times E_{k} \subseteq \varrho^{[\pi]}
$$

Then $\mathrm{pPOL}_{k} \varrho$ belongs to no minimal covering of $p \mathscr{M}_{k}$.
Proof. Let $f^{(n)} \in \mathrm{pPOL}_{k} \varrho$ be arbitrary. Assume to the contrary $f \notin \mathrm{pPOL}_{k} \theta$ for all $\theta \in \mathcal{U}$.

Let $A \subset E_{k}$ be a maximal set with $A \times E_{k} \subseteq \varrho^{[\pi]}$. Let $y \in E_{k}$ be arbitrary. Because $f \notin \mathrm{pPOL}_{k} A$ and $f \notin \mathrm{pPOL}_{k}\left(E_{k} \backslash\{y\}\right)$ there are rows $c_{A} \in A^{n}$ and $c_{y} \in\left(E_{k} \backslash\{y\}\right)^{n}$ with $f\left(c_{A}\right)=: a \in E_{k} \backslash A$ and $f\left(c_{y}\right)=y$. Thus $(a, y) \in \varrho^{[\pi]}$ and because y is arbitrary we get $(A \cup\{a\}) \times E_{k} \subseteq \varrho^{[\pi]}$ contradicting the maximality of A.

Thus the assumption is wrong and $f \in \mathrm{pPOL}_{k} \theta$ for some $\theta \in \mathcal{U}$. This implies $\mathrm{pPOL}_{k} \varrho$ is in no minimal covering, because $\mathrm{pPOL}_{k} \theta$ is in every minimal covering of $p \mathscr{M}_{k}$ by Lemma 5.2.

Let the set \mathcal{Q}_{0}^{\prime} consist of all relations in \mathcal{Q}_{0} not fulfilling the conditions of Lemma 5.5.

If ϱ is symmetric, then Lemma 5.5 follows from Theorem 15, (b) in [2].

6. Sorting the minimal coverings

Definition 6.1. Let $\varrho, \chi \in \widetilde{\mathcal{R}}_{k}^{\max }$ with $\varrho \neq \chi$, i.e., $\mathrm{pPOL}_{k} \varrho \neq \mathrm{pPOL}_{k} \chi$ by definition of $\widetilde{\mathcal{R}}_{k}^{\max }$. We write $\varrho \ll \chi$ iff

$$
\begin{aligned}
& \forall f \in \mathrm{pPOL}_{k} \varrho \exists g \in \mathrm{pPOL}_{k} \varrho \\
& \left(\left(g \notin \mathrm{pPOL}_{k} \chi\right) \wedge\left(\forall \psi \in \widetilde{\mathcal{R}}_{k}^{\max }\left(f \notin \mathrm{pPOL}_{k} \psi \Longrightarrow g \notin \mathrm{pPOL}_{k} \psi\right)\right)\right)
\end{aligned}
$$

Lemma 6.2. Let $X=\operatorname{pPOL}_{k} \varrho \in p \mathscr{M}_{k}, f \in X$, and $\mathscr{Y}, \mathscr{Z} \subseteq p \mathscr{M}_{k}$ with $f \notin Y$ for all $Y \in \mathscr{Y}$ and $\mathscr{Z}=\left\{\mathrm{pPOL}_{k} \psi \mid \psi \in \widetilde{\mathcal{R}}_{k}^{\max } \wedge \varrho \ll \psi\right\} \neq \emptyset$.

Then there is some $F \in X$ with $F \notin Y$ for all $Y \in \mathscr{Y} \cup \mathscr{Z}$.
Proof. Let $l:=|\mathscr{Z}|$ and $\mathscr{Z}=:\left\{\operatorname{pPOL}_{k} \psi_{1}, \ldots, \mathrm{pPOL}_{k} \psi_{l}\right\}$. If $l=1$ then the statement of this Lemma follows from Definition 6.1. Now let $l \geq 2$. Assume there is some $f_{i} \in X$ with $i \in\{1, \ldots, l-1\}, f_{i} \notin Y$ for all $Y \in \mathscr{Y}$ and $f_{i} \notin \mathrm{pPOL}_{k} \chi_{j}$ for all $j \leq i$. Since $i+1 \leq l$ and $\varrho \ll \chi_{i+1}$, there is some $f_{i+1} \in X$ with $f_{i+1} \notin \mathrm{pPOL}_{k} \chi_{i+1}$ and $f_{i+1} \notin Y$ for all $Y \in \mathscr{Y} \cup\left\{\mathrm{pPOL}_{k} \chi_{j} \mid 1 \leq j \leq i\right\}$. Thus, by induction on l, there is some $F:=f_{l} \in X$ with $F \notin Y$ for all $Y \in \mathscr{Y} \cup \mathscr{Z}$.

Remark 6.3. With the help of \ll we can define a directed graph $\mathcal{G}=\left(p \mathscr{M}_{k}, E\right)$ without loops such that $(X, Y) \notin E$ for all $X, Y \in p \mathscr{M}_{k}$ with $X=\mathrm{pPOL}_{k} \varrho$, $Y=\operatorname{pPOL}_{k} \psi$ and $\varrho \ll \psi$.

If $X \in p \mathscr{M}_{k}$ is a sink in \mathcal{G}, then X is in every minimal covering of $p \mathscr{M}_{k}$. Assume this is false. Then there is a minimal covering \mathscr{Y} of $p \mathscr{M}_{k}$ with $X \notin \mathscr{Y}$ and

$$
\forall f \in X \exists Y \in \mathscr{Y}: f \in Y
$$

Since X is a sink, i.e., $(X, Y) \notin E$, we have $\varrho \ll \psi$ for all $Y=\operatorname{pPOL}_{k} \psi \in \mathscr{Y}$ and thus by Lemma 6.2 there is some $F \in X$ with $F \notin Y$ for all $Y \in \mathscr{Y}$ contradicting \mathscr{Y} is a covering of $p \mathscr{M}_{k}$. Thus X is in every minimal covering of $p \mathscr{M}_{k}$.

If $X \in p \mathscr{M}_{k}$ is not a sink in the graph \mathcal{G} then X is covered by its successors $U(X):=\left\{Y \in p \mathscr{M}_{k} \mid(X, Y) \in E\right\}$, i.e.,

$$
X \subseteq \bigcup_{Y \in U(X)} Y
$$

Assume this is false. Then there is some $f \in X$ with $f \notin X^{\prime}$ for all $X^{\prime} \in U(X)$. By Lemma 6.2 there is some $F \in X$ with $F \notin X^{\prime}$ for all $X^{\prime} \in U(X)$ and $F \notin Z$ for all $Z \in p \mathscr{M}_{k}$ with $(X, Z) \notin E$. Thus $F \notin Y$ for all $Y \in \mathscr{X} \backslash\{X\}$. But then $U(X)=\emptyset$ because of the existence of F, i.e., X is a sink. Thus X is covered by $U(X)$.

Then we show in following sections that \mathcal{G} is acyclic. This implies if X is not a sink then X is covered by sinks since \mathcal{G} is transitive and finite, i.e., X is in no minimal covering. Thus there is only one minimal covering.
Definition 6.4. Sometimes we write $\chi \subset \varrho$ to mean $\chi \subset \varrho^{[\pi]}$ for some $\pi \in S_{h}$. Because $\mathrm{pPOL}_{k} \varrho=\mathrm{pPOL}_{k} \varrho^{[\pi]}$ we can assume $\pi=\mathrm{id}$ in most cases where id is the identity permutation in S_{h}.

Similarly if we write $\chi \nsubseteq \varrho$ then $\chi \nsubseteq \varrho^{[\pi]}$ for all $\pi \in S_{h}$.
Lemma 6.5. Let $\varrho^{(h)} \in \mathcal{A} \cup \mathcal{Q}_{0}^{\prime} \cup \mathcal{L}$ and $\chi^{(\mu)} \in(\mathcal{Q} \cup \mathcal{L} \cup \mathcal{S}) \backslash\{\varrho\}$. Then $\varrho \ll \chi$.
Proof. Let $\sigma:=\sigma(\varrho)$ and $\delta:=\delta(\varrho)$. Let $f \in \mathrm{pPOL}_{k} \varrho$ be arbitrary. If $f \notin \mathrm{pPOL}_{k} \chi$ then $g:=f$ fulfills the conditions of $\varrho \ll \chi$. Thus assume $f \in \mathrm{pPOL}_{k} \chi$.

There are two cases:
$\mu \leq h$ or $\chi \in \mathcal{S}$:
Let $g_{0}(\chi):=v$ (see Definition 4.1) for some $v \in \varrho^{[\pi]} \backslash \chi$ if $\chi \subset \varrho^{[\pi]}$ for some $\pi \in S_{h}$ (w.l.o.g. $\pi=\mathrm{id}$) and $v \in E_{k}^{\mu} \backslash \chi$ otherwise. Then $g_{0} \notin \mathrm{pPOL}_{k} \chi$.

We have to show $g_{0} \in \mathrm{pPOL}_{k} \varrho$. Assume $g_{0}^{(n)} \notin \mathrm{pPOL}_{k} \varrho$. Then there are some rows $c_{1 *}, \ldots, c_{h *}$ with $c_{* 1}, \ldots, c_{* n} \in \varrho$ and $g_{0}\left(c_{* 1}, \ldots, c_{* n}\right)=: d \notin \varrho$. Because of Lemma 5.3 all rows have to be different. Thus if $\mu=h$ then $\left\{c_{* 1}, \ldots, c_{* n}\right\} \subseteq \chi^{\left[\pi^{\prime}\right]}$ for some $\pi^{\prime} \in S_{h}$.

There are some cases:
$\mu<h$: Because g_{0} is only defined on μ different rows Lemma 5.3 applies.
$\mu=h$ and $\chi \subset \varrho$: Then $\pi^{\prime} \in \Gamma_{\sigma(\varrho)}$ because $\chi^{\left[\pi^{\prime}\right]} \subset \varrho$ and $\chi \subset \varrho$. Thus we have $d=v^{\left[\pi^{\prime}\right]} \in \varrho$ because $v \in \varrho$.
$\mu=h$ and $\chi \nsubseteq \varrho^{[\pi]}$ for all $\pi \in S_{h}$: Thus there is some $j \in\{1,2, \ldots, n\}$ with $c_{* j} \notin \varrho$ contradicting the assumption.
$\chi \in \mathcal{S}$ and $\mu>h:$ Then $E_{k}^{h}=\operatorname{pr}_{A} \iota_{k}^{\mu}=\left\{c_{* 1}, \ldots, c_{* n}\right\} \subseteq \varrho$ contradicting that ϱ is coherent.
Thus $g_{0} \in \mathrm{pPOL}_{k} \varrho$.
Let $G_{0}:=f \otimes g_{0}$ and $L=0$. By construction $G_{0} \notin \mathrm{pPOL}_{k} \chi$.
$\mu>h$ and $\chi \notin \mathcal{S}$:
Let $\sigma_{0}:=\sigma$ and define the relations $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{l}, \sigma_{l+1}$ recursively until $\sigma_{l+1}=\emptyset$ and $\emptyset \notin\left\{\sigma_{0}, \sigma_{1}, \ldots, \sigma_{l}\right\}$ hold.

Let $\emptyset \subset \sigma_{i} \subseteq \sigma$ be given. Because ϱ is coherent, there is a relational homomorphism $\varphi_{i}: E_{k} \rightarrow E_{h}$ from σ_{i} to $M(\varrho)$ and an $s_{i} \in \sigma_{i}$ with $\varphi_{i}\left(s_{i}\right)=\eta_{h}$. Let $\sigma_{i+1}:=\left\{s \in \sigma_{i} \mid \varphi_{i}(s) \in \delta \cap E_{h}^{h}\right\}$. From $\varphi_{i}\left(s_{i}\right)=\eta_{h} \notin \delta \cap E_{h}^{h}$ follows $\left|\sigma_{i+1}\right|<\left|\sigma_{i}\right|$. Because $|\sigma|$ is finite there is an $l \in \mathbb{N}$ with $\sigma_{l+1}=\emptyset$.

Define $\varphi_{\star}: E_{h} \rightarrow E_{k}$ by $\varphi_{\star}\left(\eta_{h}\right):=s_{0}$. Then define for $i \in\{0,1, \ldots, l\}$ the function $q_{i}: E_{k} \rightarrow E_{k}$ with $q_{i}(x):=\varphi_{\star}\left(\varphi_{i}(x)\right)$. Then q_{i} is a relational homomorphism from σ_{i} to ϱ. For $v:=\left(v_{0}, v_{1}, \ldots, v_{m-1}\right) \in E_{k}^{m}$ and $m \in\{1,2, \ldots, k\}$ let
$Q_{-1}(v):=\delta_{E_{m}}^{(m)}$,
$Q_{i}(v):=Q_{i-1}(v) \cup\left\{\left(x_{v_{0}}, x_{v_{1}}, \ldots, x_{v_{m-1}}\right) \in E_{k}^{m} \mid \varphi_{i}(a)=\varphi_{i}(b) \Longrightarrow x_{a}=x_{b}\right\}$,
$Q_{l+j}(v):=Q_{l}(v)$ for all $j \geq 1$.
Because of $\left|\varphi_{i}\left(E_{k}\right)\right|=h$ we have $|\omega(x)| \leq h$ for all $x \in Q_{i}\left(\eta_{k}\right)$.
Let

$$
\begin{aligned}
& \forall i \in\{0,1,2, \ldots, l\}: g_{i}\left(\left\{\eta_{k}\right\} \cup Q_{i-1}\left(\eta_{k}\right)\right):=q_{i}\left(\eta_{k}\right), \\
& \forall j \in\left\{1,2, \ldots,\left|E_{k}^{k}\right|\right\}: g_{l+j}\left(\left\{\eta_{k}\right\} \cup Q_{l}\left(\eta_{k}\right)\right):=w_{j},
\end{aligned}
$$

where $\left\{w_{1}, w_{2}, \ldots, w_{\left|E_{k}^{k}\right|}\right\}=E_{k}^{k}$. Let $L:=l+\left|E_{k}^{k}\right|$.
We now show $g_{i} \in \mathrm{pPOL}_{k} \varrho$ for $i \in\{0,1, \ldots, L\}$. Assume $g_{i}^{(n)} \notin \mathrm{pPOL}_{k} \varrho$. Then there are rows $c_{1 *}, \ldots, c_{h *}$ with $c_{* 1}, \ldots, c_{* n} \in \varrho$ and $g_{i}\left(c_{* 1}, \ldots, c_{* n}\right)=: d \in$ $E_{k}^{h} \backslash \varrho$. By construction of g_{i} we can w.l.o.g. assume that $c^{\prime}:=c_{* 1}=\operatorname{pr}_{p_{1}, \ldots, p_{h}} \eta_{k}$ with pairwise different coordinates p_{1}, \ldots, p_{h}. Thus $c^{\prime} \in \sigma(\varrho)$. There are two cases:
$c^{\prime} \in \sigma_{i}:$ We have $i \leq l$ since $\sigma_{l+1}=\emptyset$. Then $d=g_{i}\left(c^{\prime}, c_{* 2}, \ldots, c_{* n}\right)=q_{i}\left(c^{\prime}\right) \in \varrho$
because q_{i} is a relational homomorphism from σ_{i} to ϱ. This is in contradiction to $d \in E_{k}^{h} \backslash \varrho$.
$c^{\prime} \in \varrho \backslash \sigma_{i}:$ Then there is some $j<i$ such that $c^{\prime} \in \sigma_{j}$ and $c^{\prime} \notin \sigma_{j+1}$ hold. Then $\varphi_{j}\left(c^{\prime}\right) \in \sigma\left(E_{k}^{h}\right)$. Thus

$$
E_{k}^{h}=Q_{j}\left(c^{\prime}\right) \subseteq Q_{i-1}\left(c^{\prime}\right)=\operatorname{pr}_{p_{1}, \ldots, p_{h}} Q_{i-1}\left(\eta_{k}\right)=\left\{c_{* 2}, \ldots, c_{* n}\right\} \subseteq \varrho,
$$

i.e., $\varrho=E_{k}^{h}$ in contradiction to ϱ coherent.

Thus no such c^{\prime} can exist and therefore $g_{i} \in \mathrm{pPOL}_{k} \varrho$ for all $i \in\{0,1, \ldots, L\}$.
Let $G_{i}:=f \otimes g_{0} \otimes g_{1} \otimes \cdots \otimes g_{i}$ for $i \in\{0,1, \ldots, L\}$.
We show $G_{L} \notin \mathrm{pPOL}_{k} \chi$. If $g_{i} \notin \mathrm{pPOL}_{k} \chi$ for some $i \in\{0,1, \ldots, L\}$, then $G_{L} \notin \mathrm{pPOL}_{k} \chi$. Otherwise $Q_{l}(v) \subseteq \chi$ for some $v \in \chi$ by construction of $Q_{l}(v)$ and $g_{i} \in \mathrm{pPOL}_{k} \chi$ for $i \in\{0,1, \ldots, L\}$. Then $g_{l+j}\left(\{v\} \cup \delta_{E_{\mu}}^{(\mu)} \cup Q_{l}(v)\right) \in \chi$ for all $j \in\left\{1,2, \ldots,\left|E_{k}^{k}\right|\right\}$ and thus $E_{k}^{\mu} \subseteq \chi$ in contradiction to χ coherent.
Let $G_{-1}=f$ and $g=G_{L}$. Now we show that $g \in \mathrm{pPOL}_{k} \varrho$ by induction over $i \in\{-1,0,1, \ldots, L\}$.

The basis $G_{-1}=f \in \mathrm{pPOL}_{k} \varrho$ is given by choice of f.
The induction goes from $i-1$ to i for $i \in\{0,1, \ldots, L\}$. Let $G_{i-1} \in \operatorname{pPOL}_{k} \varrho$. We want to show $G_{i}=G_{i-1} \otimes g_{i} \in \operatorname{pPOL}_{k} \varrho$. Let $D:=\operatorname{dom} G_{i-1}, E:=\operatorname{dom} g_{i}$ and D^{\prime}, E^{\prime} the associated matrices (see Definition 4.1).

Assume $G_{i} \notin \mathrm{pPOL}_{k} \varrho$. Then there are some rows $c_{1 *}, \ldots, c_{h *}$ from $D^{\prime} \otimes E^{\prime}$ with

$$
F\left(\begin{array}{c}
c_{1 *} \tag{6.1}\\
\vdots \\
c_{h *}
\end{array}\right)=:\left(\begin{array}{c}
s_{1} \\
\vdots \\
s_{h}
\end{array}\right)=: s \notin \varrho
$$

and

$$
\begin{equation*}
\forall j \in\{1,2, \ldots, N\}: c_{* j} \in \varrho . \tag{6.2}
\end{equation*}
$$

By Lemma 5.3 all the rows $c_{i *}$ are pairwise different.
Because $G_{i-1} \in \mathrm{pPOL}_{k} \varrho$ and $g_{i} \in \mathrm{pPOL}_{k} \varrho$ some rows have to be from the D-part and some from the E-part of $D^{\prime} \otimes E^{\prime}$.

Assume w.l.o.g. $c_{1 *}$ is from the D-part and $c_{h *}$ is from the E-part. From $\delta(\chi) \neq \emptyset$ and χ coherent follows $\delta_{E_{\mu}}^{(\mu)} \subseteq \delta(\chi) \subseteq \chi$.

There are three cases:
$\varrho \in \mathcal{A}:$ Because $E_{k} \subseteq c_{h *}$ there is some column j with $c_{1 j}=c_{h j}$ in contradiction to ϱ areflexive.
$\varrho \in \mathcal{Q}_{0}^{\prime}:$ If $h=2$ then $\{x\} \times E_{k} \subseteq \varrho$ in contradiction to $\varrho \in \mathcal{Q}_{0}^{\prime}$, i.e., ϱ does not fulfill the conditions of Lemma 5.5.

Let $h \geq 3$ and $i \in\{2, \ldots, h-1\}$ be arbitrary. Because $c_{1 *} \neq c_{i *}$ there is column j with $\left(c_{1 j}, c_{i j}, c_{h j}\right)^{\mathrm{T}}=(x, y, y)^{\mathrm{T}}$ and $x \neq y$. Because i is arbitrary and $\delta(\varrho)=\delta_{\varepsilon}$ for some equivalence relation ε we get that $(0, a) \notin \varepsilon=\varepsilon(\varrho)$ for all $a \neq 0$, i.e., $\varepsilon(\varrho)$ has a singular equivalence class contradicting $\varrho \in \mathcal{Q}_{0}$.
$\varrho \in \mathcal{L}:$ If $c_{1 *}, c_{2 *}, c_{3 *}$ (which are pairwise different) are from D and is $c_{4 *}$ from E, then there is there is a column $c_{* j}=(x, y, z, w)^{\mathrm{T}} \notin \varrho$ with $|\{x, y, z\}| \geq 2$ and $|\{x, y, z, w\}|=3$ in contradiction to (6.2). Otherwise there is some column $c_{* j}=(x, y, y, y)^{\mathrm{T}} \notin \varrho$ with $x \neq y$ contradicting (6.2).
Thus $G_{i} \in \operatorname{pPOL}_{k} \varrho$ and by induction $g=G_{L} \in \operatorname{pPOL}_{k} \varrho$. Because $g \notin \mathrm{pPOL}_{k} \chi$ we get $\varrho \ll \chi$.
Lemma 6.6. Let $\varrho^{(h)} \in \mathcal{Q}_{1} \cup \mathcal{S}^{\prime}$ and $\chi^{(\mu)} \in \mathcal{S}$. Then $\varrho \ll \chi$.
Proof. Let $f \in \mathrm{pPOL}_{k} \varrho$ be arbitrary. If $f \notin \mathrm{pPOL}_{k} \chi$ then $g:=f$ fulfills the conditions of \ll. Thus assume $f \in \mathrm{pPOL}_{k} \chi$.

Let $g_{\chi}(\chi):=v$ (see Definition 4.1) for some $v \in \varrho \backslash \chi$ if $\chi \subseteq \varrho$ and $v \in E_{k}^{\mu} \backslash \chi$ otherwise. Then $g_{\chi} \in \mathrm{pPOL}_{k} \varrho$ and let $g:=f \otimes g_{\chi}$. We get $g \notin \mathrm{pPOL}_{k} \chi$ because $g_{\chi} \notin \mathrm{pPOL}_{k} \chi$. Let $D:=\operatorname{dom} f$ and $E:=\operatorname{dom} g_{\chi}$ as in Definition 4.2, $n=|D|$, $m=|E|$ and $N=|D| \cdot|E|$.

It suffices to show $F^{(N)}:=\left(f \otimes g_{\chi}\right) \in \mathrm{pPOL}_{k} \varrho$. Assume this is false. Then there are some rows $c_{1 *}, \ldots, c_{h *}$ from $D \otimes E$ with $s_{i}:=F\left(c_{i *}\right), s:=\left(s_{1}, \ldots, s_{h}\right)^{\mathrm{T}} \notin \varrho$ and $c_{* j} \in \varrho$ for all $j \in\{1,2, \ldots, N\}$. By Lemma 5.3 all the rows $c_{i *}$ are pairwise different.

If all rows $c_{i *}$ are from the D-part of $D \otimes E$, then $f\left(c_{* 1 m}, c_{* 2 m}, \ldots, c_{* n m}\right)=s \notin \varrho$ in contradiction to $f \in \mathrm{pPOL}_{k} \varrho$. Thus one row is from the E-part.

Assume there are rows from both parts of $D \otimes E$. Then w.l.o.g. ϱ is given such that $c_{1 *}$ is from the D-part and $c_{h *}$ is from the E-part. Let $c_{i_{1} *}, \ldots, c_{i_{q} *}$ with $q<h$ the rows of the E-part. Then $\delta_{E_{q}}^{(q)} \subseteq\left(c_{i j}\right)_{i=i_{1}, \ldots, i_{q}, j=1, \ldots, N}$.

There are two cases:
$\varrho \in \mathcal{Q}_{1}:$ Let $c_{i_{1} *}, c_{i_{2} *}, c_{h *}$ be three pairwise different rows. Then there are columns j_{1} and j_{2} with $\left(c_{i_{1} j_{1}}, c_{i_{2} j_{1}}, c_{h j_{1}}\right)^{\mathrm{T}}=(x, y, x)^{\mathrm{T}},\left(c_{i_{1} j_{2}}, c_{i_{2} j_{2}}, c_{h j_{2}}\right)^{\mathrm{T}}=(x, y, y)^{\mathrm{T}}$ and $x \neq y$. Thus $\left(i_{1}-1, i_{2}-1\right),\left(i_{1}-1, h-1\right),\left(i_{2}-1, h-1\right) \notin \varepsilon(\varrho)$. Because $i_{1} \neq i_{2} \neq h$ are arbitrary it follows that $\delta(\varrho)=\delta_{\iota_{h}^{2}}^{(h)}=E_{k}^{h}$ in contradiction to ϱ coherent.
$\varrho \in \mathcal{S}^{\prime}$: If only $c_{1 *}$ is from D, then $\{x\} \times E_{k}^{2} \subseteq \varrho$ for some $x \in c_{1 *}$, and thus $(x, y)^{\mathrm{T}} \times E_{k} \subseteq \varrho$ with $x \neq y$. If only $c_{h *}$ is from E then $(x, y)^{\mathrm{T}} \times E_{k} \subseteq \varrho$ with $x \neq y, x \in c_{1 *}$ and $y \in c_{2 *}$. Thus Lemma 5.4 applies contradicting $\varrho \in \mathcal{S}^{\prime}$.
Lemma 6.7. Let $\varrho^{(h)} \in \mathcal{Q}_{1}$ and $\chi^{(\mu)} \in \mathcal{Q}_{\varrho}$. Then $\varrho \ll \chi$.
Proof. Let $f \in \mathrm{pPOL}_{k} \varrho$ be arbitrary. If $f \notin \mathrm{pPOL}_{k} \chi$ then $g:=f$ fulfills the conditions of \ll. Thus assume $f \in \mathrm{pPOL}_{k} \chi$.

Let $g_{\chi}(\chi):=v$ (see Definition 4.1) for some $v \in E_{k}^{\mu} \backslash \chi$ and let $g:=f \otimes g_{\chi}$. We get $g \notin \mathrm{pPOL}_{k} \chi$ because $g_{\chi} \notin \mathrm{pPOL}_{k} \chi$. It suffices to show

$$
\begin{equation*}
F^{(N)}:=\left(f \otimes g_{\chi}\right) \in \mathrm{pPOL}_{k} \varrho \tag{6.3}
\end{equation*}
$$

Let $D:=\operatorname{dom} f$ and $E:=\operatorname{dom} g$ as in Definition 4.2, $n=|D|, m=|E|$ and $N=|D| \cdot|E|$.

Assume (6.3) is false. Then there are $c_{1 *}, \ldots, c_{h *}$ from $D \otimes E$ with $s_{i}:=F\left(c_{i *}\right)$, $s:=\left(s_{1}, \ldots, s_{h}\right)^{\mathrm{T}} \notin \varrho$ and $c_{* j} \in \varrho$ for all $j \in\{1,2, \ldots, N\}$. By Lemma 5.3 all the rows $c_{i *}$ are pairwise different.

If all rows $c_{i *}$ are from the D-part of $D \otimes E$, then $f\left(c_{* 1 m}, c_{* 2 m}, c_{* n m}\right)=s \notin \varrho$ in contradiction to $f \in \mathrm{pPOL}_{k} \varrho$. Thus at least one row is from the E-part.

Let $l:=\|\varrho\|$. Let w.l.o.g. pp ϱ be the first l rows of ϱ. Assume there is some row $c_{i_{1} *}$ with $1 \leq i_{1} \leq l$ such that $c_{i_{1} *}$ is not from the part of E representing pp χ. Let $i_{2} \neq i_{1}$ with $1 \leq i_{2} \leq l$ be arbitrary. Then there are columns j_{1} and j_{2} with $\left(c_{i_{1} j_{1}}, c_{i_{2} j_{1}}, c_{h j_{1}}\right)^{\mathrm{T}}=(x, y, x)^{\mathrm{T}},\left(c_{i_{1} j_{2}}, c_{i_{2} j_{2}}, c_{h j_{2}}\right)^{\mathrm{T}}=(x, y, y)^{\mathrm{T}}$ and $x \neq y$. Thus $\left(i_{2}-1, i_{1}-1\right) \notin \varepsilon(\varrho)$, i.e., there is a singleton class in $\varepsilon(\operatorname{pp} \varrho)$ in contradiction to $\operatorname{pp} \varrho \in \mathcal{Q}_{0}$.

So we need $\operatorname{pp} \chi \subseteq \operatorname{pp} \varrho$ in contradiction to the definition of \mathcal{Q}_{ϱ}.
Definition 6.8. Let $f \in \widetilde{P}_{k}^{(1)}$ be a unary function. Then we define recursively $f^{0}:=e_{1}^{(1)}$ and $f^{n}:=f\left(f^{n-1}\right)$ for all $n \geq 1$.

For the proof of Theorem 6.13 some lemmas are needed using the following condition on $\varrho \in \mathcal{A}$.

$$
\begin{align*}
& \exists \varphi \in \operatorname{Pol}_{k}^{(1)} \varrho \forall l \in\{1,2, \ldots, h-1\} \forall D \subseteq \sigma\left(E_{k}^{l}\right) \forall v \in \sigma\left(E_{k}^{h-l}\right) \\
& \forall \pi \in S_{h} \exists m \geq 0: D \times\left\{\varphi^{m}(v)\right\} \nsubseteq \varrho^{[\pi]} \tag{6.4}
\end{align*}
$$

Proposition 6.9. Let $\varrho^{(h)} \in \mathcal{A}$ and ϱ fulfills (6.4). Then there is some $\varphi^{\prime} \in \operatorname{Pol}_{k}^{(1)} \varrho$ which suffices the conditions in (6.4) and $\varphi^{\prime} \notin \mathrm{pPOL}_{k}\{x\}$ for all $x \in E_{k}$.
Proof. There is some $\varphi \in \operatorname{Pol}_{k}^{(1)} \varrho$ which fulfills (6.4). Let

$$
\varphi^{\prime}(x)= \begin{cases}y & \text { for some } y \in E_{k} \backslash\{x\}, \text { if } x \in E_{k} \backslash \omega(\varrho) \\ \varphi(x) & \text { otherwise }\end{cases}
$$

Let $x \in E_{k} \backslash \omega(\varrho)$. If $x \in \omega(D) \cup \omega(v)$ then $D \times\left\{\left(\varphi^{\prime}\right)^{0}(v)\right\}=D \times\{v\} \nsubseteq \varrho^{[\pi]}$ for all π. Thus φ^{\prime} fulfills the conditions of (6.4) because it coincides with φ on $\omega(\varrho)$.

Let $x \in \omega(\varrho)$. Then there is some $D \subseteq \sigma\left(E_{k}^{h-1}\right)$ with $D \times\{x\} \subseteq \varrho^{[\pi]}$ for some $\pi \in S_{h}$. But there is some $m \geq 0$ with $D \times\left\{\left(\varphi^{\prime}\right)^{m}(x)\right\} \nsubseteq \varrho^{[\pi]}$ because of (6.4). Thus $\varphi^{\prime}(x) \neq x$. For $x \notin \omega(\varrho)$ follows $\varphi^{\prime}(x) \neq x$ by definition of φ^{\prime}.

Lemma 6.10. Let $\varrho^{(h)} \in \mathcal{A}$ and ϱ fulfills (6.4). Then $\mathrm{PPOL}_{k} \varrho$ is in every minimal covering of $p \mathscr{M}_{k}$.

Proof. Because of Lemma 6.5 we just have to find a function $f \in \mathrm{pPOL}_{k} \varrho$ with

$$
\forall \chi \in(\mathcal{U} \cup \mathcal{A}) \backslash\{\varrho\}: f \notin \mathrm{pPOL}_{k} \chi
$$

Then there is some function $g \in \mathrm{pPOL}_{k} \varrho$ with

$$
\forall \chi \in \widetilde{\mathcal{R}}_{k}^{\max } \backslash\{\varrho\}: g \notin \mathrm{pPOL}_{k} \chi
$$

and by construction also $g \notin P_{k} \cup C_{\emptyset}$. Thus $\mathrm{pPOL}_{k} \varrho$ is in every minimal covering of $p \mathscr{M}_{k}$ by Lemma 3.2.

We will now construct the function f mentioned above.
We can assume $\pi=\mathrm{id} \in S_{h}$ in (6.4) because $\mathrm{pPOL}_{k} \varrho=\mathrm{pPOL}_{k} \varrho^{[\pi]}$. Because of Proposition 6.9 we can assume $\varphi \notin \mathrm{pPOL}_{k}\{x\}$ for all $x \in E_{k}$.

Let $f_{0}:=\varphi$ and define $f_{j}:=f_{j-1} \otimes f_{\chi_{j}}$ recursively with

$$
X:=\left\{\chi_{1}, \ldots, \chi_{N}\right\}:=\left\{\chi \in \mathcal{U} \cup \mathcal{A} \mid \varphi \in \operatorname{pPOL}_{k} \chi\right\}
$$

Let $\chi^{(\mu)}=\chi_{j} \in X$. There are two cases:
$\mu \leq h:$ Let $f_{\chi}(\chi):=z$ (see Definition 4.1) with $z \in \varrho \backslash \chi$ if $\chi \subset \varrho$ and $z \in E_{k}^{\mu} \backslash \chi$ otherwise. Then $f_{\chi} \notin \mathrm{pPOL}_{k} \chi$ and by construction $f_{\chi} \in \mathrm{pPOL}_{k} \varrho$.
$\mu>h$: Because ϱ is coherent there is a relational homomorphism $\theta_{0}: E_{k} \rightarrow E_{k}$ from ϱ to $M(\varrho)$. Let $\theta_{1}: E_{h} \rightarrow E_{k}$ with $\theta_{1}\left(\eta_{h}\right)=v_{1}$ for some $v_{1} \in \varrho$. Then $\theta \in \mathrm{pPOL}_{k} \varrho$ for $\theta: E_{k} \rightarrow E_{k}$ with $\theta(x)=\theta_{1}\left(\theta_{0}(x)\right)$.

Let $v \in \chi$ be arbitrary and let $f_{\chi}(\chi):=\theta(v)$ (see Definition 4.1). Because $|\omega(\theta(v))| \leq h<\mu$ we have $\theta \notin \mathrm{pPOL}_{k} \chi$, and thus $f_{\chi} \notin \mathrm{pPOL}_{k} \chi$.

By construction θ is a relational homomorphism from ϱ to ϱ. Thus $f_{\chi} \in$ $\mathrm{pPOL}_{k} \varrho$.
Because $f_{j}=f_{j-1} \otimes f_{\chi_{j}}$ and $f_{\chi_{j}} \notin \mathrm{pPOL}_{k} \chi_{j}$ we get $f_{j} \notin \mathrm{pPOL}_{k} \chi_{j}$.
Assume $f_{j}^{(n)} \notin \mathrm{pPOL}_{k} \varrho$. Then there are rows $c_{1 *}, \ldots, c_{h *}$ with $c_{* 1}, \ldots, c_{* n} \in \varrho$ and $f\left(c_{* 1}, \ldots, c_{* n}\right)=d \in E_{k}^{h} \backslash \varrho$. Then the rows $c_{i *}$ are pairwise different and some rows belong to the f_{j-1} part of f_{j} and some to the f_{χ} part. The rows can w.l.o.g. be sorted in a way such that the first l rows for some $l \in\{1,2, \ldots, h-1\}$ are from the f_{j-1} part of $f_{j}=f_{j-1} \otimes f_{\chi_{j}}$.

Let $D:=\operatorname{pr}_{0, \ldots, l-1}\left\{c_{* 1}, \ldots, c_{* n}\right\}$ and $W:=\operatorname{pr}_{l, \ldots, h-1}\left\{c_{* 1}, \ldots, c_{* n}\right\}$. Because the rows $c_{l *}, c_{l+1 *}, \ldots, c_{h-1 *}$ are from the f_{χ} part and f_{χ} is only defined on χ we get $W=\operatorname{pr}_{p_{l}, p_{l+1}, \ldots, p_{h-1}} \chi$ for pairwise different p_{i}. Let $v \in W \subseteq E_{k}$ be arbitrary. Then there is some $v^{\prime} \in \chi$ with $v=\operatorname{pr}_{p_{l}, p_{l+1}, \ldots, p_{h-1}} v^{\prime}$. Thus $\left\{\varphi^{m}(v) \mid m \geq 0\right\} \subseteq W$ because $\varphi \in \mathrm{pPOL}_{k} \chi$, i.e., $\left\{\varphi^{m}\left(v^{\prime}\right) \mid m \geq 0\right\} \subseteq \chi$.

But then $D \times\left\{\varphi^{m}(v) \mid m \geq 0\right\} \subseteq \varrho$ in contradiction to (6.4).

Let $\Gamma^{\prime} \subseteq S_{h}$ and $l \leq h$. Then we define $\Gamma_{\mid E_{l}}^{\prime} \subseteq S_{l}$ by
$\Gamma_{\mid E_{l}}^{\prime}:=\left\{\pi \in S_{l} \mid \exists \pi^{\prime} \in \Gamma^{\prime}:\left(\forall x \in E_{l}: \pi(x)=\pi^{\prime}(x)\right) \wedge\left(\forall x \in E_{h} \backslash E_{l}: \pi^{\prime}(x)=x\right)\right\}$.
Lemma 6.11. Let $\varrho^{(h)} \in \mathcal{A}, \bar{\chi}^{(l)} \subseteq E_{k}^{l}, V \subseteq E_{k}^{h-l}, l \in\{1, \ldots, h-1\}$ and $\chi \times V \subseteq \varrho$. Let $\Gamma^{\prime}:=\left\{\pi \in \Gamma_{\sigma} \mid \forall x \in E_{h} \backslash E_{l}: \pi(x)=x\right\}$ and $\chi^{\prime}:=\left\{c^{[\pi]} \mid c \in \bar{\chi}, \pi \in \Gamma_{\mid E_{l}}^{\prime}\right\}$.

Then χ^{\prime} is coherent and $\chi^{\prime} \times V \subseteq \varrho$.
Proof. From the definition of Γ^{\prime} and ϱ coherent follows $\chi^{\prime} \times V \subseteq \varrho$.
We now show that χ^{\prime} is coherent.

- If $l \geq 2$ then $\chi^{\prime} \neq E_{k}^{l}$ because $\chi^{\prime} \subseteq \sigma\left(E_{k}^{l}\right) \subset E_{k}^{l}$.

Let $l=1$ and $\chi^{\prime}=E_{k}^{l}=E_{k}$.
If $h=2$ then $V \neq E_{k}$ because otherwise $E_{k}^{2} \subseteq \varrho$ contradicting ϱ coherent.
Let V^{\prime} with $V \subseteq V^{\prime} \subset E_{k}$ be maximal with respect to inclusion such that $\chi^{\prime} \times V^{\prime} \subseteq \varrho$. Because $f \notin \mathrm{pPOL}_{k} V^{\prime}$ there are $b_{1}, \ldots, b_{n} \in V^{\prime}$ and $y \in E_{k} \backslash V^{\prime}$ with $f\left(b_{1}, \ldots, b_{n}\right)=y$. Then there is some $x \in E_{k}$ such that $(x, y)^{\mathrm{T}} \notin \varrho$ and there are $a_{1}, \ldots, a_{n} \in E_{k} \backslash\{x\}$ with $f\left(a_{1}, \ldots, a_{n}\right)=x$ because $f \notin \mathrm{pPOL}_{k}\left(E_{k} \backslash\{x\}\right)$ and $E_{k} \backslash\left(E_{k} \backslash\{x\}\right)=\{x\}$. Thus

$$
f\left(\begin{array}{ccc}
a_{1} & \ldots & a_{n} \\
b_{1} & \ldots & b_{n}
\end{array}\right)=\binom{x}{y} \notin \varrho
$$

but $\left(a_{i}, b_{i}\right)^{\mathrm{T}} \in \varrho$ for all $i \in\{1, \ldots, n\}$ contradicting $f \in \mathrm{pPOL}_{k} \varrho$.
If $h \geq 3$ then $\binom{x}{w} \notin \varrho$ for all $w \in V \subseteq \sigma\left(E_{k}^{h-l}\right)$ and $x \in \omega(w)$.
Thus $\chi^{\prime} \neq E_{k}^{l}$.

- $\chi^{\prime} \subseteq \sigma\left(E_{k}^{l}\right)$, i.e., χ^{\prime} is areflexive and $1 \leq l<k$,
- $r^{[\pi]} \in \chi^{\prime}$ for all $r \in \chi^{\prime}$ and $\pi \in \Gamma_{\chi^{\prime}}$ because $\pi \in \Gamma^{\prime}$ for any $\pi \in \Gamma_{\chi^{\prime}}$.
- $M\left(\chi^{\prime}\right)=\left\{\eta_{l}^{[\pi]} \mid \pi \in \Gamma_{\chi^{\prime}}=\Gamma_{\mid E_{l}}^{\prime}\right\}$. Let ψ with $\emptyset \subset \psi \subseteq \chi^{\prime}$ and $w \in V$ be arbitrary. Because ϱ is coherent there exists a relational homomorphism $\lambda: E_{k} \rightarrow E_{h}$ from $\psi \times\{w\}$ to $M(\varrho)$ with

$$
\lambda\binom{c}{w}=\eta_{h}
$$

i.e., $\lambda(c)=\eta_{l}$, for some $c \in \psi$. For any $c^{\prime} \in \psi$ we have

$$
\lambda\binom{c^{\prime}}{w} \in M(\varrho)=\left\{\eta_{h}^{[\pi]} \mid \pi \in \Gamma_{\sigma}\right\}
$$

and because $\lambda(w)=(l, \ldots, h-1)^{\mathrm{T}}$ we get

$$
\lambda\binom{c^{\prime}}{w} \in\left\{\eta_{h}^{[\pi]} \mid \pi \in \Gamma^{\prime}\right\}
$$

and thus $\lambda\left(c^{\prime}\right) \in M\left(\chi^{\prime}\right)$.
Let $\lambda^{\prime}: E_{k} \rightarrow E_{l}$ be defined by

$$
\lambda^{\prime}(x):= \begin{cases}\lambda(x) & \text { if } x \in \omega\left(\chi^{\prime}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Then $\lambda^{\prime}: E_{k} \rightarrow E_{l}$ is a relational homomorphism from χ^{\prime} to $M\left(\chi^{\prime}\right)$ such that $\lambda^{\prime}(c)=\eta_{l}$ for some $c \in \chi^{\prime}$.
Thus χ^{\prime} is coherent, i.e., $\chi^{\prime} \in \mathcal{U} \cup \mathcal{A}$.
Lemma 6.12. Let $\varrho^{(h)} \in \mathcal{A}$ and ϱ does not fulfill (6.4). Then $\mathrm{pPOL}_{k} \varrho$ is in no minimal covering of $p \mathscr{M}_{k}$.
Proof. Let $f^{(n)} \in \mathrm{pPOL}_{k} \varrho$ be arbitrary with

$$
\begin{equation*}
\forall \chi^{(\mu)} \in \mathcal{U} \cup \mathcal{A}:\left(\mu<h \Longrightarrow f \notin \mathrm{pPOL}_{k} \chi\right) \tag{6.5}
\end{equation*}
$$

Let $\varphi(x):=f(x, \ldots, x)$. Then $\varphi \in \operatorname{pPOL}_{k}^{(1)} \varrho$ and by (6.5) we have $\varphi(x) \in$ $E_{k} \backslash\{x\}$ for all $x \in E_{k}$, specifically $\varphi \in \operatorname{Pol}_{k}^{(1)} \varrho$. Because (6.4) is false, there exist $l, D=\left\{D_{* 1}, \ldots, D_{*|D|}\right\} \subseteq \sigma\left(E_{k}^{l}\right), v \in \sigma\left(E_{k}^{h-l}\right)$ and $\pi \in S_{h}$ with $0<l<h$ and

$$
\forall m \geq 0: D \times\left\{\varphi^{m}(v)\right\} \subseteq \varrho^{[\pi]}
$$

Because $\mathrm{pPOL}_{k} \varrho=\mathrm{pPOL}_{k} \varrho^{[\pi]}$ we assume w.l.o.g. $\pi=\mathrm{id}$, i.e.,

$$
\begin{equation*}
\forall m \geq 0: D \times\left\{\varphi^{m}(v)\right\} \subseteq \varrho \tag{6.6}
\end{equation*}
$$

We show $\varphi^{m}(v) \in \sigma\left(E_{k}^{h-l}\right)$ for all $m \geq 0$. Assume otherwise. Then

$$
\binom{D_{* 1}}{\varphi^{m}(v)} \in \iota_{k}^{h}
$$

for some m, but this contradicts (6.6) because $\varrho \subseteq \sigma\left(E_{k}^{h}\right)$.
Because $\sigma\left(E_{k}^{h-l}\right)$ is finite, there are $0 \leq m_{1}<m_{2}$ such that $\varphi^{m_{1}}(v)=\varphi^{m_{2}}(v)$. Let $V:=\left\{\varphi^{m_{1}+m}(v) \mid m \geq 0\right\}$. Then for any $w \in V$ there is some $w^{\prime} \in V$ with $\varphi\left(w^{\prime}\right)=w$.

Let $\chi \in\left\{\psi^{(\mu)} \in \mathcal{U} \cup \mathcal{A} \mid \mu=l\right\}$ with $\chi \times V \subseteq \varrho$. Then there are rows $c_{1 *}, \ldots, c_{l *}$ with $c_{* 1}, \ldots, c_{* n} \in \chi$ and $f\left(c_{* 1}, \ldots, c_{* n}\right)=: d \in E_{k}^{l} \backslash \chi$.

Let $w^{\prime} \in V$ arbitrary and $w=\varphi\left(w^{\prime}\right) \in V$. Then $\chi \times\left\{w^{\prime}\right\} \subseteq \varrho$ and

$$
f\left(\begin{array}{ccc}
c_{* 1} & \ldots & c_{* n} \\
w^{\prime} & \ldots & w^{\prime}
\end{array}\right)=\binom{d}{w} \in E_{k}^{h}
$$

i.e.,

$$
\binom{d}{w} \in \varrho
$$

because $f \in \operatorname{pPOL}_{k} \varrho$. Thus $(\chi \cup\{d\}) \times V \subseteq \varrho$. This also implies $\chi \cup\{d\} \subseteq \sigma\left(E_{k}^{l}\right)$ as shown before.

Let $\Gamma^{\prime}:=\left\{\pi \in \Gamma_{\sigma} \mid \forall x \in E_{h} \backslash E_{l}: \pi(x)=x\right\}$ and $\chi^{\prime}:=\left\{c^{[\pi]} \mid c \in \chi \cup\{d\}, \pi \in\right.$ $\left.\Gamma_{\mid E_{l}}^{\prime}\right\}$.

By Lemma 6.11 with $\bar{\chi}=\chi \cup\{d\}$ we get χ^{\prime} coherent, i.e., $\chi^{\prime} \in \mathcal{U} \cup \mathcal{A}$, and $\chi \subset \chi^{\prime}$ with $\chi^{\prime} \times V \subseteq \varrho$.

Now let $\chi_{0}:=\left\{D_{* 1}\right\}$ then χ_{0} is coherent and $\chi_{0} \times V \subseteq \varrho$. By the argument above there is an infinite chain $\chi_{0} \subset \chi_{1} \subset \chi_{2} \subset \ldots$ with $\chi_{i} \in \mathcal{U} \cup \mathcal{A}$ and $\chi_{i} \times V \subseteq \varrho$ for all $i \in \mathbb{N}$. But this contradicts $|\mathcal{U} \cup \mathcal{A}|<\infty$ and thus the assumption (6.5) is wrong.

Thus for any $f \in \mathrm{pPOL}_{k} \varrho$ there is some $\chi^{(\mu)} \in \mathcal{U} \cup \mathcal{A}$ with $\mu<h$ and $f \in$ $\mathrm{pPOL}_{k} \chi$. By induction there is some $\psi^{\left(\mu^{\prime}\right)} \in \mathcal{U} \cup \mathcal{A}$ with $\mu^{\prime} \leq \mu, f \in \mathrm{pPOL}_{k} \psi$ and $\mathrm{pPOL}_{k} \psi$ is in every minimal covering of $p \mathscr{M}_{k}$.

Thus $\mathrm{pPOL}_{k} \varrho$ is in no minimal covering of $p \mathscr{M}_{k}$.
Theorem 6.13. Let $\varrho^{(h)} \in \mathcal{A}$. Then $\mathrm{pPOL}_{k} \varrho$ is in any minimal covering of $p \mathscr{M}_{k}$ if and only if ϱ fulfills (6.4).

Proof. If ϱ fulfills (6.4) then $\mathrm{pPOL}_{k} \varrho$ is in every minimal covering by Lemma 6.10. If ϱ does not fulfill (6.4) then $\mathrm{pPOL}_{k} \varrho$ is no minimal covering by Lemma 6.12.

7. Uniqueness of minimal coverings

Lemma 7.1. Let \mathscr{X}, \mathscr{Y} be two different minimal coverings of $p \mathscr{M}_{k}$. Then $\mathrm{pPOL}_{k} \varrho \in \mathscr{X}$ if and only if $\mathrm{pPOL}_{k} \varrho \in \mathscr{Y}$ for all $\varrho \in \mathcal{U} \cup \mathcal{A}$.

Proof. By Lemma 5.2 we have $\operatorname{pPOL}_{k} \varrho \in \mathscr{X}$ and $\operatorname{pPOL}_{k} \varrho \in \mathscr{Y}$ for all $\varrho \in \mathcal{U}$. By Theorem 6.13

$$
\forall \varrho \in \mathcal{A}\left(\mathrm{pPOL}_{k} \varrho \in \mathscr{X} \Longleftrightarrow \mathrm{pPOL}_{k} \varrho \in \mathscr{Y}\right) .
$$

Lemma 7.2. Let \mathscr{X}, \mathscr{Y} be two different minimal coverings of \boldsymbol{M}_{k}. Then $\mathrm{pPOL}_{k} \varrho \in \mathscr{X}$ if and only if $\mathrm{pPOL}_{k} \varrho \in \mathscr{Y}$ for all $\varrho \in \mathcal{Q}_{0} \cup \mathcal{L}$.
Proof. Assume this is false. Then there exists some $\varrho \in \mathcal{Q}_{0} \cup \mathcal{L}$ such that $X:=\mathrm{pPOL}_{k} \varrho \in \mathscr{X} \backslash \mathscr{Y}$. Because X is in some minimal covering of $p \mathscr{M}_{k}$ we obtain $\varrho \in \mathcal{Q}_{0}^{\prime} \cup \mathcal{L}$. By Lemma 6.5 we have

$$
\mathscr{Z}:=\left\{\mathrm{pPOL}_{k} \psi \mid \psi \in \widetilde{\mathcal{R}}_{k}^{\max } \wedge \varrho \ll \psi\right\} \supseteq\left\{\mathrm{pPOL}_{k} \psi \mid \psi \in(\mathcal{Q} \cup \mathcal{L} \cup \mathcal{S}) \backslash\{\varrho\}\right\}
$$

Since \mathscr{X} is a minimal covering there exists some $f \in X$ with $f \notin X^{\prime}$ for all $X^{\prime} \in \mathscr{X} \backslash\{X\}$. By Lemma 6.2 there is some $F \in X$ with $F \notin Y$ for all $X^{\prime} \in \mathscr{X} \cup \mathscr{Z}$ and $X^{\prime} \neq X$. Since \mathscr{Y} is a covering there is some $Y \in \mathscr{Y}$ with $F \in Y$. But then $Y \in \mathscr{Y} \backslash(\mathscr{X} \cup \mathscr{Z})=(\mathscr{Y} \backslash \mathscr{Z}) \backslash \mathscr{X}=\left(\mathscr{Y} \cap\left\{\mathrm{pPOL}_{k} \chi \mid \chi \in \mathcal{U} \cup \mathcal{A}\right\}\right) \backslash \mathscr{X}=\emptyset$ by Lemma 7.1. This is a contradiction.

Lemma 7.3. Let $\mathscr{X} \subseteq p \mathscr{M}_{k}$ be a minimal covering of $p \mathscr{M}_{k}$. Then $\mathrm{pPOL}_{k} \varrho \notin \mathscr{X}$ for all $\varrho \in \mathcal{S} \backslash \mathcal{S}^{\prime}$.

Proof. Assume $X:=\operatorname{pPOL}_{k} \varrho \in \mathscr{X}$ for some $\varrho \in \mathcal{S} \backslash \mathcal{S}^{\prime}$. Then there is some $f \in X$ with $f \notin Y$ for all $Y \in \mathscr{X} \backslash\{X\}$. Applying Lemma 5.4 recursively on X implies $f \in \operatorname{pPOL}_{k} \chi$ for some $\chi \in \mathcal{U} \cup \mathcal{Q} \cup \mathcal{S}^{\prime}$. By Lemmas 6.5 and 6.6 there is some $g \in \mathrm{pPOL}_{k} \chi$ with $g \notin Y$ for all $Y \in \mathscr{X}$ in contradiction to \mathscr{X} minimal covering.

Lemma 7.4. Let \mathscr{X}, \mathscr{Y} be two different minimal coverings of $p \mathscr{M}_{k}$. Then $\mathrm{pPOL}_{k} \varrho \in \mathscr{X}$ if and only if $\mathrm{pPOL}_{k} \varrho \in \mathscr{Y}$ for all $\varrho \in \mathcal{S}$.

Proof. Assume this is false. Then there is some $\varrho \in \mathcal{S}$ with $X:=\mathrm{pPOL}_{k} \varrho \in \mathscr{X} \backslash \mathscr{Y}$. In particular is $\varrho \in \mathcal{S}^{\prime}$ by Lemma 7.3. Then there is some $f \in X$ with $f \notin X^{\prime}$ for all $X^{\prime} \in \mathscr{X} \backslash\{X\}$.

Then $f \notin Y$ for all $Y \in \mathscr{Y}$ with $Y=\mathrm{pPOL}_{k} \chi$ and $\chi \in \mathcal{U} \cup \mathcal{A} \cup \mathcal{Q}_{0} \cup \mathcal{L}$ by Lemmas 7.1 and 7.2. Thus there is some $Z \in \mathscr{Y}$ with $Z=\operatorname{pPOL}_{k} \psi$ and $\psi \in \mathcal{Q}_{1} \cup \mathcal{S}^{\prime}$ and $f \in Z$. By Lemma 6.6 there is some $g \in Z$ with $g \notin X$ and $g \notin X^{\prime}$ for all $X^{\prime} \in \mathscr{X} \backslash\{X\}$, i.e., $g \notin X^{\prime}$ for all $X^{\prime} \in \mathscr{X}$. This contradicts \mathscr{X} minimal covering because $g \in Z \in \mathscr{Y}$.
Theorem 7.5. Let \mathscr{X}, \mathscr{Y} be two different minimal coverings of $p \mathscr{M}_{k}$. Then $\mathscr{X} \backslash \mathscr{Y} \subseteq\left\{\mathrm{pPOL}_{k} \psi \mid \psi \in \mathcal{Q}_{1}\right\}$.

Proof. The theorem follows from Lemmas 7.1, 7.2 and 7.4, and Lemma 5.2 for the partial clone $P_{k} \cup C_{\emptyset}$.
Lemma 7.6. Let \mathscr{X}, \mathscr{Y} be different minimal coverings of $p \mathscr{M}_{k}$. Furthermore let $X:=\operatorname{pPOL}_{k} \varrho \in \mathscr{X} \backslash \mathscr{Y}$ for some $\varrho \in \mathcal{Q}_{1}$. Then there is some $\chi \in \mathcal{Q}_{1}$ with $Y:=\mathrm{pPOL}_{k} \chi \in \mathscr{Y} \backslash \mathscr{X}$ and $\mathrm{pp} \chi=\mathrm{pp} \varrho$.

Proof. By $\mathscr{X} \neq \mathscr{Y}$ and Theorem 7.5 we have $\emptyset \subset \mathscr{X} \backslash \mathscr{Y} \subseteq\left\{\mathrm{pPOL}_{k} \psi \mid \psi \in \mathcal{Q}_{1}\right\}$. Let $X:=\mathrm{pPOL}_{k} \varrho \in \mathscr{X} \backslash \mathscr{Y}$ be arbitrary with $\varrho \in \mathcal{Q}_{1}$. Then there is some $f \in X$ with $f \notin X^{\prime}$ for all $X^{\prime} \in \mathscr{X} \backslash\{X\}$. Then $f \in Y$ with $Y:=\mathrm{pPOL}_{k} \chi \in \mathscr{Y} \backslash \mathscr{X}$ for some $\chi \in \mathcal{Q}_{1}$.

Assume $\operatorname{pp} \chi \neq \operatorname{pp} \varrho$. Then $\chi \in \mathcal{Q}_{\varrho}$ or $\varrho \in \mathcal{Q}_{\chi}$. If $\chi \in \mathcal{Q}_{\varrho}$ then there is some $g \in X$ with $g \notin X^{\prime}$ for all $X^{\prime} \in \mathscr{X} \backslash\{X\}$ and $g \notin \mathrm{pPOL}_{k} \chi$ by Lemma 6.7. Thus $\varrho \in \mathcal{Q}_{\chi}$ has to be true. But then there is some $G \in Y=\mathrm{pPOL}_{k} \chi$ with $G \notin X^{\prime}$ for all $X^{\prime} \in \mathscr{X}$ again by Lemma 6.7 contradicting \mathscr{X} minimal covering.

Definition 7.7. Let $\varrho^{(h)} \in \mathcal{Q}_{1}$. We call ϱ irreducible iff

$$
\forall \emptyset \subset A \subset E_{h} \forall v \in \sigma\left(E_{k}^{h-|A|}\right) \forall \pi \in S_{h}:\left(\operatorname{pr}_{A} \varrho\right) \times\{v\} \nsubseteq \varrho^{[\pi]}
$$

Otherwise we call it reducible.
Example 7.8. Let $k=4$ and $h=3$. Let

$$
\varrho=\left(\begin{array}{ll}
0 & 0 \\
1 & 2 \\
2 & 3
\end{array}\right) \cup \delta_{\{0,1\}}^{(3)}
$$

We show that ϱ is irreducible. There are three cases:
$|A|=1$: Then $\operatorname{pr}_{A} \varrho=E_{4}$ and $v=\left(v_{1}, v_{2}\right) \in \sigma\left(E_{4}^{2}\right)$. Assume $\left(\operatorname{pr}_{A} \varrho\right) \times\{v\} \subseteq \varrho^{[\pi]}$.
Then $\left(v_{1}, v_{1}, v_{2}\right),\left(v_{2}, v_{1}, v_{2}\right) \in \varrho^{[\pi]}$. Thus $\delta_{\{0,1\}}^{(3)} \cup \delta_{\{0,2\}} \subseteq \varrho$ because ϱ coherent. But this contradicts $\varrho \in \mathcal{Q}_{1}$.
$A=\{0,1\}:$ If $\pi \neq$ id then $\delta_{X}^{(3)} \subseteq \varrho$ with $X \subset E_{3},|X|=2$ and $X \neq\{0,1\}$ in contradiction to $\varrho \in \mathcal{Q}_{1}$. Thus $\pi=\mathrm{id}$.

Because for all $x \in E_{k}$

$$
\left(\begin{array}{cc}
0 & 0 \\
1 & 2 \\
x & x
\end{array}\right) \nsubseteq \varrho \quad \text { and } \quad \operatorname{pr}_{A} \varrho=\left(\begin{array}{cc}
0 & 0 \\
1 & 2
\end{array}\right) \cup \delta_{\{0,1\}}^{(2)}
$$

we get $\left(\operatorname{pr}_{A} \varrho\right) \times\{v\} \nsubseteq \varrho$.
$|A|=2$ and $A \neq\{0,1\}:$ Then $\operatorname{pr}_{A} \varrho=E_{4}^{2}$. Let $v=(x)$. Assume that the inclusion $\left(\operatorname{pr}_{A} \varrho\right) \times\{v\} \subseteq \varrho^{[\pi]}$ holds. Then $(x, y, x),(y, x, x),(y, y, x) \in \varrho^{[\pi]}$ and thus we have $\iota_{4}^{3} \subseteq \varrho^{[\pi]}$ because ϱ is coherent. But this contradicts $\varrho \in \mathcal{Q}_{1}$.

Thus ϱ is irreducible.
Now let

$$
\varrho=\left(\begin{array}{ll}
0 & 1 \\
1 & 0 \\
2 & 2
\end{array}\right) \cup \delta_{\{0,1\}}^{(3)}
$$

Then ϱ is reducible because

$$
\left(\operatorname{pr}_{A} \varrho\right) \times\{v\}=\left(\begin{array}{cccccc}
0 & 1 & 0 & 1 & 2 & 3 \\
1 & 0 & 0 & 1 & 2 & 3 \\
2 & 2 & 2 & 2 & 2 & 2
\end{array}\right) \subseteq \varrho=\varrho^{[\pi]}
$$

holds with $A=\{0,1\}, v=(2)$ and $\pi=\mathrm{id}$.
Lemma 7.9. Let $\varrho^{(h)} \in \mathcal{Q}_{1}$ be reducible. Then for every $f \in \mathrm{pPOL}_{k} \varrho$ there is some

$$
\chi \in \mathcal{X}_{\varrho}:=\left\{\{a\} \mid a \in E_{k}\right\} \cup\left\{\psi^{(\mu)} \in \mathcal{Q} \mid \operatorname{pp} \psi=\operatorname{pp} \varrho \wedge \mu<h\right\}
$$

with $f \in \mathrm{pPOL}_{k} \chi$.
Proof. Let $\sigma:=\sigma(\varrho)$. Assume there is some $f^{(n)} \in \mathrm{pPOL}_{k} \varrho$ such that $f \notin \mathrm{pPOL}_{k} \chi$ for all $\chi \in \mathcal{X}_{\varrho}$. Then $f(x, \ldots, x) \in E_{k} \backslash\{x\}$ for each $x \in E_{k}$.

Because ϱ is reducible there are some A with $\emptyset \subset A \subset E_{h}$, and $\pi \in S_{h}$ and $v \in \sigma\left(E_{k}^{h-|A|}\right)$ such that

$$
\left(\operatorname{pr}_{A} \varrho\right) \times\{v\} \subseteq \varrho^{[\pi]}
$$

Because $\mathrm{pPOL}_{k} \varrho=\mathrm{pPOL}_{k} \varrho^{[\pi]}$ we assume w.l.o.g. $\pi=\mathrm{id}$.
We show that $\operatorname{pp~}_{p_{A}} \varrho=\mathrm{pp} \varrho$. If $|A|=1$ then $\operatorname{pr}_{A} \varrho=E_{k}$ and thus $E_{k} \times\{v\} \subseteq \varrho$. This implies $\delta_{\{0, i\}}^{(h)} \subseteq \varrho$ for all $i \in E_{h} \backslash\{0\}$ contradicting $\varrho \in \mathcal{Q}$. Let $|A| \geq 2$. We know $s_{0}=(0, \ldots, 0), s_{1}=(1, \ldots, 1) \in \delta\left(\operatorname{pr}_{A} \varrho\right)$. Then $\left\{s_{0}, s_{1}\right\} \times\{v\} \subseteq \delta(\varrho)$, i.e., for all $i \in E_{h}$ and $j \in E_{h} \backslash(A \cup\{i\})$ we get $(i, j) \notin \varepsilon(\varrho)$. Thus all non-singular classes of $\varepsilon(\varrho)$ are covered by A, i.e., the projection pr_{A} preserves them, and this implies $\operatorname{pppr}_{A} \varrho=\mathrm{pp} \varrho$.

We show that $\left(\operatorname{pr}_{A} \sigma\right) \times\{v\} \subseteq \sigma$. Assume the contrary. Then there exists some $s \in \operatorname{pr}_{A} \sigma$ with $\{s\} \times\{v\} \subseteq \delta(\varrho)$. But this contradicts $\operatorname{pr}_{A} \delta(\varrho) \cap \operatorname{pr}_{A} \sigma=\emptyset$ because $\operatorname{pppr}_{A} \varrho=\operatorname{pp} \varrho$. So $s \notin \operatorname{pr}_{A} \delta(\varrho)$ in contradiction to the assumption. We proved $\left(\operatorname{pr}_{A} \sigma\right) \times\{v\} \subseteq \sigma$, and thus $\omega\left(\operatorname{pr}_{A} \sigma\right) \cap \omega(v)=\emptyset$.

Now we show that $\gamma:=\operatorname{pr}_{A} \varrho \in \mathcal{Q}$, i.e., that it is coherent. Let $\theta \in \Gamma_{\sigma(\gamma)}$ and $w \in \gamma$ arbitrarily. There is some $\hat{w} \in \gamma$ with $\hat{w}^{[\theta]} \in \gamma$. Then $\left\{\hat{w}, \hat{w}^{[\theta]}\right\} \times\{v\} \subseteq \varrho$, i.e., $\theta \in \Gamma_{\sigma}$ and thus $\left\{w, w^{[\theta]}\right\} \times\{v\} \subseteq \varrho$. This implies $w^{[\theta]} \in \gamma$.
$M(\gamma)=\operatorname{pr}_{A} M(\varrho)$ because $\operatorname{pp~pr}_{A} \varrho=\mathrm{pp} \varrho$.
Let $\gamma^{\prime} \subseteq \sigma(\gamma)$. Then $\gamma^{\prime} \times\{v\} \subseteq \sigma$. Thus there is a relational homomorphism $\varphi: E_{k} \rightarrow E_{h}$ from $\gamma^{\prime} \times\{v\}$ to $M(\varrho)$ and some $w \in \gamma^{\prime}$ with $\varphi\binom{w}{v}=\eta_{h}$. Let
$\hat{\varphi}: E_{k} \rightarrow E_{|A|}$ be given by

$$
\hat{\varphi}(x)= \begin{cases}\varphi(x) & \text { if } \varphi(x) \in E_{|A|} \\ 0 & \text { otherwise }\end{cases}
$$

Then $\hat{\varphi}$ is a relational homomorphism from γ^{\prime} to $M(\gamma)$ with $\hat{\varphi}(w)=\eta_{|A|}$. Thus γ is a coherent relation and $\gamma \in \mathcal{X}_{\varrho}$ because $\operatorname{pp} \gamma=\operatorname{pp} \varrho$ and $|A|<h$. Since $f \notin \mathrm{pPOL}_{k} \chi$ for all $\chi \in \mathcal{X}_{\varrho}$ there are rows $c_{1 *}, \ldots, c_{|A| *}$ with $c_{* 1}, \ldots, c_{* n} \in \gamma$ and $f\left(c_{* 1} \ldots c_{* n}\right)=d \in E_{k}^{|A|} \backslash \gamma$.

Then

$$
f\left(\begin{array}{ccc}
c_{* 1} & \ldots & c_{* n} \\
v & \ldots & v
\end{array}\right) \in E_{k}^{h} \backslash \varrho,
$$

i.e., $f \notin \mathrm{pPOL}_{k} \varrho$ contradicting the assumption.

Proposition 7.10. Let $\varrho^{(h)}, \chi^{(\mu)} \in \mathcal{Q}$ with $\mu \geq 3, f, g \in \mathrm{pPOL}_{k} \chi$ with $g(\varrho) \in E_{k}^{h}$, and g is not defined anywhere else, and $F^{(n)}:=f \otimes g \notin \mathrm{pPOL}_{k} \chi$.

Then there are rows $c_{1 *}, \ldots, c_{\mu *}$
(1) with $c_{* 1}, \ldots, c_{* n} \in \chi$ and $F\left(c_{* 1} \ldots c_{* n}\right)=d \in E_{k}^{\mu} \backslash \chi$, and
(2) there is some j with $c_{* j} \in \sigma\left(E_{k}^{\mu}\right)$, and
(3) the rows $c_{1 *}, \ldots, c_{\|\chi\| *}$ belong to the g-part of F, and
(4) if $\operatorname{pp} \varrho=\operatorname{pp} \chi$, then the rows $c_{1 *}, \ldots, c_{\|\chi\| *}$ belong to the first $\|\chi\|$ rows of the g-part of F.

Proof. Statement (1) follows directly from $F \notin \mathrm{pPOL}_{k} \chi$. Choose some rows $c_{1 *}, \ldots, c_{\mu *}$ such that (1) holds.
(2) : Assume (2) is false. Then $\left\{c_{* 1}, \ldots, c_{* n}\right\} \subseteq \delta(\chi)=\delta_{\varepsilon(\chi)}$ contradicting all rows $c_{i *}$ are pairwise different by Lemma 5.3. Thus for any two rows there is a column in which they differ.
(3): Because $\varrho \in \mathcal{Q}$ we have $\delta_{E_{h}}^{(h)} \subseteq \varrho$. Because $g \in \mathrm{pPOL}_{k} \chi$ there is at least one row from the f-part of F and because $f \in \mathrm{pPOL}_{k} \chi$ there is at least one row from the g-part of F. Let $c_{i_{f} *}$ be an arbitrary row from the f-part and $c_{i_{g} *}$ be an arbitrary row from the g-part. Because $\mu \geq 3$ there is a third row $c_{i^{\prime} *}$ different from $c_{i_{f} *}$ and $c_{i_{g} *}$. Let $c_{i^{\prime} *}$ be arbitrary with this condition.

There are two cases to consider:
The row $c_{i^{\prime} *}$ is from the f-part: Then there is some column j in which the rows $c_{i_{f^{*}}}$ and $c_{i^{\prime} *}$, i.e., $c_{i_{f} j}=x, c_{i^{\prime} j}=y$ and $x \neq y$. By construction and $\varrho \in \mathcal{Q}$, i.e., $\delta_{E_{h}}^{(h)} \subset \varrho$, we can choose j more specifically such that

$$
\left(\begin{array}{c}
c_{i_{f} j} \\
c_{i^{\prime} j} \\
c_{i_{g} j}
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
y
\end{array}\right) .
$$

The row $c_{i^{\prime} *}$ is from the g-part: Then there is some j with

$$
\left(\begin{array}{c}
c_{i_{f} j} \\
c_{i^{\prime} j} \\
c_{i_{g} j}
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
y
\end{array}\right)
$$

and $x \neq y$ by construction and $\varrho \in \mathcal{Q}$, i.e., $\delta_{E_{h}}^{(h)} \subset \varrho$.
Thus $\left(i_{f}, i_{g}\right),\left(i_{f}, i^{\prime}\right) \notin \varepsilon(\chi)$. Because i_{f}, i_{g} and i^{\prime} are chosen arbitrarily any row $c_{i_{f} *}$ from the f-part belongs to a singular class of $\varepsilon(\chi)$. Because the first $\|\chi\|$ rows of χ belong to non-singular classes of $\varepsilon(\chi)$ the first $\|\chi\|$ rows $c_{1 *}, \ldots, c_{\|\chi\| *}$ belong to the g-part of F. Thus (3) is true.
(4): Let $\operatorname{pp} \varrho=\operatorname{pp} \chi$. Assume one of the rows $c_{1 *}, \ldots, c_{\|\chi\| *}$ does not belong to the first $\|\chi\|$ rows of the g-part of F, w.l.o.g. let this be the row $c_{1 *}$. As shown before $c_{1 *}$ belongs to the g-part of F. Because $\operatorname{pp} \varrho=\operatorname{pp} \chi$ the row $c_{1 *}$ belongs to a singular class of $\varepsilon(\varrho)$. Now let $c_{i_{1} *}, c_{i_{2} *}$ be two arbitrarily chosen different rows. Then there are three different cases:
$c_{i_{1} *}$ and $c_{i_{2} *}$ are both from the f-part: Then they differ at some point and by construction we get columns $c_{* j}, c_{* j^{\prime}}$ with

$$
\left(\begin{array}{cc}
c_{1 j} & c_{1 j^{\prime}} \\
c_{i_{1} j} & c_{i_{1} j^{\prime}} \\
c_{i_{2} j} & c_{i_{2} j^{\prime}}
\end{array}\right)=\left(\begin{array}{cc}
x & y \\
x & x \\
y & y
\end{array}\right)
$$

and $x \neq y$.
$c_{i_{1} *}$ is from the f-part and $c_{i_{2} *}$ from the g-part: Then by construction and because $c_{1 *}$ belongs to a singular class of $\varepsilon(\varrho)$ there is some column $c_{* j}$ with

$$
\left(\begin{array}{c}
c_{1 j} \\
c_{i_{1} j} \\
c_{i_{2 j} j}
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
y
\end{array}\right)
$$

and $x \neq y$.
$c_{i_{1} *}$ and $c_{i_{2} *}$ are both from the g-part: Then because $c_{1 *}$ belongs to a singular class of $\varepsilon(\varrho)$ there is some column $c_{* j}$ with

$$
\left(\begin{array}{c}
c_{1 j} \\
c_{i_{1} j} \\
c_{i_{2} j}
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
y
\end{array}\right)
$$

and $x \neq y$.
Thus for all cases $\left(1, i_{1}\right),\left(1, i_{2}\right) \notin \varepsilon(\chi)$. Because i_{1} and i_{2} are chosen arbitrarily the row $c_{1 *}$ belongs to a singular class of $\varepsilon(\chi)$ in contradiction to the convention that the first $\|\chi\|$ rows of χ belong to the non-singular classes of $\varepsilon(\chi)$, see Definition 2.10. Thus (4) is true.

Definition 7.11. Let $\varrho \in \mathcal{Q}_{1}$. Define $\mathcal{T}_{\varrho} \subseteq \widetilde{\mathcal{R}}_{k}^{\max }$ by

$$
\mathcal{T}_{\varrho}:=\left\{\psi \in \mathcal{Q}_{1} \mid \operatorname{pp} \psi=\operatorname{pp} \varrho\right\}
$$

Lemma 7.12. Let $\varrho \in \mathcal{Q}_{1}, \mathcal{T} \subseteq \mathcal{T}_{\varrho},|\mathcal{T}| \geq 2$ and $f \in \widetilde{P}_{k}$ with

$$
\left(\forall \psi \in \widetilde{\mathcal{R}}_{k}^{\max } \backslash \mathcal{T}: f \notin \mathrm{pPOL}_{k} \psi\right) \wedge\left(\exists \chi \in \mathcal{T}: f \in \mathrm{pPOL}_{k} \chi\right)
$$

Then
(1) there are $\chi_{0} \in \mathcal{T}$ and $F \in \mathrm{pPOL}_{k} \chi_{0}$ with

$$
\forall \psi \in \widetilde{\mathcal{R}}_{k}^{\max } \backslash\left\{\chi_{0}\right\}: F \notin \mathrm{pPOL}_{k} \psi
$$

or
(2) there are $F \in \widetilde{P}_{k}$ and $\mathcal{T}^{\prime} \subset \mathcal{T}, \mathcal{T}^{\prime} \neq \emptyset$ with

$$
\left(\forall \psi \in \widetilde{\mathcal{R}}_{k}^{\max } \backslash \mathcal{T}^{\prime}: F \notin \mathrm{pPOL}_{k} \psi\right) \wedge\left(\exists \chi \in \mathcal{T}^{\prime}: F \in \mathrm{pPOL}_{k} \chi\right)
$$

Proof. Assume (1) is false. By this assumption there exists some $\psi_{1} \in \mathcal{T}$ with $f \in \mathrm{pPOL}_{k} \psi_{1}$. Then there is some $\psi_{2} \in \widetilde{\mathcal{R}}_{k}^{\max } \backslash\left\{\psi_{1}\right\}$ with $f \in \mathrm{pPOL}_{k} \psi_{2}$ because (1) is false. Because $f \notin \mathrm{pPOL}_{k} \psi$ for all $\psi \in \widetilde{\mathcal{R}}_{k}^{\max } \backslash \mathcal{T}$ we get $\psi_{2} \in \mathcal{T}$. Thus there are $\psi_{1}^{\left(\mu_{1}\right)}, \psi_{2}^{\left(\mu_{2}\right)} \in \mathcal{T}$ with $\psi_{1} \neq \psi_{2}$ and $f \in\left(\mathrm{pPOL}_{k} \psi_{1}\right) \cap\left(\mathrm{pPOL}_{k} \psi_{2}\right)$. We can choose ψ_{1} such that μ_{1} is minimal. This implies

$$
\forall \chi \in\left\{\{a\} \mid a \in E_{k}\right\} \cup\left\{\psi^{(\mu)} \in \mathcal{Q} \mid \operatorname{pp} \psi=\operatorname{pp} \varrho \wedge \mu<\mu_{1}\right\}: f \notin \mathrm{pPOL}_{k} \chi
$$

Thus ψ_{1} is irreducible because $f \in \mathrm{pPOL}_{k} \psi_{1}$ and Lemma 7.9.
Furthermore $\mu_{1} \leq \mu_{2}$. If $\mu_{2}=\mu_{1}$ then ψ_{2} is also irreducible by the same argument.

We construct a function $F^{(n)}:=f \otimes g$ such that $F \in \mathrm{pPOL}_{k} \psi_{1}$ and $F \notin$ $\mathrm{pPOL}_{k} \psi_{2}$ holds (or the other way round).

For any set E let $\mathcal{P}(E):=\{A \subseteq E \mid A \neq \emptyset \wedge A \neq E\}$.
There are the following cases:
$\exists A \in \mathcal{P}\left(E_{\mu_{1}}\right) \exists v \in \sigma\left(E_{k}^{\mu_{2}-|A|}\right) \exists \pi \in S_{\mu_{2}}:\left(\operatorname{pr}_{A} \psi_{1}\right) \times\{v\} \subseteq \psi_{2}^{[\pi]}:$
Without loss of generality $\pi=\mathrm{id}$.
Assume to the contrary that $\mathrm{pp}\left(\operatorname{pr}_{A} \psi_{1}\right) \neq \mathrm{pp} \psi_{1}$ holds. Then the inequality $\left\|\left(\operatorname{pr}_{A} \psi_{1}\right) \times\{v\}\right\|=\left\|\operatorname{pr}_{A} \psi_{1}\right\|<\left\|\psi_{1}\right\|=\left\|\psi_{2}\right\|$ holds in contradiction to the fact $\delta\left(\operatorname{pr}_{A} \psi_{1}\right) \times\{v\} \subseteq \delta\left(\left(\operatorname{pr}_{A} \varrho\right) \times\{v\}\right) \subseteq \delta\left(\psi_{2}\right)$. Thus $\mathrm{pp}\left(\operatorname{pr}_{A} \psi_{1}\right)=\operatorname{pp} \psi_{1}=\operatorname{pp} \psi_{2}$.

Let $g\left(\operatorname{pr}_{A} \psi_{1}\right):=d$ (see Definition 4.1) for some $d \in E_{k}^{|A|}$ with the property $g\left(\operatorname{pp}\left(\operatorname{pr}_{A} \psi_{1}\right)\right) \in E_{k}^{\left\|\psi_{2}\right\|} \backslash \mathrm{pp} \psi_{2}$. Then $F \notin \mathrm{pPOL}_{k} \psi_{2}$ because

$$
F \underbrace{\binom{\mathrm{pr}_{A} \psi_{1}}{v}}_{\subseteq \psi_{2}} \in\left(E_{k}^{\left\|\psi_{2}\right\|} \backslash \operatorname{pp} \psi_{2}\right) \times E_{k}^{\mu_{2}-\left\|\psi_{2}\right\|} \subseteq E_{k}^{\mu_{2}} \backslash \psi_{2}
$$

We have $g \in \operatorname{pPOL}_{k} \psi_{1}$ because g is defined on less than μ_{1} rows. Assume $F \notin \mathrm{pPOL}_{k} \psi_{1}$. Then there are rows $c_{1 *}, \ldots, c_{\mu_{1} *}$ with $c_{* 1}, \ldots, c_{* n} \in \psi_{1}$ and the first $\left\|\psi_{1}\right\|$ rows belong to the g-part of F, and a column $c_{* j} \in \sigma\left(E_{k}^{\mu_{1}}\right)$ by Proposition 7.10. Let w.l.o.g. the rows $c_{1 *}, \ldots, c_{l *}$ belong to the g-part of F and $c_{l+1 *}, \ldots, c_{\mu_{1} *}$ to the f-part of F with $\|\chi\| \leq l<\mu_{1}$. Then let

$$
v:=\left(\begin{array}{c}
c_{l+1 j} \\
\ldots \\
c_{\mu_{1} j}
\end{array}\right)
$$

and

$$
C^{\prime}:=\operatorname{pr}_{1,2, \ldots, l}\left\{c_{* 1}, \ldots, c_{* n}\right\} .
$$

Then $C^{\prime}=\operatorname{pr}_{A^{\prime}} \psi_{1}$ for some $A^{\prime} \in \mathcal{P}\left(E_{\mu_{1}}\right)$ with $A^{\prime} \subseteq A$ by construction of g. By construction of F we get

$$
\left(\operatorname{pr}_{A^{\prime}} \psi_{1} \times\{v\}\right)=C^{\prime} \times\{v\} \subseteq\left\{c_{* 1}, \ldots, c_{* n}\right\} \subseteq \psi_{1}
$$

contradicting ψ_{1} irreducible.
Thus there is some \mathcal{T}^{\prime} with $\left\{\psi_{1}\right\} \subseteq \mathcal{T}^{\prime} \subseteq \mathcal{T} \backslash\left\{\psi_{2}\right\}$ and

$$
\begin{gathered}
\left(\forall \psi \in \widetilde{\mathcal{R}}_{k}^{\max } \backslash \mathcal{T}^{\prime}: F \notin \mathrm{pPOL}_{k} \psi\right) \wedge\left(\exists \chi \in \mathcal{T}^{\prime}: F \in \mathrm{pPOL}_{k} \chi\right) \\
\mu_{1}=\mu_{2} \wedge\left(\exists A \in \mathcal{P}\left(E_{\mu_{2}}\right) \exists v \in \sigma\left(E_{k}^{\mu_{1}-|A|}\right) \exists \pi \in S_{\mu_{1}}:\left(\operatorname{pr}_{A} \psi_{2}\right) \times\{v\} \subseteq \psi_{1}^{[\pi]}\right):
\end{gathered}
$$

This is a restriction of the previous case with the roles of ψ_{1} and ψ_{2} switched.
Thus there is some \mathcal{T}^{\prime} with $\left\{\psi_{2}\right\} \subseteq \mathcal{T}^{\prime} \subseteq \mathcal{T} \backslash\left\{\psi_{1}\right\}$ and

$$
\begin{aligned}
\left(\forall \psi \in \widetilde{\mathcal{R}}_{k}^{\max } \backslash \mathcal{T}^{\prime}: F \notin \mathrm{pPOL}_{k} \psi\right) \wedge\left(\exists \chi \in \mathcal{T}^{\prime}: F \in \mathrm{pPOL}_{k} \chi\right) \\
\mu_{1}<\mu_{2} \wedge\left(\exists v \in \sigma\left(E_{k}^{\mu_{2}-\mu_{1}}\right) \exists \pi \in S_{\mu_{2}}: \psi_{1} \times\{v\} \subseteq \psi_{2}^{[\pi]}\right):
\end{aligned}
$$

Without loss of generality $\pi=\mathrm{id}$.
Because ψ_{1} is coherent there is some relational homomorphism $\varphi: E_{k} \rightarrow E_{\mu_{1}}$ from $\sigma\left(\psi_{1}\right)$ to $M\left(\psi_{1}\right)$ and some $s \in \sigma\left(\psi_{1}\right)$ with $\varphi(s)=\eta_{\mu_{1}}$. Define $\varphi^{\star}: E_{\mu_{1}} \rightarrow E_{k}$ by $\varphi^{\star}\left(\eta_{\mu_{1}}\right)=s$.

Let

$$
g\left(\left(\sigma\left(\psi_{1}\right) \times\{v\}\right) \cup \delta\left(\psi_{2}\right)\right):=d:=\varphi^{\star}\left(\varphi\binom{s}{v}\right)
$$

(see Definition 4.1). Then $g \in \mathrm{pPOL}_{k} \psi_{1}$ by construction.
Assume $g \in \mathrm{pPOL}_{k} \psi_{2}$. Then $d \in \delta\left(\psi_{2}\right)$ because $|\omega(d)|=|\omega(s)|=\mu_{1}<\mu_{2}$. But $\left|\omega\left(\operatorname{pr}_{E_{\left\|\psi_{2}\right\|}} d\right)\right|=\left\|\psi_{2}\right\|$ in contradiction to the assumption that the first $\left\|\psi_{2}\right\|$ rows belong to the non-singular classes of $\varepsilon\left(\psi_{2}\right)$. Thus $g \notin \mathrm{pPOL}_{k} \psi_{2}$ and this implies $F \notin \mathrm{pPOL}_{k} \psi_{2}$.

Because $\sigma\left(\psi_{1}\right) \times\{v\} \subseteq \psi_{2}$ and the first $\left\|\psi_{1}\right\|$ rows belong to the non-singular classes of $\varepsilon\left(\psi_{2}\right)$ we get $\sigma\left(\psi_{1}\right) \times\{v\} \subseteq \sigma\left(\psi_{2}\right)$ and thus $\omega(v) \cap \omega\left(\sigma\left(\psi_{1}\right)\right)=\emptyset$. Assume $F \notin \mathrm{pPOL}_{k} \psi_{1}$. Then there are rows $c_{1 *}, \ldots, c_{\mu_{1} *}$ with $c_{* 1}, \ldots, c_{* n} \in \psi_{1}$ and $F\left(c_{* 1}, \ldots, c_{* n}\right) \in E_{k}^{\mu_{1}} \backslash \psi_{1}$. By Proposition 7.10 the rows $c_{1 *}, \ldots, c_{\left\|\psi_{1}\right\| *}$ are the first rows in the definition of g. Thus the other rows can not belong to the last $\left(\mu_{2}-\mu_{1}\right)$ rows in the definition of g because $\omega(v) \cap \omega\left(\sigma\left(\psi_{1}\right)\right)=\emptyset$. Thus this part of the definition of g can be ignored here, and thus $F \in \mathrm{pPOL}_{k} \psi_{1}$ because ψ_{1} is irreducible.

Thus there is some \mathcal{T}^{\prime} with $\left\{\psi_{1}\right\} \subseteq \mathcal{T}^{\prime} \subseteq \mathcal{T} \backslash\left\{\psi_{2}\right\}$ and

$$
\left(\forall \psi \in \widetilde{\mathcal{R}}_{k}^{\max } \backslash \mathcal{T}^{\prime}: F \notin \mathrm{pPOL}_{k} \psi\right) \wedge\left(\exists \chi \in \mathcal{T}^{\prime}: F \in \mathrm{pPOL}_{k} \chi\right)
$$

$\mu_{1}=\mu_{2} \wedge\left(\exists \pi \in S_{\mu_{2}}: \psi_{1} \subset \psi_{2}^{[\pi]}\right):$
Without loss of generality $\pi=\mathrm{id}$.
Let $g\left(\psi_{2}\right):=d$ (see Definition 4.1) for some $d \in E_{k}^{\mu_{2}} \backslash \psi_{2}$. Because $\mathrm{pr}_{A} \psi_{1} \subseteq$ $\operatorname{pr}_{A} \psi_{2}$ for all $A \in \mathcal{P}\left(E_{\mu_{1}}\right), \psi_{1}$ irreducible and $g \in \mathrm{pPOL}_{k} \psi_{1}$ we get $F \in$ $\mathrm{pPOL}_{k} \psi_{1}$. Furthermore $g \notin \mathrm{pPOL}_{k} \psi_{2}$ implies $F \notin \mathrm{pPOL}_{k} \psi_{2}$.

Thus there is some \mathcal{T}^{\prime} with $\left\{\psi_{1}\right\} \subseteq \mathcal{T}^{\prime} \subseteq \mathcal{T} \backslash\left\{\psi_{2}\right\}$ and

$$
\left(\forall \psi \in \widetilde{\mathcal{R}}_{k}^{\max } \backslash \mathcal{T}^{\prime}: F \notin \mathrm{pPOL}_{k} \psi\right) \wedge\left(\exists \chi \in \mathcal{T}^{\prime}: F \in \mathrm{pPOL}_{k} \chi\right)
$$

$\mu_{1}=\mu_{2} \wedge\left(\exists \pi \in S_{\mu_{1}}: \psi_{2} \subset \psi_{1}^{[\pi]}\right):$
Analogous to the previous case because ψ_{2} is irreducible in this case. Thus there is some \mathcal{T}^{\prime} with $\left\{\psi_{2}\right\} \subseteq \mathcal{T}^{\prime} \subseteq \mathcal{T} \backslash\left\{\psi_{1}\right\}$ and

$$
\left(\forall \psi \in \widetilde{\mathcal{R}}_{k}^{\max } \backslash \mathcal{T}^{\prime}: F \notin \mathrm{pPOL}_{k} \psi\right) \wedge\left(\exists \chi \in \mathcal{T}^{\prime}: F \in \mathrm{pPOL}_{k} \chi\right)
$$

Otherwise :

Then we have

$$
\forall A \in \mathcal{P}\left(E_{\mu_{1}}\right) \forall v \in \sigma\left(E_{k}^{\mu_{2}-|A|}\right) \forall \pi \in S_{\mu_{2}}:\left(\operatorname{pr}_{A} \psi_{1}\right) \times\{v\} \nsubseteq \psi_{2}^{[\pi]},
$$

$$
\mu_{1}<\mu_{2} \vee\left(\forall A \in \mathcal{P}\left(E_{\mu_{2}}\right) \forall v \in \sigma\left(E_{k}^{\mu_{1}-|A|}\right) \forall \pi \in S_{\mu_{1}}:\left(\operatorname{pr}_{A} \psi_{2}\right) \times\{v\} \nsubseteq \psi_{1}^{[\pi]}\right),
$$

$$
\mu_{1}=\mu_{2} \vee\left(\forall v \in \sigma\left(E_{k}^{\mu_{2}-\mu_{1}}\right) \forall \pi \in S_{\mu_{2}}: \psi_{1} \times\{v\} \nsubseteq \psi_{2}^{[\pi]}\right),
$$

$$
\mu_{1}<\mu_{2} \vee\left(\forall \pi \in S_{\mu_{2}}: \psi_{1} \nsubseteq \psi_{2}^{[\pi]}\right)
$$

$$
\mu_{1}<\mu_{2} \vee\left(\forall \pi \in S_{\mu_{1}}: \psi_{2} \nsubseteq \psi_{1}^{[\pi]}\right)
$$

Let $g\left(\psi_{1}\right):=d$ (see Definition 4.1) for some $d \in E_{k}^{\mu_{1}} \backslash \psi_{1}$. Because $\psi_{2} \nsubseteq$ $\psi_{1}^{[\pi]}$ for all $\pi \in S_{\mu_{1}}$, and $\mu_{1} \leq \mu_{2}$ we have $g \in \mathrm{pPOL}_{k} \psi_{2}$. Assume $F^{(n)}=$ $f \otimes g \notin \mathrm{pPOL}_{k} \psi_{2}$. Then there are $c_{1 *}, \ldots, c_{\mu_{2} *}$ with $c_{* 1}, \ldots, c_{* n} \in \psi_{2}$ and $F\left(c_{* 1}, \ldots, c_{* n}\right) \notin \psi_{2}$ and the rows $c_{1 *}, \ldots, c_{\left\|\psi_{2}\right\| *}$ belong to the g-part of F by Proposition 7.10, i.e., one of the following cases apply

- there is some $A \subset E_{\mu_{1}}$ and $v \in \sigma\left(E_{k}^{\mu_{2}-|A|}\right)$ with $\left(\operatorname{pr}_{A} \psi_{1}\right) \times\{v\} \subseteq \psi_{2}$ contradicting the first assumption, or
- $\mu_{1}<\mu_{2}$ and there is some $v \in \sigma\left(E_{k}^{\mu_{2}-|A|}\right)$ with $\psi_{1} \times\{v\} \subseteq \psi_{2}$ contradicting the third assumption.
Thus $F \in \mathrm{pPOL}_{k} \psi_{2}$. Furthermore $F \notin \mathrm{pPOL}_{k} \psi_{1}$ because $g \notin \mathrm{pPOL}_{k} \psi_{1}$.
Thus there is some \mathcal{T}^{\prime} with $\left\{\psi_{2}\right\} \subseteq \mathcal{T}^{\prime} \subseteq \mathcal{T} \backslash\left\{\psi_{1}\right\}$ and

$$
\left(\forall \psi \in \widetilde{\mathcal{R}}_{k}^{\max } \backslash \mathcal{T}^{\prime}: F \notin \mathrm{pPOL}_{k} \psi\right) \wedge\left(\exists \chi \in \mathcal{T}^{\prime}: F \in \mathrm{pPOL}_{k} \chi\right)
$$

Thus in every case there is some $\mathcal{T}^{\prime} \subset \mathcal{T}$ with

$$
\left(\forall \psi \in \widetilde{\mathcal{R}}_{k}^{\max } \backslash \mathcal{T}^{\prime}: F \notin \mathrm{pPOL}_{k} \psi\right) \wedge\left(\exists \chi \in \mathcal{T}^{\prime}: F \in \mathrm{pPOL}_{k} \chi\right)
$$

i.e., (2) is true.

Theorem 7.13. For every $k \geq 2$ there is exactly one minimal covering of $p \mathscr{M}_{k}$.
Proof. For $k=2$ one finds this statement in [4]. Thus we can assume $k \geq 3$. Assume the statement is false. Then there are pairwise different minimal coverings $\mathscr{X}_{1}, \ldots, \mathscr{X}_{l}$ with $l \geq 2$. Choose $\varrho \in \widetilde{\mathcal{R}}_{k}^{\max }$ with $\mathrm{pPOL}_{k} \varrho \in \mathscr{X}_{1} \backslash \mathscr{X}_{2}$ arbitrarily. Then $\varrho \in \mathcal{Q}_{1}$ because of Theorem 7.5. Let

$$
\mathcal{T}:=\left\{\psi \in \mathcal{Q}_{1} \mid \operatorname{pp} \psi=\operatorname{pp} \varrho \wedge\left(\exists a, b \in\{1, \ldots, l\}: \operatorname{pPOL}_{k} \psi \in \mathscr{X}_{a} \backslash \mathscr{X}_{b}\right)\right\} \subseteq \mathcal{T}_{\varrho} .
$$

Then $\varrho \in \mathcal{T}$ and $|\mathcal{T}| \geq 2$ by Lemma 7.6. Additionally there is some $f \in \widetilde{P}_{k} \backslash\left(P_{k} \cup C_{\emptyset}\right)$ with

$$
\begin{equation*}
\left(\forall \psi \in \widetilde{\mathcal{R}}_{k}^{\max } \backslash \mathcal{T}: f \notin \mathrm{pPOL}_{k} \psi\right) \wedge\left(\exists \chi \in \mathcal{T}: f \in \mathrm{pPOL}_{k} \chi\right) \tag{7.1}
\end{equation*}
$$

Otherwise $\mathrm{pPOL}_{k} \varrho$ would be in no minimal covering contradicting the assumption.
Now we can assume that $\widehat{\mathcal{T}} \subseteq \mathcal{T}$ has minimal size $|\widehat{\mathcal{T}}| \geq 2$ and fulfills (7.1) (with $\widehat{\mathcal{T}}$ instead of \mathcal{T}).

By Lemma 7.12 there are two cases:

- There are $\chi_{0} \in \widehat{\mathcal{T}}$ and $F \in \mathrm{pPOL}_{k} \chi_{0}$ with

$$
\forall \psi \in \widetilde{\mathcal{R}}_{k}^{\max } \backslash\left\{\chi_{0}\right\}: F \notin \mathrm{pPOL}_{k} \psi
$$

Then $\mathrm{pPOL}_{k} \chi_{0}$ is in every minimal covering of $p \mathscr{M}_{k}$ by Lemma 3.2 in contradiction to the definition of \mathcal{T} and the assumption.

- There are $F \in \widetilde{P}_{k}, \mathcal{T}^{\prime}$ with $\emptyset \subset \mathcal{T}^{\prime} \subset \widehat{\mathcal{T}}$ and

$$
\left(\forall \psi \in \widetilde{\mathcal{R}}_{k}^{\max } \backslash \mathcal{T}^{\prime}: F \notin \mathrm{pPOL}_{k} \psi\right) \wedge\left(\exists \chi \in \mathcal{T}^{\prime}: F \in \mathrm{pPOL}_{k} \chi\right)
$$

Because $\widehat{\mathcal{T}}$ is minimal under the condition $|\widehat{\mathcal{T}}| \geq 2$ we conclude $\left|\mathcal{T}^{\prime}\right|=1$. Then $\mathcal{T}^{\prime}=\left\{\chi_{0}\right\}, F \in \mathrm{pPOL}_{k} \chi_{0}$ and

$$
\forall \psi \in \widetilde{\mathcal{R}}_{k}^{\max } \backslash\left\{\chi_{0}\right\}: F \notin \mathrm{pPOL}_{k} \psi
$$

Thus $\mathrm{pPOL}_{k} \chi_{0}$ is in every minimal covering of $p \mathscr{M}_{k}$ by Lemma 3.2, in contradiction to the definition of \mathcal{T} and the assumption.
Thus there are no two different minimal coverings of $p \mathscr{M}_{k}$.
Let $p \mathscr{C}_{k}$ be the unique minimal covering of $p \mathscr{M}_{k}$. Using the uniqueness of minimal coverings we can improve the statements of Lemmas 3.3 and 3.2.
Lemma 7.14. Let $C \in p \mathscr{M}_{k}$ and $\mathscr{C} \subseteq p \mathscr{M}_{k} \backslash\{C\}$ such that for all $f \in C$ there is some $C^{\prime} \in \mathscr{C}$ with $f \in C^{\prime}$. Then $C \notin p \mathscr{C}_{k}$.

Proof. Assume C is in the minimal covering $p \mathscr{C}_{k}$ of $p \mathscr{M}_{k}$. Let $\mathscr{Y}:=\left(p \mathscr{C}_{k} \backslash\{C\}\right) \cup \mathscr{C}$. Then \mathscr{Y} is a covering of $p \mathscr{M}_{k}$ because for all $f \in X \in p \mathscr{M}_{k}$ there is

- some $Y \in p \mathscr{C}_{k} \backslash\{C\}$ with $f \in Y$, or
- $f \in C$ and then there is some $Y \in \mathscr{C}$ with $f \in Y$.

Then there is some minimal covering $\tilde{\mathscr{Y}} \subseteq \mathscr{Y}$ of $p \mathscr{M}_{k}$. But $\mathscr{Y} \cap p \mathscr{C}_{k} \subset p \mathscr{C}_{k}$ and thus $\tilde{\mathscr{Y}} \neq p \mathscr{C}_{k}$ contradicting Theorem 7.13.
Lemma 7.15. Let $C \in p \mathscr{M}_{k}$. Then

$$
C \in p \mathscr{C}_{k} \Longleftrightarrow\left(\exists f \in C \forall B \in p \mathscr{M}_{k} \backslash\{C\}: f \notin B\right)
$$

Proof. We split the proof into two directions:
\Leftarrow : Follows from Lemma 3.2 and Theorem 7.13.
\Rightarrow : Let $C \in p \mathscr{C}_{k}$. Assume,

$$
\forall f \in C \exists B \in p \mathscr{M}_{k} \backslash\{C\}: f \in B
$$

By Lemma 7.14 with $\mathscr{C}=p \mathscr{M}_{k} \backslash\{C\}$ follows $C \notin p \mathscr{C}_{k}$ in contradiction to the assumption.

Lemma 7.16. Let $\varrho^{(h)} \in \mathcal{Q}_{1}$ be reducible. Then $\mathrm{pPOL}_{k} \varrho$ is not in the minimal covering $p \mathscr{C}_{k}$ of $p \mathscr{M}_{k}$.
Proof. This follows directly from Lemma 7.9 with the help of Lemma 7.14.

8. Conclusion

The minimal coverings for $k=2,3,4$ have been given and shown to be unique in [4], [2] and [14] respectively. In following table the sizes of these minimal coverings $p \mathscr{C}_{k}$ are given with respect to the number of all maximal partial clones $\left|p \mathscr{M}_{k}\right|$.

k	$\left\|p \mathscr{M}_{k}\right\|$	$\left\|p \mathscr{C}_{k}\right\|$
2	8	4
3	58	26
4	1102	449

We have now shown that the minimal coverings of $p \mathscr{M}_{k}$ are unique for each $k \geq 2$. Many elements of the minimal coverings have been determined (see e.g. $[2,16])$ and for some maximal partial clones we have shown in this paper that they are not in a minimal covering (see Lemmas 5.5, 7.3 and 7.16). Furthermore for maximal partial clones $\operatorname{pPOL}_{k} \varrho$ with $\varrho \in \mathcal{A}$ we have a criterion which only needs to check the functions from $\operatorname{Pol}_{k}^{(1)} \varrho$ to see if $\mathrm{pPOL}_{k} \varrho$ belongs to $p \mathscr{C}_{k}$ (see Theorem 6.13). Still many elements of the minimal coverings have to be determined, and it seems to be a very hard problem, especially for the relations \mathcal{Q}_{1}.

References

[1] R.V. Freivald, Completeness criteria for partial functions of the algebra of logic and many-valued logics, Dokl. AN SSSR 167 (1966), 1249-1250 (Russian).
[2] L. Haddad and D. Lau, Some criteria for partial Sheffer functions in k-valued logic, Mult.-Valued Logic and Soft Computing 13 (2007), no. 4-6, 415-446.
[3] L. Haddad and I.G. Rosenberg, Maximal partial clones determined by the areflexive relations, Discrete Appl. Math. 24 (1989), no. 1-3, 133-143.
[4] _ , Partial Sheffer operations, Eur. J. Comb. 12 (1991), no. 1, 9-21.
[5] \quad, Completeness theory for finite partial algebras, Algebra Univers. 29 (1992), no. 3, 378-401.
[6] L. Haddad, I.G. Rosenberg and D. Schweigert, A maximal partial clone and a Slupecki-type criterion, Acta Sci. Math. 54 (1990), no. 1-2, 89-98.
[7] D. Lau, Function algebras on finite sets. A basic course on many-valued logic and clone theory, Springer Monographs in Mathematics, Springer, Berlin, 2006.
[8] B.A. Romov, The algebras of partial functions and their invariants, Cybernetics 17 (1981), 157-167.
[9] I.G. Rosenberg, La structure des fonctions de plusieurs variables sur un ensemble fini, C. R. Acad. Sci., Paris 260 (1965), 3817-3819 (French).
[10] , Über die funktionale Vollständigkeit in den mehrwertigen Logiken, Rozpravy Československe Akad. Ved. Řada Mat. Přirod. Věd 80 (1970), 3-93 (German).
[11] , Composition of functions on finite sets, completeness and relations, a short survey, in Multiple-valued Logic and Computer Science, second edition, ed. D. Rine, North-Holland, Amsterdam, 1984, pp. 150-192.
[12] G. Rousseau, Completeness in finite algebras with a single operation, Proc. Amer. Math. Soc. 18 (1967), 1009-1013.
[13] P. Schofield, Independent conditions for completeness of finite algebras with a single generator, J. Lond. Math. Soc. 44 (1969), 413-423.
[14] K. Schölzel, Ein Kriterium für partielle Sheffer-Funktionen in 4-wertiger Logik, Diploma thesis, University of Rostock, May 2008 (German).
[15] \qquad , Counting the maximal partial clones on a finite set, Multiple-Valued Logic and Soft Computing, (to appear).
[16] , A Sheffer-Criterion for partial 4-valued logic, Multiple-Valued Logic and Soft Computing, (to appear).
[17] H.M. Sheffer, A set of five independent postulates for Boolean algebras, with application to logical constants, Transactions of the American Mathematical Society, 14 (1913), 481-488.
[18] D.L. Webb, Generation of an n-valued logic by one binary operation, Bull. Amer. Math. Soc. 41 (1935).
E-mail address: karsten.schoelzel@uni-rostock.de $U R L:$ http://www.math.uni-rostock.de/~schoelzel
Institute for Mathematics, University of Rostock, 18051 Rostock, Germany

[^0]: 2000 Mathematics Subject Classification: Primary: 08A55; Secondary: 03B50, 03A40.
 Key words and phrases: partial functions, maximal partial clones, minimal covering.
 The author thanks his advisor Dietlinde Lau.

