Uniqueness of minimal coverings of maximal partial clones

KARSTEN SCHOLZEL

ABSTRACT. A partial function f on an k-element set Ej is a partial Sheffer function if
every partial function on Ej is definable in terms of f. Since this holds if and only if f
belongs to no maximal partial clone on Ej, a characterization of partial Sheffer functions
reduces to finding families of minimal coverings of maximal partial clones on Ejf. We show
that for each k > 2 there exists a unique minimal covering,.

1. Introduction

In many-valued logic the set of truth values is finite and without loss of generality
we can assume it to be Ej :={0,1,...,k—1}, ke N, k > 2.

The set Py, := {f(™ | fW: EP — Ey,n > 1} is the set of all total functions on
Ei. Let DC E}, n>1and f™. D — Ei. Then f(™ is called an n-ary partial
function on Ej with domain D. We also write dom(f) = D. If the arity of the
function is known we omit the upper index and write f instead of f(™. Denote by
ﬁ,ﬁn) the set of all n-ary partial functions on Ej, and set

n>1

Let Cp := {feﬁk ’ dom(f)z@}.

Fori € {1,...,n} the n-ary function el(") defined by setting e,t(-n) (T1,...,Zn) = a;

for all z1,...,x, € F} is called the n-ary projection onto the i-th coordinate. Let
Jp = {e(.") ‘ neN1<i< n} be the set of all projections.

7

For f € ﬁ,i") and g1,...,0n € ﬁlsm) let f(g1,...,9n) € ﬁém) be the composition
as given in [2], i.e.,

z € dom(f(g1,-..,90)) = (w SR dom(m)) A(g1(2), ..., gn(x)) € dom(f)

i=1

and f(g1,...,9n)(2) = f(g1(2), ..., gn(z)) for allz € dom(f(g1,...,9n)). A partial
clone (clone) on Ej is a composition closed subset of Py (Py) containing the set of
projections Jg.
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The set of all partial clones on Ej (clones on E}), ordered by inclusion, forms
an algebraic lattice LPy (ILPy), whose smallest element is the set of all projections

and greatest element is Py (Py), respectively. A mazimal partial clone (a mazimal
clone) on F, is a co-atom of Py, and Py, respectively. Thus a partial clone (clone)
M is a maximal partial clone (maximal clone) if the inclusions M c C C B
(M C C C Py) hold for no partial clone (hold for no clone) C on Ej.

For F C P, (F C P,), we denote by [F]p ([F]) the partial clone (clone) on Ej,
generated by F, i.e., the intersection of all partial clones (clones) containing the set
F on Ej. Clearly [F]p ([F]) is the least partial clone (clone) on Fj containing F.

A set F of partial functions (functions) on Ej, is complete if [Flp = Py, ([F] = Py),
respectively. It is well known that a set F' C ﬁk (F C P) is complete if and only
if F' is contained in no maximal partial clone (maximal clone) on Ej (see, e.g., [6]
for the partial case and e.g., [7], Theorem 1.5.4.1, for the total case). Therefore
maximal clones fully described in [9, 10] (see also [11]) play a fundamental role for
completeness.

Similarly, maximal partial clones play a very important role for the completeness
problem of finite partial algebras. The description of all maximal partial clones on
a finite set can be found in the literature. We refer the reader to the papers of
Haddad and Rosenberg [3, 5] for the description of all maximal partial clones.

Sheffer [17] described two binary functions f € P, such that [{f}] = P, i.e.,
such that every function on F5 can be expressed in terms of f only. A function
f € Py is a Sheffer function if every function on Fj can be obtained by composition
from f and the projections, i.e., if [f] := [{f}] = Pk.

Next Webb [18] showed that the function f defined by

f(z,y) :=min(z,y) + 1 (mod k)

is a Sheffer function for Py. Sheffer functions have been well studied and character-
ized by Rousseau [12] and Schofield [13]. We refer the reader to [11] for a detailed
list of references on the subject.

Partial Sheffer functions are defined similarly. A partial function f on Ej is a
partial Sheffer function if every partial function on Ej can be obtained by compo-
sition from f and the projections, i.e., if [f]p = Py. However due to the difficulty
of the problem, very little is known about partial Sheffer functions for B,. Already
the family of all maximal partial clones on E} is far more complex than the family
of all maximal clones on Ej. This is already shown in the following table where
|-#;| and |p.#};| denote the number of maximal clones (see [7] p. 185) and maximal
partial clones (see [15]), respectively.

k || |p-|
2 ) 8
3 18 o8
4 82 1102
5 643 325722
6 15182 | 5242621 816
7| 7848984 ?
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Results on partial Sheffer functions can be found in the papers by Haddad and
Rosenberg [4], Romov [8], and Haddad and Lau [2]. Many examples of partial
Sheffer functions are known, see e.g. [1] and [4].

The completeness problem for partial Sheffer functions is the question if for a
given partial function f € Py the identity [f]p = Py holds. That means, criteria
are investigated to decide if a partial function is a partial Sheffer function. The
problem has been solved for & = 2 by Haddad and Rosenberg [4], for k = 3 by
Haddad and Lau [2], and for k¥ = 4 by the author in [14] (see also [16]). A specific
notion used there is a minimal covering of the maximal partial clones, which for
k € {2,3,4} has been shown to be unique and has been determined in the papers
mentioned above. The aim of this paper is to show that for all £ > 2 there is a
unique minimal covering.

2. Definitions and the Theorem of Haddad and Rosenberg

Relations are useful to describe the clones in 131@ We often write the elements
of relations as columns and a relation can then be given as a matrix. For example,
the ternary relation ¢ = {(0, 1, 2), (1,2,0),(3,4,5),(2,3,1)} can also be written as

01 3 2
o=11 2 4 3
2 0 5 1

Denote by E¢*? be the set of all (a x b)-matrices over Ej. Let a matrix be given
by C = (cij)nn € E,i”(". Then denote by ¢« = (¢i1,. ., Cin) the i-th row of the
matrix where i € {1,...,h}), and denote by c.; = (c1;,...,cn;)T the j-th column
of the matrix where j € {1,...,n}.

Let R;h) be the set of all h-ary relations on Ej, and Ry := Uh>1 R,(Ch). For a

relation o € Ry we write o) to indicate that o € R,(Ch), i.e., that p is an h-ary

relation. N
An n-ary function f(") € P, preserves an h-ary relation o") € Ry iff for all

Caly Ci2y -+ vy Con € 0 With €14, ..., cpy € dom(f) holds
f(Cl*) f(6117012,~~-,01n)
Fee1y oy Cun) i= f(CZQ*) = f(0217622: o em) € 0.
f(C.h,*) flen, Ch2.7 <oy Chn)

Denote by pPOL, o the set of all functions f € ﬁk which preserve the relation
0 € Ry. For example, for h = 1 and ¢ = {0} the set pPOL; {0} is the set of all
functions f € P, for which f(0,...,0) =0 or (0,...,0) ¢ dom f.

For each m € N set n,,, := (0,1,...,m — 1),

Denote by w(v) the set of distinct entries of v = (vy,...,vs) € EF, that means,
w(v) = w((v1,...,v5)) = {v1,...,v5}. Additionally for some relation o C E}' we
set w(o) = U, e, w(v). For example, for v = (0,0,1) € E} we get w(v) = {0,1}.
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Definition 2.1. Set for all h with 1 < h <k

01 = {(ava‘abv b)’ (a,b,a, b) | a7b € Ek}’
02 = {(avaabv b)7 (a7b7aa b)7 (aabab7a) ‘ CL,b € Ek‘}a
= {x e E} ’ lw(z)| <h—1}.

Definition 2.2. For an arbitrary equivalence relation € on Ej, define

>

6](!2 = {(ao,...,ah,l) € E,}; ’ (i,j) €Ee = a; = aj}.

If h or k is understood from the context we just write J. or Jéh) or bpe. Ifer,... e
are the non-singular equivalence classes of the relation ¢ then we write 51(:5)1 e, Or
e, ,...e,. instead of (5](€h€) For example, (5,&];%}1 = {(m,x, c.,T) € E,? | T € Ek}
These relations are called diagonal relations. Especially EI' for any h is a diagonal
relation.
Definition 2.3. For o") C E we set o(0) := o\ ¢} and §(0) := 0N} = 0\ o(0).
If §(0) = 0., for some equivalence relation v on Ej, then we write e(p) := .
Definition 2.4. A relation Q(h) - E,}CL is
o areflexive, if h > 2 and 6(9) = 0, i.e., ¢ = o(p) meaning that for each
(1,...,2n) € o we have that z; # x; forall 1 <i < j <h.
e quasi-diagonal, if o(p) is a non-empty areflexive relation, and §(p) = o
where € # (2 is an equivalence relation on E},.

Definition 2.5. For o C El set 0 := 0(p), § := 6(0), and denote by Sy, the set
of all permutations on Ej,.
For r = (rg,...,7h—1) € ¢ and 7 € S, we write

rlrl = (T7(0)s T (1)s - - » Tw(n—1)), and o™ = {T[”] reE Q}.

Let Ty := {m € S | onol™ 0},

The model of g is the h-ary relation M(p) := {nk] ‘ ™ e I‘J} U (SN E) on Ej,.
The relation g is coherent, if the following conditions hold:

(1) e# E}, 0 #0,

(2) (a) ¢is a unary relation, i.e., h =1, or

(b) o is areflexive with 2 < h < k, or

(¢c) o is quasi-diagonal with 2 < h < k, or

(d) 5=L2With3§h§k,0r

(e) h =4 and ¢ = p; with 7 € {1,2} (see Definition 2.1),

(3) rl7l € o for all 7 € o and all 7 € T,

(4) for every o’ with () # ¢’ C o there is a relational homomorphism ¢: Ej —
E}, from ¢’ to M(p), such that ¢(r) =, for some r € ¢’, i.e., there is some
r=(ro,...,rn—1) € o’ with (o(ro),...,(rn-1)) = (0,...,h — 1),

(5) (a) if 6 = and h > 3 then I', = S},

(b) if § = o1 then T', = ((0231), (12)) (T, is the permutation group which
is generated by the cycles (0231) and (12)),
(c) if § = go then T', = Sy.
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We remark that all non-empty non-diagonal totally reflexive, totally symmetric
relations are coherent.

Denote by R}?®* the set of all coherent relations. Due to [15] (Chapter: Different
Relations — Different Clones) we can assume that pPOL, ¢ # pPOL, x for all
oM ) ¢ 7%‘,:“”‘ with o # x. Let

ptly, = {P,UCy} U {pPOL,c 0 ‘ 0E ﬁ?ax} .
Theorem 2.6 (of Haddad and Rosenberg; [3, 5]). Let k > 2. For each A C P,
with A = [A]p there is a maximal partial clone My with A C M. A clone M is a

mazimal partial clone of Py if and only if M € pMy., i.e., in other words p.Hy, is
the set of all maximal partial clones of Py.

Theorem 2.7 (Completeness criterion for Py; [5]). Let C C Py. Then [Clp = B
if and only if C € M for all M € p.#,.

Definition 2.8. The set of coherent relations ﬁfax can be divided into the follow-
ing sets:

U= {x" e RP™ | p=1},
A= {x" e R | 1, > 2 A y is areflexive},
Q= {x™ e R | 4y > 2 A x is quasi-diagonal},
Si={x" e Rp™ | n>3Ad(x) = h},
L= {x" e RP™ | p=4Ad(x) € {o1,00}}-
Definition 2.9. Let o") € R), and A = {ao,...,a1_1} C E}, with a; < a; for all
1 < j. Then set
PTA Q= Plgy,....a;_, ©
={(Tags--+rTay_,) | Ixoy.. s 2n_1 € Bk : (xoy...,2ph-1) € 0}.

Definition 2.10. For o) € Q denote by o* the union of the non-singleton classes
of the equivalence relation (o). We define

PP 0 =PI, 0,
llell := le*1,
Qo := {x™ € Q| &(x) has no singular equivalence class}
(=" eQlppx=x}={"eQllxl=n}),
Q1 :=Q\ Q.
If o € Q; then define

Qp = {xe o))

(Ixll < llell) v
(IxIl = llell Appx Z PP 0) } ' (2.1)

Because pPOL, o = pPOL, o™ for all 7 € S}, we use the convention ppo =
P, @ for all p € Q.
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The relations in Q; are exactly the coherent quasi-diagonal relations ¢ where
() has at least one singular class.

Example 2.11. Let £ = 10 and

0 5
1 6 ©
@)= 2 7 |us
e {0,1},{2,3}"
3 8
4 9
Then ¢ € Q, €(p) has the blocks {0,1},{2,3}, {4},
0" ={0,1,2,3},
le]] = 4, and
0 5
1 6 (4)
PPe= | o 7 | Yoy (2)
3 8

Then ¢ € Qy, since £(p) has a singleton block {4}, and pp ¢ = prg, 0 € Qo.

3. Minimal covering

We want to determine which maximal partial clones in the criterion in Theorem
2.7 are needed to characterize partial Sheffer functions. According to Theorem 2.7
a function f € Py is a partial Sheffer function if and only if f € P, \ (Up k). It
turns out that the union | Jp.#} of maximal partial clones is also | J 2" for a proper
subset 2 of p.#),. This leads to the following definition.

Definition 3.1. A set 2" C p.#}, is a minimal covering of p.#},, if for every f € P
holds

[flp=P, < VAec X :f¢ A
and for each A € 2 there is some f € P}, with

[flp # Pun (VB € 2 \{A}: f ¢ B).

Lemma 3.2. Let C be a mazximal partial clone and f € C with f ¢ B for all
B e pdy \ {C}. Then C is in every minimal covering of p.#y,.

Proof. Let f € C € p), with f & B for all B € p#), \ {C}. Assume there is a
minimal covering 2~ of p.#) with C ¢ 2. Then [f]p C C C P, and f & A for
each A € & C piy \ {C}, in contradiction to the first condition of a minimal
covering. (Il

Lemma 3.3. Let C € pdy, and € C psy \ {C} be such that every C' € €
is contained in every minimal covering of p.#y. and for all f € C there is some
C' € € with f € C'. Then C is in no minimal covering of p.#y..



UNIQUE MINIMAL COVERING 7

Proof. Assume C is in some minimal covering 2~ of p.#;. Then there is some
f € P with [f]p # Py and f & B for all B € 2 \ {C}. From € C 2 follows
f ¢ C. Thus f & Aforal A e &2, and [f]p # P contradicting 2" minimal
covering of p.#,. Thus C is in no minimal covering. O

4. A Product of Functions

Definition 4.1. Let D' ¢ EZXb be an (a,b)-matrix on Ey, i.e.,
d11 e dlb
D' = : :
de1 - dap
with d;; € Ey for all 4, j.

If a function f(™) € Py is defined by

(D) =v= (vl,...,va)T

then
n:=b,
dom f := D :={(d;1,...,dw) |1 €{1,...,a}},
fldia, ... dip) :=;
for alli € {1,...,a}. If the domain D := dom f is given then D’ is a matrix whose

rows are the entries of D in lexicographical order.
Let x") € Ry and f(™) € P, be defined by f(x) = v then assume x be given as
a matrix as explained before, i.e., n = |y| and v € E}.

Definition 4.2. Let f™ € P, with D = dom f and ¢(™ € P, with E = dom g.
Then D’ € E[P™ and E' € B[P,
Define FIN) := (f®g) € ﬁé”'m) by
D, |...|D F(D")
/ AN *1 *n ._
F(D ®E)._F< BT E )._<9(E,) . (4.1)

We assume E’ has no constant rows so F' is well-defined. Then

dom F ={(a1,...,a1,. -, Qiyeeoyiy .. Qny... 0,) ]| (a1,...,a,) € D}
——— ——
m times m times m times

U{(bl,bg,...,bm,bl,bQ,...,bm,..‘,bl,bg,...,bm) | (bl,.‘.,bm) GE}

Let ¢ = (¢1,...,¢cn) € dom F. Then we say it is from the E-part or g-part of
Fif¢c=pr,(E',E,...,E') for some i. Otherwise we say it is from the D-part or
f-part of F.

Likewise we inductively set f @1 ® -+ ® g1 Qg :=(fRn1 ® - R gi—1) Qg
with g; € Py for alli € {1,...,1}.
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Example 4.3. Let f,g € Py, be given by

P 00\ [1 023\ (4
0o 1) " \2) 924 5)7 o)
where
, 00
o= (). p=doms = 0.0 (0.1,
E =domg = {(0,2,3),(2,4,5)}.
Then
00 0/l0 0 O 1
00 0[1 1 1 2
Vo9l 2370 23|~ |2
2 4 52 4 5 0
and
dom(f®g) = {(07070? 0? 070)7(0? 0)0717 17 1)7
(0,2,3,0,2,3),(2,4,5,2,4,5)}.
5. Criteria

For the remainder of this paper we will assume k£ > 3 as the case k = 2 is already
solved.

Lemma 5.1 (Lemma 4 [2]). The mazimal partial clone P, U Cy belongs to every
manimal covering of p.M#j,.

Lemma 5.2 (Lemmas 5, 7 [2]). Let ¢ € U, i.e., § C o C Eyx. Then pPOL, o
belongs to every minimal covering of p.#j,.

Lemma 5.3. Let o™ ¢ ﬁg‘ax with h > 2 and f™ € ﬁk. Let c41,C49, ...y Cen € 0
With C1a, ..., cpe € dom(f) and ¢ = i for some ¢/,i" € {1,...,h} with i’ <i”.
Then d:= f(Ci1,Ce2,- -+ Cen) € 0

Proof. Because two rows are equal we have c,; € §(9) C ¢} for all i € {1,2,...,n}.
Because g is coherent there are the following cases for ¢ := d(p):

§ = 0: Then g is areflexive and ¢, & o contradicting the assumption.

§ = & for some equivalence relation € # 13 : Then c.1,Csa,...,Cen € 0. and thus
deod. Co.

§=1: Then dyy = f(cis) = f(cine) = di, e, d €Ll Co.

0 = 01: Then

§ = {(a,a,b,b)|a,be€ Ex,a#b} U {(a,b,a,b)]|a,be Ey,ab}U
{(a,a,a,a) | a € Ey}

and there are the following subcases:
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=1 and i’ =2: Then

i €0\ {(a,b,a,b) | a,b € Ey,a# b} =801} (2,3

for all j € {1,2,...,n} and thus d € d{9,1} 42,33 C 01 C 0.
The case i’ = 3 and i = 4 is analogous.
i =1 and i”" = 3: Then

cvj €0\ {(a,a,b,b) | a,b € Ey,a # b} = d0,2y,{1,3}

for all j € {1,2,...,n} and thus d € d{9,2} 11,33 C 01 C 0.
The case i’ = 2 and i/ = 4 is analogous.
i" =1 andi" =4: Then c.; € {(a,a,a,a) | a € Ex} = 0,123y for all j €
{1,2,...,n} and thus d € d(,1,2,33 C 01 C 0.
The case i’ = 2 and 7" = 3 is analogous.
0 = 02 : is done analogously. [

Lemma 5.4. Let o") € S (see Definition 2.8) with either

h >4, or

h=3 and 3z € o(E})Va € B \ w(z) Iy € 0(o) : w(z) U {a} = w(y). (5.1)
Then
Vf e pPOL, oIy eUUU{x}: f € pPOL, v (5.2)
with x == {x € Ept | {x} x Ex C 0} and pPOL, X € p.#.

Proof. The definition of x implies that x is totally symmetric and totally reflexive.
We have to show that y is non-diagonal. For h = 3 we have y # Li because
of (5.1). Assume h > 3 and x = E}'" ' to the contrary. Since ¢ # EJ!, there
is an z == (z1,22,...,2) € E} \ 0 and hence (z1,...,25-1) € x. Thus x is a
non-diagonal totally symmetric totally reflexive relation and thus pPOL,, x € p.#j.

Let f(") € pPOL,, o be arbitrary. Assume to the contrary, that f ¢ pPOL, ~ for
all v € UU{x}. Then there are c.1,...,csn € x With ¢ := f(cs1,...,Cen) € E,};_l\x.
This means,

dg € B \w(c) Vy € o(0) : w(c) U{q} # w(y).

Because f ¢ pPOL,(Ex\{q}) there are q1,...,qn € Ex\{q} with f(q1,...,q.) = ¢

Thus follows
Cye1 v v Cyn C
= =
)= (8)

with |w(t)| = h, and therefore ¢ ¢ }'. Because of w(t) # w(y) for every y € o(o)

by construction, ¢t ¢ g holds. But ¢,1, ..., s, are chosen with G

i €{1,...,n} contradicting f € pPOL,, ¢. Thus (5.2) holds.

€ o for all

Let the set 8" consist of all relations in S not fulfilling the conditions of Lemma
5.4, ie., S = {x" | x €S, u=3and (5.1) is not fulfilled by x}.
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Lemma 5.5. Let o") € Qq (see Definition 2.10) with h =2 and
dre By dn e Sy {.CE} X By, C Q[ﬂ—].
Then pPOL,, ¢ belongs to no minimal covering of p.#y.

Proof. Let f(™ € pPOL,, o be arbitrary. Assume to the contrary f ¢ pPOL, 6 for
all 0 e U.

Let A C Ej be a maximal set with A x E;, C ol™. Let y € Ej be arbitrary.
Because f ¢ pPOL; A and f & pPOL, (Ex \ {y}) there are rows c4 € A™ and
¢y € (Ex \ {y})" with f(ca) =t a € Ex \ A and f(c,) = y. Thus (a,y) € o™ and
because y is arbitrary we get (AU {a}) x Ej C o™ contradicting the maximality
of A.

Thus the assumption is wrong and f € pPOL, 0 for some 6 € U. This implies
pPOL,, ¢ is in no minimal covering, because pPOL,, @ is in every minimal covering
of p.#}, by Lemma 5.2. a

Let the set Q) consist of all relations in Qg not fulfilling the conditions of Lemma
5.5.
If ¢ is symmetric, then Lemma 5.5 follows from Theorem 15, (b) in [2].

6. Sorting the minimal coverings

Definition 6.1. Let g, x € 7%‘,?3" with ¢ # x, i.e., pPOL, o # pPOL, x by defini-
tion of Rp***. We write o < x iff

Vf € pPOL, 0 3g € pPOL, 0
((9 # PPOL,X) A (V0 € R (f ¢ pPOL, % = g ¢ pPOL,v)) ).

Lemma 6.2. Let X =pPOL, o € pty,, f € X, and ¥, Z C pMy with f €Y for
alY € % and & = {pPOL, ¢ | € R N o < ¢} # 0.
Then there is some ' € X with F €Y for allY € ' U Z.

Proof. Let | := |Z| and 2 =: {pPOL,¢1,...,pPOL,¢;}. If I = 1 then the
statement of this Lemma follows from Definition 6.1. Now let [ > 2. Assume there
issome f; € X withi e {1,...,1 -1}, fi¢Y forall Y € & and f; € pPOL, x;
for all j < 4. Since i +1 < [ and ¢ < Xjt1, there is some f;11 € X with
fix1 € PPOLy xi41 and fiyq €Y for all Y € # U {pPOL, x; | 1 < j < i}. Thus,
by induction on I, there is some F := f; € X with F €Y forallY e Z U 2. O

Remark 6.3. With the help of < we can define a directed graph G = (p.#};, E)
without loops such that (X,Y) ¢ F for all X,Y € p#, with X = pPOL, g,
Y =pPOL, ¢ and ¢ < ¥.

If X € p#}, is a sink in G, then X is in every minimal covering of p.#,. Assume
this is false. Then there is a minimal covering % of p.#), with X ¢ % and

VieX3IY e#: feY.
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Since X is a sink, i.e., (X,Y) € E, we have 9 < ¢ for all Y = pPOLj, ¢ € # and
thus by Lemma 6.2 there is some ' € X with FF ¢ Y for all Y € & contradicting
% is a covering of p.#}. Thus X is in every minimal covering of p.#.

If X € p#) is not a sink in the graph G then X is covered by its successors
UX):={Y ep) | (X,Y) € E}, ie.,

X C U Y.
YeU(X)

Assume this is false. Then there is some f € X with f ¢ X’ for all X’ € U(X). By
Lemma 6.2 there is some F' € X with F' ¢ X’ for all X' € U(X) and F ¢ Z for all
Z € pMy, with (X,Z) ¢ E. Thus F ¢Y forallY € 2\ {X}. But then U(X) =0
because of the existence of F, i.e., X is a sink. Thus X is covered by U(X).

Then we show in following sections that G is acyclic. This implies if X is not
a sink then X is covered by sinks since G is transitive and finite, i.e., X is in no
minimal covering. Thus there is only one minimal covering.

Definition 6.4. Sometimes we write Y C o to mean x C ol™ for some m € Sj,.
Because pPOL, o = pPOL, o™ we can assume 7 = id in most cases where id is
the identity permutation in Sj,.

Similarly if we write y € o then x € o[™ for all = € Sj.

Lemma 6.5. Let 0" € AUQ) UL and X" € (QULUS)\ {o}. Then o < x.

Proof. Let o := o(p) and 0 := §(0). Let f € pPOL,, o be arbitrary. If f ¢ pPOL,, x
then g := f fulfills the conditions of ¢ < x. Thus assume f € pPOL,, x.
There are two cases:
p<horyxyes:
Let go(x) := v (see Definition 4.1) for some v € o™ \ x if x C o™ for some
7€ S, (wlo.g. m=id) and v € E} \ x otherwise. Then gy & pPOLy, x.

We have to show go € pPOL, 0. Assume g(()") ¢ pPOL,, p. Then there are some
TOWS Clu, -« -5 Chx With Ci1,. .., Con € 0 and go(Cs1, ..., Cen) =: d & 0. Because of
Lemma 5.3 all rows have to be different. Thus if 4 = h then {c,1,...,¢cn} C X[”/]
for some 7’ € S},.

There are some cases:

@ < h: Because gg is only defined on pu different rows Lemma 5.3 applies.
p="h and x C ¢: Then 7' € I',(,) because x[”,] C o and x C p. Thus we have

d=0l"l¢ o because v € .
pw=nh and x € o™ for all m € Sp: Thus there is some j € {1,2,...,n} with

¢+j & o contradicting the assumption.

X €S and i > h: Then E} = pry = {c1, ..., can} C o contradicting that o
is coherent.
Thus gy € pPOL,, .
Let Go := f ® go and L = 0. By construction Go € pPOL,, x.
w>hand x€S:
Let 0¢ := o and define the relations o1, 09, ..., 0y, 0141 recursively until o1 =
and (Z) € {O’Q, T1y.-- ,0’1} hold.
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Let  C o0; C o be given. Because ¢ is coherent, there is a relational ho-
momorphism ¢;: Ey — Ej, from o; to M(p) and an s; € o; with ¢;(s;) = .
Let 0,41 = {s € o; ’ wi(s) € 5OE;Z}. From ¢;(s;) = nn ¢ 0N E,’: follows
|oiv1| < |oi|. Because |o| is finite there is an [ € N with oy41 = 0.

Define ¢, : Ep, — Ej by w«(nr) := so. Then define for i € {0,1,...,1} the
function ¢;: Ey — Ejy with ¢;(x) := ¢s(pi(z)). Then ¢; is a relational homo-
morphism from o; to p. For v := (vg,v1,...,Um-1) € E* and m € {1,2,...,k}
let

— 5(m)
Q-1(v): Em >
Qi(v) == Qi—1(v) U{(@vg; vy -, Tw,y) € B | @ila) = 0i(b) = za = w3},
Q45 (v) == Qi(v) for all j > 1.
Because of |p;(Ex)| = h we have |w(x)| < h for all z € Q;(nx)-
Let
Vi€ {O’ 1’ 27 R l} : gi({nk} U Qi—l(nk)) = %’(771«)7
Vi€ {12, 1B} s g (I} U Qi) = wy,
where {wy,ws,.. .,w|Elx§|} = EF. Let L:=1+|E}|.
We now show g; € pPOL, ¢ for i € {0,1,...,L}. Assume gE") ¢ pPOL, o.

Then there are rows ¢y, ..., Cps With Cu1,..., Con € 0 and g;(ce1, ..., Con) =1 d €

E,}; \ 0. By construction of g; we can w.l.o.g. assume that ¢’ := ¢, = Py o Tk

with pairwise different coordinates pi,...,pn. Thus ¢’ € o(g). There are two

cases:

¢ € 0;: We have ¢ <[ since 0,41 = (). Then d = g;(¢/,csa, ..., Cn) = qi(c') € 0
because ¢; is a relational homomorphism from o; to p. This is in contradiction
tod e El\ o.

¢ € o\ 0;: Then there is some j < ¢ such that ¢’ € g; and ¢’ & ;41 hold. Then
@j(c') € o(E}). Thus

E} = Q;() CQi—1(d) = Pl o Qic1(M) = {ce2, .- can} C o,

ie., o= E,}g in contradiction to ¢ coherent.

Thus no such ¢ can exist and therefore g; € pPOL,, o for all ¢ € {0,1,...,L}.

Let Gii=f®go® g1 ®---®g; fori € {0,1,...,L}.

We show G € pPOL, x. If g; € pPOL,, x for some i € {0,1,...,L}, then
G, & pPOL, x. Otherwise Q;(v) C x for some v € x by construction of Q;(v)
and g; € pPOL,, x for ¢ € {0,1,...,L}. Then g;4,;({v} U 5%3 UQi(v)) € x for all
j€{1,2,...,|EF} and thus El C x in contradiction to x coherent.

Let G_1 = f and g = G. Now we show that g € pPOL, ¢ by induction over
ie{-1,0,1,...,L}.

The basis G_1 = f € pPOL,, ¢ is given by choice of f.

The induction goes from ¢ — 1 to ¢ for ¢ € {0,1,...,L}. Let G;,_; € pPOL, o.
We want to show G; = G,—1 ® g; € pPOL, 9. Let D := domG,_1, E := domy;
and D', E’ the associated matrices (see Definition 4.1).
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Assume G; € pPOL,, o. Then there are some rows ¢y, . . ., Cps from D' ® E’ with

C1x $1
F = =s5¢0p (6.1)
Chx Sh
and
Vie{l,2,...,N}:c € 0. (6.2)

By Lemma 5.3 all the rows c;, are pairwise different.

Because G;—; € pPOL, ¢ and ¢g; € pPOL, o some rows have to be from the
D-part and some from the E-part of D' ® E’.

Assume w.l.0.g. ¢y, is from the D-part and ¢y, is from the E-part. From §(x) # 0

and x coherent follows JJ(E‘:) Cdo(x) Cx.
There are three cases:

0 € A: Because Ej; C cp. there is some column j with ¢;; = c; in contradiction
to o areflexive.

o€ Qf: If h = 2 then {z} x Ej, C p in contradiction to ¢ € Qj, i.e., ¢ does not
fulfill the conditions of Lemma 5.5.

Let h > 3 and i € {2,...,h — 1} be arbitrary. Because c1. # ¢« there is
column j with (clj,cij,chj)T = (z,y,y)" and = # y. Because i is arbitrary and
d(0) = 6. for some equivalence relation £ we get that (0,a) € ¢ = £(p) for all
a # 0, i.e., €(p) has a singular equivalence class contradicting ¢ € Qp.

0 € L: If ¢14,Cox, ¢35 (Which are pairwise different) are from D and is ¢4y from
E, then there is there is a column c.; = (2,y,2,w)" & o with |{z,y,z}| > 2
and |{z,y, z,w}| = 3 in contradiction to (6.2). Otherwise there is some column
cvj = (2,9,9,9)" & 0 with x # y contradicting (6.2).

Thus G; € pPOL,, ¢ and by induction ¢ = G, € pPOL, p. Because g ¢ pPOL,, x

we get o < x. O

Lemma 6.6. Let o € Q; US’ and ") € S. Then o < .

Proof. Let f € pPOL, ¢ be arbitrary. If f ¢ pPOL, x then g := f fulfills the
conditions of <. Thus assume f € pPOL,, x.

Let gy (x) := v (see Definition 4.1) for some v € o\ x if x C p and v € E}f \ x
otherwise. Then g, € pPOL, ¢ and let g := f ® g,,. We get g & pPOL,, x because
gy &€ PPOL, x. Let D := dom f and E := domg, as in Definition 4.2, n = |D|,
m = |E| and N = |D| - |E|.

It suffices to show (V) := (f ®9gy) € pPOL,, 0. Assume this is false. Then there
are some rOwWS Cix,...,Chs from D ®@ E with s; := F(ci), s := (s1,...,8,)T € 0
and ¢,; € p for all j € {1,2,...,N}. By Lemma 5.3 all the rows ¢;, are pairwise
different.

If all rows ¢;, are from the D-part of DQF, then f(ciim, Ceam, - -« Conm) = S & 0
in contradiction to f € pPOL,, p. Thus one row is from the E-part.

Assume there are rows from both parts of D ® E. Then w.l.o.g. o is given such
that ¢y, is from the D-part and cp. is from the E-part. Let ¢; ., ..., Cigx With g <h

the rows of the E-part. Then 6(53 - (cij)i:il,~~~;7:q).j:1,.."N.
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There are two cases:

0 € Q1: Let ¢, Ciys, Chs be three pairwise different rows. Then there are columns
J1 and j2 with (Ci1j1 » Cizjiy Chyjy )T = (z,y, x)T7 (Ciljz’ Cizjias Chjz)T = (z,v, y)T and
x #y. Thus (i1 —1,i2—1), (i1—1,h—1), (ia—1,h—1) € £(p). Because iy # iy # h
are arbitrary it follows that §(g) = 65}2}: ) = E! in contradiction to g coherent.

0€ 8 : If only ¢, is from D, then {z} x E? C p for some x € ci., and thus
(2,9)T x By C o with x # y. If only cps is from E then (z,y)" x Ej C o with
T # 1y, T € cy and y € cg,. Thus Lemma 5.4 applies contradicting o € S'. (I

Lemma 6.7. Let o™ € Q; and x*) € Q,. Then o K x.

Proof. Let f € pPOL, ¢ be arbitrary. If f ¢ pPOL, x then g := f fulfills the
conditions of <. Thus assume f € pPOL,, x.

Let g, (x) := v (see Definition 4.1) for some v € E}’ \ x and let g := f ® g,,. We
get g € pPOL,, x because g, & pPOL,, x. It suffices to show

FWN) .= (f ® g,) € pPOLy, 0. (6.3)

Let D := dom f and E := domg as in Definition 4.2, n = |D|, m = |E| and
N =|D|-|E|.

Assume (6.3) is false. Then there are ciy, ..., cps from D @ E with s; := F(c;4),
s:=(s1,...,sn)T ¢ pand c,j € p for all j € {1,2,...,N}. By Lemma 5.3 all the
rows c;, are pairwise different.

If all rows c¢;. are from the D-part of D ® E, then f(Ci1m, Cx2m, Conm) = 8 € 0
in contradiction to f € pPOL, p. Thus at least one row is from the E-part.

Let [ := ||o||. Let w.l.o.g. ppo be the first [ rows of 0. Assume there is some
row ¢;,+ with 1 <4¢; <[ such that ¢;, . is not from the part of E representing pp x.
Let i3 # 417 with 1 < i3 <[ be arbitrary. Then there are columns j; and j, with
(Ciljl’c’izjl?chjl)T = (xvy’m)Tv (ci1j27ci2j27chj2)T = (x’yay)T and z # y. Thus
(ia — 1,41 — 1) € €(p), i.e., there is a singleton class in e(pp g) in contradiction to

pp o € Qo.
So we need pp x C pp o in contradiction to the definition of Q,. O

Definition 6.8. Let f € ]3,51) be a unary function. Then we define recursively
FO =M and fm = f(fmY) for all n > 1.

For the proof of Theorem 6.13 some lemmas are needed using the following
condition on ¢ € A.

3p e PollM pVi € {1,2,...,h — 1} VD C o(EL) Vo € o(E! )
Vre S, Im>0:D x {p"(v)} Z o™, (6.4)

Proposition 6.9. Let o) € A and o fulfills (6.4). Then there is some ¢’ € Pol](cl) 0
which suffices the conditions in (6.4) and ¢’ & pPOL{x} for all x € E},.

Proof. There is some ¢ € Polg) o which fulfills (6.4). Let

(@) = y for some y € Fy \ {z}, if z € By \ w(p),
v = p(z) otherwise.
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Let 2 € By \w(p). If € w(D) Uw(v) then D x {(¢")°(v)} = D x {v} € ol™! for
all . Thus ¢’ fulfills the conditions of (6.4) because it coincides with ¢ on w(p).

Let = € w(g). Then there is some D C o(EI1) with D x {z} C o™ for some
7 € Sy. But there is some m > 0 with D x {(¢')"(z)} Z o™ because of (6.4).
Thus ¢'(z) # 2. For x & w(p) follows ¢'(z) # z by definition of ¢'. O

Lemma 6.10. Let o™ € A and o fulfills (6.4). Then pPOLy, o is in every minimal
covering of pM.

Proof. Because of Lemma 6.5 we just have to find a function f € pPOL, ¢ with

Vx € UUA)\{o}: f & pPOL; x.
Then there is some function g € pPOL,, ¢ with

Vx € RP™\ {0} : g ¢ pPPOL;, x

and by construction also g &€ P, U Cjy. Thus pPOL;, ¢ is in every minimal covering
of p.#}, by Lemma 3.2.

We will now construct the function f mentioned above.

We can assume 7 = id € S, in (6.4) because pPOL,, ¢ = pPOL,, ¢™. Because of
Proposition 6.9 we can assume ¢ € pPOL, {x} for all x € E.

Let fo := ¢ and define f; := f; 1 ® fy, recursively with

X ={x1,--,xn}:={x€eUUA| p € pPOL, x}.

Let x(#) = x; € X. There are two cases:

p<h: Let f\(x) := z (see Definition 4.1) with z € o\ x if x C p and z € E}/ \ x
otherwise. Then f, & pPOL, x and by construction f, € pPOL, o.
> h: Because g is coherent there is a relational homomorphism 6y: Fy — Ej
from o to M(p). Let 6y: E;, — Ej with 61(n,) = v1 for some v; € p. Then
0 € pPOL,, ¢ for 0: Ey — Ej with 6(x) = 61(0p(x)).
Let v € x be arbitrary and let f,(x) := 6(v) (see Definition 4.1). Because
lw(@(v))] < h < p we have § ¢ pPOL,, x, and thus f, & pPOL, x.
By construction 6 is a relational homomorphism from ¢ to ¢. Thus f, €
pPOL; o.

Because f; = fj_1 ® fy; and f,, & pPOL; x; we get f; € pPOL; x;.

Assume fj(n) ¢ pPOL,, p. Then there are rows cix, ..., Cpx With Ci1,...,Con € 0
and f(Ci1y...,Con) =d € E;; \ 0. Then the rows ¢;, are pairwise different and some
rows belong to the f;_; part of f; and some to the f, part. The rows can w.l.o.g.
be sorted in a way such that the first [ rows for some [ € {1,2,...,h — 1} are from
the f;_1 part of f; = f;_1® fy,-

Let D:=prg ; 1{ca1,...,Cen} and W:=pr; , 1{cs1,...,Cen}. Because the
TOWS Cls, Cl+1%, - - -, Ch—1+ are from the f, part and f, is only defined on x we get
W = Drp propn X for pairwise different p;. Let v € W C Ej be arbitrary.
Then there is some v’ € x with v =pr, , . 0" Thus {"™(v) [m >0} CW
because ¢ € pPOL, x, i.e., {¢™(v") | m >0} C x.

But then D x {¢™(v) | m > 0} C p in contradiction to (6.4). O
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Let IV C S;, and | < h. Then we define FiEz C S; by
g =Ar €S |3’ el (Ve € By :m(x) = 7'(2)) A (Vo € Ep \ By : w'(x) = x)}.

Lemma 6.11. Let o™ € A, ) CEL, V C E,’;_l, le{l,...,h—1} and xxV C o.
LetT" :={r€l, |V € By \ B : w(x) =2} and x' := {I™ |ce x,m € Lig, }-
Then X' is coherent and X' x V C o.

Proof. From the definition of IV and ¢ coherent follows x' x V' C p.
We now show that ¥’ is coherent.
e If | > 2 then ' # E! because ' C o(EL) C EL.
Let [ =1and X' = El = E}.
If h = 2 then V # Ej because otherwise E7 C p contradicting ¢ coherent.
Let V' with V' C V/ C Ej be maximal with respect to inclusion such that
X' x V' C o. Because f ¢ pPOL, V' there are by,...,b, € V' and y € Fp \ V’
with f(by,...,b,) = y. Then there is some x € E} such that (x,4)T & ¢ and there
are aj,...,a, € Ey \ {z} with f(ai,...,a,) = x because f € pPOL,(E) \ {z})
and Ei \ (Ex \ {z}) = {z}. Thus

a ... Qp, o X
f(bl bn)_<y>¢9
but (a;,b;)T € o for all i € {1,...,n} contradicting f € pPOL,, 0.

If h > 3 then ( ;i ) goforallweV Co(Er") and x € w(w).

Thus ' # EL.

e X' Co(EL), ie., X' is areflexive and 1 < < k,

e 7™ € y/ for all r € x’ and 7 € T',s because 7 € T for any 7 € T'.

o M(x') = {771[”] |mely = FiEl}. Let ¢ with @ C ¢» C ¥’ and w € V be arbitrary.
Because p is coherent there exists a relational homomorphism \: Ey, — Ej from
¥ x {w} to M(p) with

)\< 5) > = T,

i.e., A(c) =, for some ¢ € 9. For any ¢’ € ¢ we have
CI ™
A5 ) €M@ =i Imern)
and because A(w) = (I,...,h —1)T we get
¢ ] /
A5 ) ol imer

and thus A\(¢') € M(x').
Let \': By, — E; be defined by

oy ) Alx) ifrew(x),
AN(z) = { 0 otherwise.
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Then \: E; — Ej is a relational homomorphism from x’ to M(x’) such that
N (c) = n; for some c € x'.
Thus x’ is coherent, i.e., X' € U U A. O

Lemma 6.12. Let o™ € A and ¢ does not fulfill (6.4). Then pPOL, o is in no
minimal covering of p.#,.

Proof. Let f(™ € pPOL,, ¢ be arbitrary with
VW eUUA: (n<h= f¢&pPOL,x). (6.5)

Let o(x) := f(x,...,z). Then ¢ € pPOLg) o and by (6.5) we have p(z) €
Ep \ {z} for all x € E}, specifically ¢ € Pol,(cl) 0. Because (6.4) is false, there exist
I, D={D.1,....,Dyp} Co(EL), veo(E} ") and m € S, with 0 <! < h and

VYm >0:D x {p™(v)} C o™
Because pPOL,, o = pPOL,, o™ we assume w.l.o.g. 7 =id, i.e.,
Ym>0:D x{o™(v)} C o (6.6)

We show ¢™(v) € o(E;}~") for all m > 0. Assume otherwise. Then

( wng) ) € u

for some m, but this contradicts (6.6) because ¢ C o(ER).

Because o(E} ") is finite, there are 0 < m; < my such that ¢ (v) = ¢™2(v).
Let V := {¢™ ™ (v) | m > 0}. Then for any w € V there is some w’ € V with
p(w') = w.

Let x € {w(“) cUUA | W= l} with x XV C p. Then there are rows c14, ..., Cix
with ¢y1,...,Can € X and f(Cit1,...,Cun) =1 d € EL\ x.

Let w’ € V arbitrary and w = ¢(w’) € V. Then x x {w'} C ¢ and

Cil .. Cyn d
f(w’1 w’):<w>€E}?’
d
w ) €9

because f € pPOL,, 0. Thus (x U{d}) x V C p. This also implies x U {d} C o(E})
as shown before.

Let IV :={r €Ty | Vo € E; \ By : w(z) =} and X' := {cI™ | c € xyU {d},7 €
FTEz}'

By Lemma 6.11 with ¥ = yU{d} we get x’ coherent, i.e., ¥’ € UUA, and x C X’
with ' x V C .

Now let xo := {D.1} then xo is coherent and xo x V C p. By the argument
above there is an infinite chain yg C x1 C x2 C ... with y; e UUA and x; xV Cp
for all ¢ € N. But this contradicts [/ U A| < oo and thus the assumption (6.5) is
wrong.

ie.,
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Thus for any f € pPOL, o there is some ") € U U A with 4 < h and f €
pPOL,, x. By induction there is some ¢(“/) e UUA with ' < pu, f € pPOL, ¢ and
pPOL,, ¢ is in every minimal covering of p.#j.

Thus pPOL,, ¢ is in no minimal covering of p.#j. O

Theorem 6.13. Let o) € A. Then pPOL,, ¢ is in any minimal covering of p.#y,
if and only if o fulfills (6.4).

Proof. If p fulfills (6.4) then pPOL,, g is in every minimal covering by Lemma 6.10.
If o does not fulfill (6.4) then pPOL, o is no minimal covering by Lemma 6.12. O

7. Uniqueness of minimal coverings

Lemma 7.1. Let 2, % be two different minimal coverings of p.#y. Then
pPOL, 0 € Z if and only if pPOL, o € ¥ for all p € U U A.

Proof. By Lemma 5.2 we have pPOL, o € & and pPOL, 0 € & for all p € U. By
Theorem 6.13

Yoe A(pPOL,po€ 2 < pPOL, o€ %).
O

Lemma 7.2. Let 2, % be two different minimal coverings of p.#y. Then
pPOL, 0 € Z if and only if pPOL, 0 € ¥ for all o € Qo U L.

Proof. Assume this is false. Then there exists some ¢o € Qgy U L such that
X = pPOL,p € &\ %. Because X is in some minimal covering of p.#) we
obtain ¢ € Qj U L. By Lemma 6.5 we have

Z = {pPOL, ¥ | € RPN o < ¢} 2 {pPOL, ¥ | ¥ € (QULUS) \ {o}}.

Since £ is a minimal covering there exists some f € X with f ¢ X' for all
X' e Z\{X}. By Lemma 6.2 there issome F € X with F ¢ Y forall X' € Z’UZ
and X’ # X. Since % is a covering there is some Y € % with F € Y. But then
YeX\N(ZUZ)=Z\NZ)\ZX =@Zn{pPOL, x| xeUUAN\ Z =0 by

Lemma 7.1. This is a contradiction. O

Lemma 7.3. Let & C p#y be a minimal covering of p.#),. Then pPOL, o & X
forallpe S\ S'.

Proof. Assume X := pPOL; o € 2 for some 9o € S\ &'. Then there is some
feXwith f €Y forall Y € 27\ {X}. Applying Lemma 5.4 recursively on
X implies f € pPOL, x for some x € Y U QU S’. By Lemmas 6.5 and 6.6 there
is some g € pPOL, x with g € Y for all Y € 2 in contradiction to 2 minimal
covering. O

Lemma 7.4. Let &, % be two different minimal coverings of p.#). Then
pPOL, 0 € Z if and only if pPOL, o € ¥ for all o € S.
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Proof. Assume this is false. Then there is some ¢ € S with X := pPOL, p € 2\ ¥
In particular is ¢ € &’ by Lemma 7.3. Then there is some f € X with f € X’ for
all X' € 27\ {X}.

Then f ¢ Y forallY € # withY = pPOL, x and x € HUAUQyUL by Lemmas
7.1 and 7.2. Thus there is some Z € # with Z = pPOL; ¢ and ¢ € Q; US’ and
f € Z. By Lemma 6.6 there is some g € Z with ¢ € X and g ¢ X’ for all
X' e Z\{X},ie,g¢ X' forall X' € . This contradicts 2~ minimal covering
because g € Z € ¥'. (]

Theorem 7.5. Let 2 ,% be two different minimal coverings of p.#y. Then
2 \Y C{pPOL, ¥ [ ¢ € Q1}.

Proof. The theorem follows from Lemmas 7.1, 7.2 and 7.4, and Lemma 5.2 for the
partial clone Py U Cy. O

Lemma 7.6. Let 2°,% be different minimal coverings of p.#y. Furthermore let
X :=pPOL,p € Z\¥ for some o € Q1. Then there is some x € Qy with
Y :=pPOL, x €  \ 2 and ppx = ppo-

Proof. By 2" # % and Theorem 7.5 we have § C 2"\ % C {pPOL, v | ¢ € Q1}.
Let X :=pPOL;, 0 € 2"\ & be arbitrary with ¢ € Q;. Then there is some f € X
with f ¢ X' for all X’ € 27\ {X}. Then f € Y with Y :=pPOL, x € # \ Z for
some y € Q.

Assume ppx # ppo. Then x € Q, or p € Q,. If x € Q, then there is some
g€ X with g ¢ X' for all X' € 2"\ {X} and g € pPOL,, x by Lemma 6.7. Thus
0 € Q, has to be true. But then there is some G € Y = pPOL, x with G ¢ X’ for
all X’ € 2 again by Lemma 6.7 contradicting 2" minimal covering. O

Definition 7.7. Let g(h) € Q1. We call o irreducible iff
V) C ACE,oeo(E M vreS,: (pryo) x {v} € o
Otherwise we call it reducible.

Example 7.8. Let k =4 and h = 3. Let
: (3)
2 U 5{071}.

0
0= 1
2
We show that g is irreducible. There are three cases:
|A| = 1: Then pr o = E4 and v = (v1,v2) € 0(E}). Assume (pr, o) x {v} C o™,
Then (vy,v1,v2), (v2,v1,v2) € o™, Thus 5%%{1} U 00,23 € o because ¢ coherent.
But this contradicts o € Q;.
A={0,1}: If = # id then 62 C o with X C Es, |X| = 2 and X # {0,1} in
contradiction to ¢ € Q. Thus 7« = id.
Because for all z € E},
0 0
1 2 | €po and prA,Q:((l) g)uégfﬁl},
T x
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we get (pry o) x {v} £ o.

|A] =2 and A # {0,1}: Then pr, o = E2. Let v = (z). Assume that the inclusion
(pry 0) x {v} C o™ holds. Then (z,y,z), (y,z,2),(y,y,2) € ol™ and thus we
have Li C g[”] because ¢ is coherent. But this contradicts o € Q1.

Thus p is irreducible.
Now let

[}
Il
N = O
N O =
-
S
&

Then p is reducible because

(prae) x{v} =

N = O
N O =
N OO

1 2 3

1 2 3 | Co=o"
2 2 2

holds with A = {0,1}, v = (2) and 7 = id.

Lemma 7.9. Let o™ € Q; be reducible. Then for every f € pPOL,, o there is
some

X €X,={{a} |a€ E}U{yp"™ € Q|ppv =ppoApu<h}
with f € pPOL, x.

Proof. Let o := o(p). Assume there is some f() € pPOL,, g such that f ¢ pPOL, x
for all x € X,. Then f(z,...,z) € Ey \ {«} for each z € E}.

Because p is reducible there are some A with ® C A C Ej, and © € S}, and

v E U(EZ_IA‘) such that
(pra o) x {v} C o
Because pPOL,, o = pPOL,, o™ we assume w.l.o.g. 7 = id.

We show that pppry 0 = ppo. If |A| = 1 then pry o = Ej and thus Ey x {v} C p.
This implies 5%’)2} C g for all i € Ey \ {0} contradicting ¢ € Q. Let |A] > 2. We
know so = (0,...,0),s1 = (1,...,1) € d(pry 0). Then {so,s1} x {v} C (o), i.e.,
for all i € Ep, and j € Ep \ (AU {i}) we get (i,7) & £(0). Thus all non-singular
classes of £(p) are covered by A, i.e., the projection pr, preserves them, and this
implies pp pry 0 = pp o

We show that (pr, o) x {v} C 0. Assume the contrary. Then there exists some
s € pry o with {s} x {v} C §(p). But this contradicts pr, d(0) Npr, o = 0 because
PPPrs o = ppo- So s & pry d(p) in contradiction to the assumption. We proved
(pryo) x {v} C o, and thus w(pry o) Nw(v) = 0.

Now we show that v := pry o € Q, i.e., that it is coherent. Let 6 € I';(,y and

oy
w € v arbitrarily. There is some @ € v with @) € 4. Then {w, w1} x {v} C o,
i.e., €T, and thus {w,w!”!} x {v} C . This implies w!?! € ~.

M(y) = pra M(e) because pppry ¢ = pp 0.

Let v/ C o(y). Then v x {v} C 0. Thus there is a relational homomorphism

¢: By, — Ej from v x {v} to M(p) and some w € v with <p< Z) ) = np. Let
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$: Ex — E)|4| be given by

v op() i p(z) € B,

o) = { 0 otherwise.
Then ¢ is a relational homomorphism from 4 to M(y) with ¢(w) = n4). Thus
v is a coherent relation and v € X, because ppy = ppo and |A| < h. Since
I & pPOLy x for all x € X, there are rows cix, ..., ¢4« With ¢, ..., ¢ € v and

Flear . con) =d € B\ 4.

Then
Cskl -t Cxn h
f( v, v )EE’“\Q’
ie., f ¢ pPOL, o contradicting the assumption. (I

Proposition 7.10. Let o™ ") € Q with u >3, f, g € pPOL,, x with g(0) € El,
and g is not defined anywhere else, and F(™ := f @ g & pPOL, x.
Then there are rOwWs Cix, ..., Cpusx

(1) with c1,...,Con € X and F(cq1 ... ¢on) =d € Elf \ x, and

) there is some j with c,j € o(E}), and

) the rows Cix, ..., c|y|« belong to the g-part of F, and

) if ppo = PP X, then the rows cix,...,c|y|« belong to the first ||x|| rows of
the g-part of F.

Proof. Statement (1) follows directly from F ¢ pPOLjyx. Choose some rows
Clxs - - -5 Cus such that (1) holds.

(2): Assume (2) is false. Then {c.1,...,cn} € 0(X) = dc(y) contradicting all rows
¢;x are pairwise different by Lemma 5.3. Thus for any two rows there is a column
in which they differ.

(3): Because p € Q we have 5(Ehh) C o. Because g € pPOL,, x there is at least one
row from the f-part of F' and because f € pPOL, x there is at least one row
from the g-part of F'. Let ¢;,« be an arbitrary row from the f-part and ¢; . be an
arbitrary row from the g-part. Because g > 3 there is a third row ¢;, different
from ¢; o and Cigx- Let c¢;74 be arbitrary with this condition.

There are two cases to consider:
The row c;r, is from the f-part: Then there is some column j in which the rows
Cipx and ciry, 1., ¢y =, cy; = y and x # y. By construction and ¢ € Q,

ie., (5%1) C p, we can choose j more specifically such that

Cifj X
Citj = Yy
Cigj Y

The row c¢;r4 is from the g-part: Then there is some j with
Cifj T
Ci’j = Y
Cigg Yy
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and x # y by construction and ¢ € Q, i.e., 6%3 C o
Thus (if,14), (if,7") & e(x). Because iy, iy and ' are chosen arbitrarily any row
ci;« from the f-part belongs to a singular class of £(x). Because the first ||x||
rows of x belong to non-singular classes of £(x) the first ||x|| rows cix, ..., ¢y
belong to the g-part of F'. Thus (3) is true.
(4): Let ppo = ppx. Assume one of the rows ci., ..., ¢y« does not belong to
the first ||x|| rows of the g-part of F, w.l.o.g. let this be the row c;.. As shown
before ¢y, belongs to the g-part of F. Because pp ¢ = pp x the row ¢y, belongs
to a singular class of €(g). Now let ¢;,«, ¢i,« be two arbitrarily chosen different
rows. Then there are three different cases:
Ciyx aNd Ciyy are both from the f-part: Then they differ at some point and by
construction we get columns c,;, c.j with

Ci5  Cij’ r Yy
Ciij  Ciyg’ = r X
Cizj  Cinj’ y 'y

and x # y.
Ciy+ 18 from the f-part and c,,. from the g-part: Then by construction and be-
cause ¢, belongs to a singular class of (p) there is some column c,; with

C1j X
Ciyj = Yy
Ciaj Y

and x # y.
Ciyx aNd Ciys are both from the g-part: Then because ci. belongs to a singular
class of €(p) there is some column c¢,; with

C1j x
Ciyj = )
Ciaj Y

and x # y.
Thus for all cases (1,41), (1,i2) & (x). Because i1 and iy are chosen arbitrarily
the row ¢y, belongs to a singular class of () in contradiction to the conven-
tion that the first ||x|| rows of x belong to the non-singular classes of (x), see
Definition 2.10. Thus (4) is true.

]

Definition 7.11. Let ¢ € Q. Define 7, C ﬁg‘“ by
T,:={¢ € Q1 | pp¢ =ppo}.
Lemma 7.12. Let o€ Q1,7 C7,, |T|>2 and f € Py with

(Vweﬁfax\T:fgszOLk@b)/\(erT:fepPOka).

Then
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(1) there are xo € T and F € pPOL,, xo with
Vi) € R\ {xo} : F & pPOL,, ¢,

or
(2) there are F € Py and T' C T, T’ # 0 with

(\w € R\ T ¢pPOLkw) A@ExeT :FepPOL,y).

Proof. Assume (1) is false. By this assumption there exists some 7 € 7 with
f € pPOL, ¢1. Then there is some 5 € 7%2““‘ \ {¢1} with f € pPOLy, 92 because
(1) is false. Because f ¢ pPOL,, % for all ¢ € ﬁfcnax \ 7 we get ¥o € 7. Thus there
are P\ i) € T with o, # s and f € (pPOL, 1) N (pPPOL, 1b3). We can
choose 11 such that pq is minimal. This implies

Vx €{{a} lac B }U{y™ € Q| ppy=ppoAp<u}:f¢&pPOL;x.

Thus v, is irreducible because f € pPOL, v¢; and Lemma 7.9.

Furthermore p; < po. If po = pg then 1o is also irreducible by the same
argument.

We construct a function F(™) := f ® g such that ' € pPOL,¢; and F ¢
pPOL,, ¢ holds (or the other way round).

For any set Elet P(E):={ACFE|A#0ANA+#E}.

There are the following cases:

A€ P(E,,) veaE>N3re S, : (prath) x {v} i
Without loss of generality = = id.

Assume to the contrary that pp(pr4 1) # pptn holds. Then the inequality
l(pr a4 91) X {v}|| = | pra ]l < |¢1]| = l|3=2]] holds in contradiction to the fact
d(pry 1) x {v} S ((prao) x {v}) € é(¢2). Thus pp(pry 1) = pp Y1 = pp Ye.

Let g(pr, 1) := d (see Definition 4.1) for some d € E,LA‘ with the property

g(pp(pravn)) € EQWH \ pp¥2. Then F' & pPOL,, 12 because

T 2 2— 2 2
F( P Q‘,qﬁl > € (B \ ppuy) x B2l € B 4.

—_———
Ceo
We have g € pPOL,, 91 because ¢ is defined on less than p; rows. Assume
F & pPOL, 1. Then there are rows Ciu,...,Cyu« With c41,...,Cen € 91 and
the first ||¢1]| rows belong to the g-part of F', and a column c¢,; € o(E}") by
Proposition 7.10. Let w.l.o.g. the rows ci, ..., ¢+« belong to the g-part of F' and
Clgtss - -+ Cuyx to the f-part of F' with ||x|| <1 < p1. Then let

Cl+1j
vi=
Cuaj
and
C':=prio dca, . Cant

IR EREER)



24 KARSTEN SCHOLZEL

Then C" = pr,, ¢n for some A’ € P (E,,) with A’ C A by construction of g. By
construction of F' we get

(prA’ 1/)1 X {’U}) = C/ X {U} g {C*la c .,C*n} g 1/’1

contradicting ¢ irreducible.
Thus there is some 7' with {11} C 7' C T \ {¢2} and

(w) € R\ T ¢pPOLk¢) A@ExeT :FepPOL,y).

1 = pa A (EIA €P(E,,) e J(E]’jl_lAl) Ir e S,y (prye) x {v} C 1/1£W]) :
This is a restriction of the previous case with the roles of ¥ and 5 switched.
Thus there is some 7/ with {9} C 7' C T \ {¢1} and

(w) € Rbax\ T’ F ¢ pPOL, u;) A@Ex €T :FepPOL, ).

p1 < pg A (Elv ceo(E> ") 3n e Sy, 1 x {v} C ¢g”]) :
Without loss of generality = = id.
Because v; is coherent there is some relational homomorphism ¢: E — E,,
from o(11) to M (¢)1) and some s € o(1) with ¢(s) =n,,. Define p*: E,, — Ej

by ©*(1,,) = 5.
Let

g (1) x {v}) Ud(ha)) = d := ©* (@ ( . ))

(see Definition 4.1). Then g € pPOL, 1 by construction.

Assume g € pPOL, 12. Then d € 6(¢)2) because |w(d)| = |w(s)| = p1 < po.
But |w(prEWZH d)| = ||12|| in contradiction to the assumption that the first ||¢)o]|
rows belong to the non-singular classes of £(¢)3). Thus g ¢ pPOL,, ¢ and this
implies F' € pPOLy, ¢)5.

Because o(¢1) x {v} C 19 and the first ||11]| rows belong to the non-singular
classes of e(12) we get o(v1) x {v} C o(¢¥h2) and thus w(v) Nw(o(y)) = 0.
Assume F' € pPOLj, v;. Then there are rows cix, ..., Cu« With ce1,...,Con € U1
and F(cs1,...,Cn) € E)" \ ¢1. By Proposition 7.10 the r1ows ¢4, ..., ¢|y, ||« are
the first rows in the definition of g. Thus the other rows can not belong to the
last (2 — p1) rows in the definition of g because w(v) Nw(o (1)) = . Thus this
part of the definition of g can be ignored here, and thus F' € pPOL,, 91 because
1 is irreducible.

Thus there is some 7’ with {¢1} C 7' C T \ {2} and

(\w € Rbax\ T’ F ¢ pPOL, 1/}) A@xeT :FepPOL,x).

n1 = p2 A (371' S S/_Lz :le C ’(ﬁéﬂ-]> :
Without loss of generality = = id.
Let g(v2) := d (see Definition 4.1) for some d € E}* \ v9. Because pr, 11 C
pry o for all A € P(E,,), ¥ irreducible and g € pPOL,¢; we get F' €
pPOL,, ¢ . Furthermore g ¢ pPOL,, 19 implies F' ¢ pPOL,, ¥)5.



UNIQUE MINIMAL COVERING 25

Thus there is some 7’ with {1} C 7' C T \ {¢2} and

(\w € Rax\ T’ F ¢ pPOL, ¢) A@xeT :FepPOL, ).

U1 = p2 A (Elﬂ' c S/_L1 I(bg C ’(ﬁgﬂ-]> :
Analogous to the previous case because 15 is irreducible in this case. Thus there
is some 7' with {¢o} C 7' C 7 \ {¢)1} and
(vw € R\ T . F ¢ pPOL, ¢) A(@Ex €T :FepPOL,Y).

Otherwise :
Then we have

VAe P(E,) Vve U(E,’:T‘A‘) Vm e Sy, (pravn) x {v} & wgr],
g1 < paV (VA€ P(E,,) Yo eoE"Myvre S, « (prat) x {v} € u{ﬂ) ,

p1=p V(Yo € o(EP")Vr e S, X{U}ngr])’
1 < 2V VWESMW/JI%Q/’?] J
pn1 < pa VvV V€ Sl“ 1o g 1/’@

Let g(11) := d (see Definition 4.1) for some d € E}" \ ¢;. Because ¢y ¢
wgﬂ] for all 7 € Sy, and u; < po we have g € pPOLy 2. Assume F) =
f ®g & pPOL,vY,. Then there are ci.,...,cu,« With c41,...,Cen € P2 and
F(cs1y- -+, Cen) & 12 and the 1oWs ci, ..., ¢y, |« belong to the g-part of F' by
Proposition 7.10, i.e., one of the following cases apply
e there is some A C E,, and v € U(Egrw) with (pry 1) x {v} C 99 contra-

dicting the first assumption, or
e 13 < p2 and there is some v € J(E,’jz_lAl) with ¥ x {v} C 9 contradicting

the third assumption.
Thus F' € pPOL,, 1. Furthermore F' & pPOL,, ¢ because g ¢ pPOL, ;.
Thus there is some 77 with {¢o} C 7' C T \ {1} and

(vw € Rbax\ T’ F ¢ pPOL, w) A3y eT :FepPOL, ).
Thus in every case there is some 7' C 7 with
(\w € Rbax\ T’ F ¢ pPOL, ¢) A@yeT : FepPOL,y),
ie., (2) is true. O
Theorem 7.13. For every k > 2 there is exactly one minimal covering of p.#y,.

Proof. For k = 2 one finds this statement in [4]. Thus we can assume k > 3.
Assume the statement is false. Then there are pairwise different minimal coverings
21,..., 2 with | > 2. Choose g € 75,};“‘”‘ with pPOL, o € Z7 \ £ arbitrarily.
Then ¢ € Q; because of Theorem 7.5. Let

T:={pe Qi |ppY=ppoA (Fa,be{l,...,l1}:pPOL, ¢ € Z,\ Z)} C 7,.
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Then o € 7 and |7| > 2 by Lemma 7.6. Additionally there is some f € P\ (P;UC})
with
(Vp € R\ T : f € pPOL, ) A (Ix €T : f € pPOL,, x). (7.1)
Otherwise pPOL,, ¢ would be in no minimal covering contradicting the assumption.
Now we can assume that 7 C 7 has minimal size |7| > 2 and fulfills (7.1) (with
7T instead of T).
By Lemma 7.12 there are two cases:

e There are xg € T and F € pPOL,, xo with
Vi € R\ {xo} : F & pPOL, ¢.

Then pPOL, xo is in every minimal covering of p.#), by Lemma 3.2 in contra-
diction to the definition of 7 and the assumption.
e There are F € P, 7' with ) ¢ 7' C T and

(Vip € R\ T : F ¢ pPOL, ) A 3y € T' : F € pPOL,, X).
Because 7 is minimal under the condition |7| > 2 we conclude |7’| = 1. Then
T' = {xo}, F € pPOL;, xo and
7 € R\ {xo} : F & pPOL, ¢

Thus pPOL,, xo is in every minimal covering of p.#) by Lemma 3.2, in contra-
diction to the definition of 7 and the assumption.

Thus there are no two different minimal coverings of p.#. (]

Let p%}, be the unique minimal covering of p.#},. Using the uniqueness of minimal
coverings we can improve the statements of Lemmas 3.3 and 3.2.

Lemma 7.14. Let C € p#y, and € C p#)y, \ {C} such that for all f € C there is
some C' € € with f € C'. Then C & p&,.

Proof. Assume C'is in the minimal covering pé, of p.#};.. Let % := (p€;, \{C})U%F.
Then % is a covering of p.#}, because for all f € X € p.#), there is

e some Y € p%;, \ {C} with f €Y, or
e f € C and then there is some Y € ¥ with f € Y.

Then there is some minimal covering Y C U of py. But ¥ Npé, C p%, and
thus & # p%). contradicting Theorem 7.13. O

Lemma 7.15. Let C € p.#),. Then
Cep6, — (Af e CVBept,\{C}: f ¢&B).

Proof. We split the proof into two directions:

< Follows from Lemma 3.2 and Theorem 7.13.
=: Let C € p%). Assume,

VfeC3Bepa \{C}: f € B.

By Lemma 7.14 with € = p.#), \ {C} follows C & p%é} in contradiction to the
assumption. O
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Lemma 7.16. Let o™ € Q; be reducible. Then pPOL,, ¢ is not in the minimal
covering p6y of pMy,.

Proof. This follows directly from Lemma 7.9 with the help of Lemma 7.14. O
8. Conclusion
The minimal coverings for k = 2, 3,4 have been given and shown to be unique in

[4], [2] and [14] respectively. In following table the sizes of these minimal coverings
p%). are given with respect to the number of all maximal partial clones |p.Z}]|.

k| p4y| | |pi]
2 8 4
3 58 26
41 1102 | 449

We have now shown that the minimal coverings of p.#} are unique for each
k > 2. Many elements of the minimal coverings have been determined (see e.g.
[2, 16]) and for some maximal partial clones we have shown in this paper that they
are not in a minimal covering (see Lemmas 5.5, 7.3 and 7.16). Furthermore for
maximal partial clones pPOL,, o with o € A we have a criterion which only needs

to check the functions from Poll(;) o to see if pPOL,, ¢ belongs to p%}, (see Theorem
6.13). Still many elements of the minimal coverings have to be determined, and it
seems to be a very hard problem, especially for the relations Q;.
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