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Abstract

We study intervals I(A) of partial clones whose total func-

tions constitute a (total) clone A. In the Boolean case, we

provide a complete classification of such intervals (accord-

ing to whether the interval is finite or infinite), and deter-

mine the size of each finite interval I(A).

1 Introduction

Let A be a nonempty set and let T be a proper sub-

set of An. For an arbitrary mapping f from T into A

and for (a1, ..., an) ∈ An \ T , one can use the nota-

tion f(a1, ..., an) = ∞ with ∞ 6∈ A, to indicate that

f(a1, ..., an) is not defined. Then

domf := {(a1, ..., an) ∈ An | f(a1, ..., an) 6=∞}

is the domain of f . In the following, we use these notations

for A = Ek and for functions which are defined over sub-

sets of Enk . More exact:

Let N := {1, 2, 3, . . .} be the set of positive integers. For

a fixed k ∈ N, k > 1, set Ek := {0, . . . , k − 1} and put

Ẽk := Ek ∪ {∞} where ∞ 6∈ Ek. For n ∈ N an n-

ary partial function on Ek is a map f : Enk → Ẽk, where

n is the arity of f . With (x1, ..., xn) (briefly x∼) we de-

note an arbitrary n-tuple of Enk and usually we say that

the xi are variables. Furthermore, let 0 = (0, 0, ..., 0) and

1 := (1, 1, ..., 1) of appropriate length. We say that f is to-

tal if∞ 6∈ im f := {f(a∼) | a∼ ∈ E
n
k }. When we introduce

a partial function f we denote it by f (n) to specify that its

arity is n. A partial function g(n) is a subfunction of f (n) if

g(a∼) ∈ {f(a∼),∞} for all a∼ ∈ E
n
k . Denote by P̃ (n)

k the set

of all n-ary partial functions on Ek and let P̃k :=
⋃
n∈N

P̃
(n)
k .

Set P (n)
k := {f ∈ P̃

(n)
k | f is total} and let Pk :=⋃

n∈N P
(n)
k . In the following we say “function” for “total

function”.

For n ∈ N and F ⊆ P̃k set F (n) := F ∩ P̃ (n)
k . For a ∈ Ẽk

and 1 ≤ i ≤ n, the constant function cna and the projec-

tion eni are the n-ary functions of P̃k and Pk defined by

setting cna(x1, . . . , xn) := a and eni (x1, . . . , xn) := xi for

all x1, . . . , xn ∈ Ek. Denote by Jk := {eni | n ∈ N, 1 ≤
i ≤ n} the set of all projections and let C∞ consist of all

f ∈ P̃k with dom f = ∅, i.e., C∞ = {cn∞ | n ∈ N}.
On the set Pk and P̃k we define superposition operations:

permutation and identification of variables, adding of fic-

titious variables and substitution of variables of a func-

tion by functions. The superposition operations can exactly

be described by the elementary operations (or Mal’cev-

operations) ζ, τ,∆,∇, ?:

For n,m ∈ N and f (n), g(m) ∈ P̃k let

(ζf)(x1, x2, ..., xn) := f(x2, x3, ..., xn, x1),

(τf)(x1, x2, ..., xn) := f(x2, x1, x3, ..., xn),

(∆f)(x1, x2, ..., xn−1) :=

f(x1, x1, x2, ..., xn−1) for n ≥ 2,

ζf = τf = ∆f = f for n = 1,



(∇f)(x1, x2, ..., xn+1) := f(x2, x3, ..., xn+1)

and

(f ? g)(x1, ..., xm+n−1) := f(g(x1, ..., xm), xm+1, ..., xm+n−1) if
g(x1, ..., xm) ∈ Ek,
∞ otherwise.

A function f ∈ P̃k is called a superposition over F (⊆
P̃k), if f can be obtained by a finite number of applica-

tions of the operations ζ, τ,∆,∇, ? from the functions of

F . Further, if f ∈ P̃
(n)
k , g1, ..., gn ∈ P̃

(m)
k and the

m-ary function h ∈ P̃k is defined by h(x1, ..., xm) :=

f(g1(x1, ..., xm), g2(x1, ..., xm), ..., gn(x1, ..., xm)), then

we write briefly h := f(g1, ..., gn). The set of all super-

positions over F (⊆ P̃k) is called closure of F and it is

denoted by [F ].

A set F ⊆ P̃k satisfying [F ] = F is called a closed

set of P̃k. If Jk ⊆ F = [F ] then F is a clone. If

F := {f1, ..., fr} ⊂ P̃k then we write [f1, ..., ft] instead

of [F ].

To describe closed subsets of P̃k, h-ary relations (i.e., sub-

sets of Ẽhk ), h ≥ 1, are suitable. We often write the elements

of relations in the form of columns and we often give a re-

lation in the form of a matrix, the columns of which are the

elements of the relation.

Let R̃(h)
k be the set of all h-ary relations over Ẽk and put

R̃k :=
⋃
h≥1 R̃

(h)
k .

We say a function f ∈ P̃k preserves an h-ary relation %

over Ẽk, iff

f(r1, ..., rn) :=


f(r11, r12, ..., r1n)
f(r21, r22, ..., r2n)

...
f(rh1, rh2, ..., rhn)

 ∈ %

holds for all r1, r2, ..., rn ∈ % with ri := (r1i, r2i, ..., rhi)

and i ∈ {1, 2, ..., n}. Set f(a∼) =∞ for all a∼ ∈ Ẽ
n
k \Enk .

Let pPolk% be the set of all functions of P̃k that preserve

the relation % ⊆ Ẽhk . Furthermore, pPOLk% := pPolk(% ∪
(Ẽhk \Ehk )) and Polk% := Pk ∩ pPolk% for % ⊆ Ehk .
For the definition of the closed subsets of P2 we use the

usual symbols ∧,∨,+ and −. ∧ stands for conjunction, ∨

for disjunction, + for addition modulo 2 and − for negation.

Let

M := Pol2

(
0 0 1
0 1 1

)
,

S := Pol2

(
0 1
1 0

)
,

L :=
⋃
n≥1{f (n) ∈ P2 | ∃a0, ..., an ∈ E2 :

f(x∼) = a0 + Σnn=1ai · xi},

Ta,µ := Pol2{0, 1}µ\{a} for µ ∈ N and a ∈ E2,

Ta := Ta,1, a ∈ E2,

Ta,∞ :=
⋂
µ≥1 Ta,µ, a ∈ E2,

K := [∧] (set of all conjunctions),

D := [∨] (set of all disjunctions),

C := [c0, c1] (set of all constant functions),

Ca := [ca], a ∈ {0, 1},

I := [e11] (set of all projections),

I := [−].

Theorem 1 (E. L. Post, [10])

The set of all closed subsets of P2 is countably

infinite. The nonempty closed subsets of P2 are

P2, S, M, L, Ta,µ, Ta,µ ∩ Ta, Ta,µ ∩ M, Ta,µ ∩ M ∩
Ta, K ∪C,K ∪Ca, K, D∪C, D∪Ca, D, S ∩T0, S ∩
M, S ∩ L, S ∩ L ∩ T0, L ∩ Ta, I ∪ C, I ∪ C, I, I ∪
Ca, I, C, Ca,

where a ∈ {0, 1} and µ ∈ {1, 2, ...,∞}.

A number of authors has found a new proof of Theorem 1

by now (see e.g. [7] or [14] and the references in [7]).

Let

Ik(A) := {B ⊆ P̃k | [B] = B, Pk ∩B = A},

where A is a clone of Pk. It is the aim of this paper to show

how to prove the following theorem.

Theorem 2 Let A ⊆ P2 be a Boolean clone. Then I2(A)

is a finite set if and only if T0∩T1∩M ⊆ A or T0∩S ⊆ A.
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2 On partial clones C ⊆ P̃k with
C ∩ Pk = Polk{(0, s(0))} × so

Let k = 2 · l, where l ∈ N. For a fixed-point-free permuta-

tion s consisting of cycles of the length 2 on Ek set

so := {(x, s(x)) | x ∈ Ek},

%s := {(0, 1, x, s(x)) | x ∈ Ek},

S := Polks
o

Smax := pPOLks
o,

T := Polk{(0, 1)},

Tmax := pPOLk{(0, 1)},

and

(ST )max := pPOLk%s.

Furthermore, for {a0, a1} ⊆ Ẽk set

U(a0, a1) :=⋃
n≥1{f (n) ∈ P̃k | ∀x ∈ {0, 1} f(x, x, ..., x) = ax}.

Obviously, for all (a0, a1) ∈ {(α,∞), (∞, α),

(∞,∞) | α ∈ Ek} we have U(a0, a1) ⊆ (ST )max,

U(0, 1) 6⊆ (ST )max, Smax ∩ Tmax ⊂ (ST )max,

(ST )max ∩ Pk = S ∩ T and

(ST )max = (Smax∩Tmax)∪
⋃

(a0, a1)

∈ ( eEk)2\E2
k

U(a0, a1).

(1)

Lemma 3 The partial clone (ST )max is the maximal ele-

ment of the set Ik(S ∩ T ).

Proof. Set w.l.o.g. s := (0 1)(2 3)...((2l − 2) (2l − 1)).

Let f (n) ∈ P̃k \ (ST )max be arbitrary. Then there are

a1, ..., an, b0, ..., b3 ∈ Ek with

f


0 0 ... 0
1 1 ... 1
a1 a2 ... an
s(a1) s(a2) ... s(an)

 =


b0
b1
b2
b3


and (b0, b1, b2, b3) ∈ E4

k\%s. It is easy to show that there are

binary functions g1, ..., gn ∈ S ∩ T with gi(t, 0) := 0 and

gi(t, y) := ai for all i ∈ {1, ..., n}, t ∈ {0, 2, 4, ..., 2l − 2}

and y ∈ Ek \ {0}. Then the binary function g defined by

g := f(g1, ..., gn) belongs to Pk ∩ [{f} ∪ (S ∩ T )]. Since

g


0 0
1 1
0 1
1 0

 = f


0 0 ... 0
1 1 ... 1
a1 a2 ... an
s(a1) s(a2) ... s(an)

 ,

we have g 6∈ S ∩ T .

In order to describe functions of Smax∩Tmax we define the

following relation on Enk :

x∼ =s y∼ if si(x∼) = y
∼ for some i ∈ {0, 1},

where si(x∼) = si((x1, ..., xn)) := (si(x1), ..., si(xn)),

s0(x) := x, si+1(x) := s(si(x)).

Obviously, =s is an equivalence relation on Enk and it par-

titions Enk into equivalence classes U1 := {0,1} and Ui

(i = 2, ..., rn, where rn := kn/2). Choose v1 := 0 and

vi ∈ Ui (i = 2, ..., rn) and Vn := {v1, v2, ..., vrn}. Since

for all f (n) ∈ S, b∼ ∈ E
n
k and i ∈ E2 f(si(b∼)) = si(f(b∼)),

a function f (n) ∈ S ∩T is fully determined by its values on

Vn, where f(0) = 0.

For every f (n) ∈ Smax ∩ Tmax set

χ(f) := {(f(a∼), f(s(a∼))) | a∼ ∈ E
n
k }

and, for (a0, a1) ∈ {(0, 1), (x,∞), (∞, x), (∞,∞) | x ∈
Ek} and for (a0, a1) ∈ R ⊆ Ẽ2

k , set

FR(a0, a1) := { g ∈ Smax ∩ Tmax | χ(g) ⊆ R,

g(0) = a0, g(1) = a1}.

Obviously,

Smax ∩ Tmax =⋃
(a0, a1)

∈ {(0, 1)} ∪ ( eE2
k\E

2
k)

⋃
R

(a0, a1) ∈ R ⊆ eE2
k

FR(a0, a1)

(2)

holds.

Lemma 4 Let f ∈ P̃k with (f(0), f(1)) = (α, β).

1) If f (n) ∈ (ST )max\(Smax ∩ Tmax) then U(α, β) ⊆
[{f} ∪ (S ∩ T )].

2) If f ∈ (Smax∩Tmax) then Fχ(f)(α, β) ⊆ [{f}∪ (S∩
T )].
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Proof. 1): Let f (n) ∈ (ST )max\(Smax ∩ Tmax). Then

(α, β) ∈ Ẽ2
k\E2

k . We can assume α = ∞. Furthermore

there is a tuple (a1, ..., an) ∈ Enk \{0,1} with

(a, b) := (f(a1, ..., an), f(s(a1), ..., s(an))) ∈ E2
k\so.

Define Vm := {v1, ..., vrm
} as in the proof of Lemma 3.

One can find the functions

f
(m)
1 , ..., f (m)

n , r(m), t(2) ∈ S ∩ T

with the properties fi(vj) = ai, r(vj) = 0 for all i ∈
{1, 2, ..., n} and all vj ∈ Vm\{v1} and

t

(
0 a
1 b

)
=
(
c
c

)
for certain c ∈ Ek with

(c, β) 6∈ so. (3)

Thus

q(m) := t(r, f(f1, ..., fn)) ∈ [{f} ∪ (S ∩ T )],

where

q(x∼) =


α for x∼ = 0,
β for x∼ = 1,
c otherwise.

Let

g(m) ∈ U?(α, β) :=⋃
m≥1{g(m) ∈ U(α, β) | ∀x∼ ∈ E

m
k \{0,1} g(x∼) ∈ Ek}.

Since a function h(m+1) belongs to S∩T with the properties

h(β, 1, 1, ..., 1) = β, if β 6=∞

and

∀x∼ ∈ E
m
k \{0,1} h(c, x1, ..., xn) = g(x1, ..., xn)

(see (3)), we have

g(x∼) = h(q(x∼), x∼),

i.e., U?(α, β) ⊆ [{f} ∪ (S ∩ T )].

Let a∼ ∈ Emk \{0,1}. Next we show that a function u(m)
a∼

with

ua∼
(a∼) =∞, ua∼(β) = β, if β 6=∞,

ua∼
(x∼) ∈ Ek for all x∼ ∈ E

m
k \{0,1}

(4)

belongs to [{f} ∪ (S ∩ T )].

We can assume that β ∈ {1,∞}. If β ∈ Ek\{1} then we

can choose f ′ instead of f , where f ′(x∼) := t′(x1, f(x∼))

and t′ ∈ S ∩ T with t′(1, β) = 1. Let p(m)
i ∈ S ∩ T with

pi(a∼) = 0, pi(vj) = ai for a∼ 6∈ {vj , s(vj)}, i = 1, ..., n.

Then ua∼
:= f(p1, ..., pn) fulfills (4).

Let now g(m) ∈ U(α, β) be arbitrary. Then we have

g = e
(m+1)
1 (g′, ua∼1

, ...ua∼d

),

where

{a∼1
, ..., a∼d} = {x∼ ∈ E

m
k \{0,1} | g(x∼) =∞}

and g′ ∈ U?(α, β) m-ary with g′(x∼) = g(x∼) for all x∼ with

g(x∼) ∈ Ek.

2): Let g(m) ∈ Fχ(f)(α, β) be arbitrary. Then, for every

v ∈ Vm, (g(v), g(s(v))) = (f(bv), f(s(bv))) for some

bv := (bv,1, bv,2, ..., bv,n) ∈ Vn. It is easy to check that

there are functions g(m)
i ∈ S ∩ T (i = 1, 2, ..., n) with the

property gi(v) = bv,i for all i ∈ {1, ..., n} and v ∈ Vm.

Then we have g = f(g1, ..., gn), i.e. 2) holds.

From (1), (2), Lemma 3 and Lemma 4 it follows

Theorem 5 The set Ik(S ∩ T ) is finite.

3 A classification of all partial Boolean clones

Theorem 6 Let A be a closed set of P2 with

A ⊆ B ∈ {L,D ∪ C,K ∪ C, T0,∞, T1,∞}.

Then the set I2(A) has the cardinality of continuum.

Proof. The theorem has been proven in [12] for B ∈
{[P (1)

2 ], D ∪C,K ∪C, T0,∞, T1,∞}, in [1] for A = L, and
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is a conclusion of [1] for A ∈ {L ∩ T0, L ∩ T1, L ∩ S,L ∩
T0 ∩ S}.

Theorem 7 Let A be a closed set of P2 with

T0 ∩ T1 ∩M ⊆ A or T0 ∩ S ⊆ A.

Then I2(A) is a finite set and it holds:

A |I2(A)|
P2 3

Ta (a ∈ {0, 1}) 6
M 6
S 6

T0 ∩ T1 30
Ta ∩M (a ∈ {0, 1}) 15

T0 ∩ T1 ∩M 101
T0 ∩ S 413

Proof. The finiteness of the set I2(S∩T0) results from The-

orem 5. The statement |I2(S ∩ T0)| = 413 was calculated

with the help of a computer (programme description in [9]).

One finds the proofs of the remaining statements in [2], [1],

[11], [13], [3], [4], and [6].

We need the next theorem for the proof of Theorem 9.

Theorem 8 Let A be a clone of Pk and I a nonempty set.

Furthermore, for every i ∈ I , let Qi be a subset of P̃k with

the following three properties:

1) Qi ∩ Pk = ∅,

2) [Qi] = Qi,

3) Qi ? A ⊆ Qi, and A ? Qi ⊆ Qi.

Then, for every partial clone B with B ⊆ A, it holds:

(a) [Qi ∪B] = Qi ∪B for all i ∈ I .

(b) |Ik(B)| ≥ |I|, if Qi 6= Qj for all i, j ∈ I with i 6= j.

Proof. (a): Let i ∈ I and B = [B] ⊆ A be arbitrary. Since

B and Qi are closed subsets of P̃k, the set Qi ∪B is closed

with respect to the operations ζ, τ,∆ and∇. Thus, we have

to show that Qi ∪ B is closed with respect to the operation

?. Let f (n), g(m) ∈ Qi∪B be arbitrary. Then the following

two cases are possible:

Case 1: {f, g} ⊆ B.

Since B is a clone, f ? g ∈ B holds in this case.

Case 2: {f, g} ∩Qi 6= ∅.
Obviously, by assumptions 2) and 3), we have f ? g ∈ Qi.
Therefore, (a) holds.

The statement (b) is a conclusion of 1) and (a).

Theorem 9 Let A be a clone of P2 with

A ∈ {T0,µ, T0,µ ∩ T1, T0,µ ∩M,T0,µ ∩ T1 ∩M,T0,µ,
T1,µ ∩ T0, T1,µ ∩M,T1,µ ∩ T0 ∩M,S ∩M}

for µ ∈ N \ {1}. Then I2(A) is an infinite set.

Proof. Without loss of generality let A ⊆ T0,2. Further, we

set U0 := {f ∈ P̃2 | f(0) =∞} and

q
(n)
0 (x1, ..., xn) :=

{
∞ for x1 = ... = xn = 0,
0 otherwise,

for n ∈ N.

To prove Theorem 9 we make use of Theorem 8 and choose

the sets A, I and Qi as follows:

A := T0,2,
I := N,
Qi := [{q(i)0 } ∪ T0,2] ∩ U0 for i ∈ N.

Obviously, A and Qi are closed sets for every i ∈ N. Since

U0 ∩ Pk = ∅, we have Qi ∩ Pk = ∅ for all i ∈ N. Next we

show that the above sets A and Qi also satisfy the condition

3) from Theorem 8:

Let f ∈ Qi ? T0,2 be arbitrary. Then there are functions

f1, f2 ∈ P̃k with f1 ∈ [{q(i)0 } ∪ T0,2] ∩ U0, f2 ∈ T0,2

and f = f1 ? f2. Then {f1, f2} ⊆ [{q(i)0 } ∪ T0,2] and

f1 ? f2 ∈ U0, since U0 ? T0 ⊆ U0. Thus f belongs to

Qi = [{q(i)0 } ∪ T0,2] ∩ U0, i.e., Qi ? T0,2 ⊆ Qi. Analo-

gously one can prove that T0,2 ? Qi ⊆ Qi holds.

Therefore, the above setsA andQi fulfill the conditions 1)–

3) given in Theorem 8.

Let %1 := {(0, 0), (0, 1), (∞, 0), (∞, 1), (∞,∞)} and

%m :=

{(0, a1, ..., am) ∈ Em+1
2 | |{i ∈ {1, ..., n} | ai = 1}| ≤ 1}

∪ {(∞, b1, ..., bm) | (b1, ..., bm) ∈ {0, 1,∞}m \ Em2 }
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for m ≥ 2. It is proved in [8] that the following statements

are valid:

[{q(i)0 } ∪ T0,2] ∩ U0 ⊆ pPol2%i+1, and

[{q(j)0 } ∪ T0,2] ∩ U0 6⊆ pPol2%i for i ≤ j.

Thus, the closed sets Qi (i ∈ N) are pairwise different.

Therefore, by Theorem 8, (a) and (b), we have that I2(B)

with B = [B] ⊆ T0,2 is an infinite set.

Remarks

1) One finds some generalizations of the results given above

in [3], [5] and [9].

2) Let A ∈ {T0,µ, T0,µ ∩ T1, T0,µ ∩ M,T0,µ ∩ T1 ∩
M,T0,µ, T1,µ ∩T0, T1,µ ∩M,T1,µ ∩T0 ∩M,S ∩M} with

µ ∈ N \ {1}. The set I2(A) is infinite by Theorem 6. The

authors, however, do not know whether I2(A) is countable

or has the cardinality of continuum. The following state-

ment is proved in [8]: Assume, there is a partial clone in

I2(A) which has an infinite basis. Then I2(A) has the car-

dinality of continuum.
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