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Abstract

We study intervals T(A) of partial clones whose total func-
tions constitute a (total) clone A. In the Boolean case, we
provide a complete classification of such intervals (accord-
ing to whether the interval is finite or infinite), and deter-

mine the size of each finite interval Z(A).

1 Introduction

Let A be a nonempty set and let 7" be a proper sub-
set of A™. For an arbitrary mapping f from T into A
and for (aq,...,a,) € A™\ T, one can use the nota-
tion f(ai,...,a,) = oo with co & A, to indicate that

f(as,...,ay,) is not defined. Then

domf :={(a,...,an) € A" | f(a1,...,an) # o0}

is the domain of f. In the following, we use these notations
for A = Ej, and for functions which are defined over sub-
sets of E}. More exact:

Let N := {1,2,3,...} be the set of positive integers. For
afixedk € N, k > 1, set B, := {0,...,k — 1} and put
E. == E. U {0} where 0o ¢ Ej. Forn € N an n-
ary partial function on Ej, isamap f : E}) — Ek, where
n is the arity of f. With (z1,...,z,) (briefly z) we de-
note an arbitrary n-tuple of £} and usually we say that
the x; are variables. Furthermore, let 0 = (0,0, ...,0) and

1:=(1,1,...,1) of appropriate length. We say that f is fo-
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talif oo ¢ im f := {f(a) | a € E}'}. When we introduce
a partial function f we denote it by f(™ to specify that its
arity is n. A partial function ¢(") is a subfunction of f() if
g(a) € {f(a),o0} forall a € E}. Denote by P the set

of all n-ary partial functions on E}, and let P = U ]3]5").
neN
{f € P,E”) | fistotal} and let P, :=

Unen P,g"). In the following we say “function” for “total

Set P\

function”.

Forn € Nand F C 151@ set F(™ .= F N ]515"). Fora € Ek
and 1 < i < n, the constant function c]; and the projec-
tion e are the n-ary functions of P, and P, defined by
setting ¢ (a1, . .. , Tp) = x; for

., Tn € E). Denote by J, := {el! [ n € N, 1 <

,Tp) = a and e} (zq,. ..
all x4, ..
i < n} the set of all projections and let C, consist of all
f € Py withdom f =0, ie., Co = {c" | n € N}.

On the set Py and ]Bk we define superposition operations:
permutation and identification of variables, adding of fic-
titious variables and substitution of variables of a func-
tion by functions. The superposition operations can exactly
be described by the elementary operations (or Mal’cev-
operations) , 7, A, V, x:

For n,m € Nand f("), g(™) ¢ P, let

n) = f(X2, T3, ..., Tn, 1),
n) = f(

Af) (@1, 22,y Tpeq) =

flay, 1,20, ..., xp—1) forn > 2,

(f=rf=Af= fforn=1,

T
T X2y L1, X3y ey Ty,



(Vf)(l‘l, o, ...,.’L‘n+1)

and

= f($27.%‘3, ...,{L‘n+1)

(f *g)(xla seey xm+n71) =

flg(x1, oy @m)y Tt 1y ooy Tmgm—1) if
g(x1, ., Tm) € Ek,
oo otherwise.

A function f € ]Sk is called a superposition over F' (C
ﬁk), if f can be obtained by a finite number of applica-
tions of the operations (, 7, A, V,* from the functions of
F. Further, if f € P™, g1,...g0 € P™ and the
m-ary function h € ﬁk is defined by h(x1,...,xm) =
flai(xr, oy zm), g2(T1, ooy Tm)y ooy Gn(T1, ooy 1)), then
we write briefly h := f(g1,...,gn). The set of all super-
positions over F' (C JSk) is called closure of F' and it is
denoted by [F].

A set F C P, satisfying [F] = F is called a closed
set of P,. If J, C F = [F] then F is a clone. If
F = {fi,..., fr} C Py then we write [fi, ..., f;] instead
of [F].

To describe closed subsets of ﬁk, h-ary relations (i.e., sub-
sets of E,}g) h > 1, are suitable. We often write the elements
of relations in the form of columns and we often give a re-
lation in the form of a matrix, the columns of which are the
elements of the relation.

Let E,(Ch) be the set of all h-ary relations over Ek. and put
Ry, = Un>1 El(ch)'

We say a function f € Py preserves an h-ary relation o
over Ek, iff

f(T11,7‘12,--~,7”1n)

f(?"Ql, 722y «eey Tgn)
flry,...,ry) = : €po

F(rr1,Thy ooy Thin)
holds for all rq,ra, ...,y € o With vy := (715,72, ., Thi)
andi € {1,2,...,n}. Set f(a) = oo forall a € E}J\E,’;
Let pPoly e be the set of all functions of Isk that preserve
the relation o C E,}c‘ Furthermore, pPO L0 := pPoly (o U
(EME!M) and Polyg := Py N pPoly.o for o C EN.
For the definition of the closed subsets of P, we use the

usual symbols A, V, 4+ and ~. A stands for conjunction, V

for disjunction, + for addition modulo 2 and ~ for negation.

Let

wera (901,

S::POZQ (1) (1) y

L:= Unzl{f(”) € Py | Jag,...,an € By :

f(z) =ao+ X510 xi},

T, := Poly{0,1}*\{@} for p € N and a € Es,
Ta = 1g,1,0 € E2a

Tooo = Mo Toyes @ € Ea,

K := [A] (set of all conjunctions),

D := [V] (set of all disjunctions),

C' := [co, c1] (set of all constant functions),
Co = [ca], a € {0,1},

I := [ef] (set of all projections),
= [_]

Theorem 1 (E. L. Post, [10])

~l

The set of all closed subsets of P, is countably
infinite.
P, S, M, L, Tg, Topy NTg, Toy "M, T,,, " M N
Tz, KUC,KUC,, K, DuC, DuC,, D, SNTy, SN
M, SNLSNLNTy, LNT,, IUC, IUC, I, IU
C., I, C, C,,

where a € {0,1} and i € {1,2, ..., 00}

The nonempty closed subsets of P> are

A number of authors has found a new proof of Theorem 1

by now (see e.g. [7] or [14] and the references in [7]).

Let
T4(A):={BC P, | [B] = B, P,N B = A},

where A is a clone of Py. It is the aim of this paper to show

how to prove the following theorem.

Theorem 2 Let A C P be a Boolean clone. Then Ty(A)
is a finite set if and only if ToNTYNM C AorTonNS C A



2 On partial clones C' C ﬁk with
C'N P, = Poli{(0,s(0))} x s°

Let k£ = 2 -1, where [ € N. For a fixed-point-free permuta-

tion s consisting of cycles of the length 2 on F, set

s7:={(z,5(z)) | © € Ey},

0s :={(0,1,z,s(x)) | x € Ex},
S := Polys®

Smaz = pPOLys®,

T := Pol,{(0,1)},

Tmaz == pPOL{(0,1)},

and

(ST)maz := pPOLy0s.
Furthermore, for {ag, a1} C Ej, set
U(ao, al) =
Unsi {F™ € Py | Vo € {01} f(z, 2, ... 0) = ag}.

Obviously, for all (ag,a1) € {(a,00),(c0,aq),

(00,00) | € Ex} we have U(ap,a1) € (ST)maz,

(ST)maz N Py =SNT and
(ST)ma:c = (Smcwc meax) U U U((lo, (11).
(a0, a1)
€ (Ep)*\E}
(D

Lemma 3 The partial clone (ST )ma. is the maximal ele-
ment of the set T;,(SNT).

Proof. Set w.lo.g. s := (01)(23)...((21 — 2) (21 — 1)).
Let f(") ¢ ng \ (ST)mas be arbitrary. Then there are

A1y -y Ay, oy ooy by € By with

0 0 .. 0 b

1 I T I

f ai as ... ap | b
s(ar) s(az) ... s(an) b3

and (bg, b, b2, b3) € E\os. Itis easy to show that there are
binary functions g1, ...,g, € S NT with g;(¢,0) := 0 and
gi(t,y) :=a; foralli € {1,....,n}, ¢t € {0,2,4,...,21 — 2}

and y € Ej \ {0}. Then the binary function g defined by
g:= f(g1, .., gn) belongs to P, N [{f} U (SNT)]. Since

0 0 0 0 0
1 1 1 1 1
91 o 1 |~ f a1 as ... an ’
10 s(ar) s(az) ... s(an)
wehaveg ¢ SNT. ]

In order to describe functions of S,,,42 N Tinaz We define the

following relation on E7:
r =, Y if s'(x) = ¥ for some i € {0,1},

where s'(7) = s'((z1,....,zn)) = (s"(x1), ..., s (xn)),
sO(x) ==, s (2) := s(s'(2)).

Obviously, =, is an equivalence relation on £} and it par-
titions £}’ into equivalence classes U; := {0,1} and U;
(¢ = 2,...,ry, where 7, := k™/2). Choose v; := 0 and
v, € U; 1 = 2,...,rp) and V,, := {v1,va,...,v,. }. Since
forall f(W € S, b € Ef andi € By f(s'(b)) = s'(f(D)),

a function f(™ € SN T is fully determined by its values on
V.., where f(0) = 0.

For every f(™ € Spae N Thnae set

x(f) :=={(f(2), f(s(a))) | a € Ex}
and, for (ag,a1) € {(0,1), (z,0), (00, x), (c0,00) | €
E},} and for (ag,a1) € R C E2, set

FR(a07a1) = { gc Smaz N Tmaz | X(g) CR,
g(0) = ag, g(1) = a1}.

Obviously,
Smuw N TT)’L(L.’L' =
U(@(Lal) UR FR(aO7a1)
€ {(0,)} U (E2\E}) (a0,a1) € R C E?
(2)

holds.
Lemma 4 Let f € Py, with (£(0), f(1)) = (o, B).

1) If £ € (ST)maz\(Smax N Timaz) then U(a, B) C
{fru(sn1)]

2) Iff S (Smamem,am) then Fx(f)(avﬁ) - [{f}U(Sm
7).



Proof. 1): Let f € (ST)maz\(Smax N Tmaz). Then
(o, B) € E,f\E,? We can assume o = oo. Furthermore

there is a tuple (a1, ..., a,) € E\{0, 1} with

(a,b) :== (f(a1,...,an), f(5(a1), ..., 5(an))) € EF\s°.

Define V;;, := {v1,...,v,,, } as in the proof of Lemma 3.

One can find the functions
Fom o pm) pm) @) e g T

with the properties f;(v;) = a;, r(v;) = 0 forall ¢ €
{1,2,...,n} and all v; € V;;,\{v1} and

0 a c
((vi)-(7)
for certain ¢ € Ej with
(c;3) & s°. (3)

Thus

g™ = t(r, f(f1y s fn)) € {FFU(SNT)],

where
a for £ =0,
Q(g) = ﬁ for fE = ]-a
c otherwise.
Let

g € U*(a, ) =
Uns1{9"™ € Ula, 8) | V& € EF\{0,1} g(2) € By}

Since a function A"+ belongs to SNT with the properties

h(B,1,1,..,1) =B, if B+ o0

and
Vo e E"\{0,1} h(c,z1,....,xn) = g(T1, ..., Tp)
(see (3)), we have

g(z) = h(q(z), z),

ie. U*(a, ) C [{f}U(SNT)].

Let a € E;"\{0,1}. Next we show that a function ugn)
with

uq(2) € By, forall z € E;*\{0,1} “)

2Q R

belongs to [{f} U (SNT))].

We can assume that 5 € {1,00}. If § € E;\{1} then we
can choose f’ instead of f, where f'(z) := t/(z1, f(2))
andt € SN T with #/(1,8) = 1. Let p™ € § N T with
pi(a) = 0, pi(vj) = a; for a & {v;,s(v;)}, i =1,...,n.
Then ug = f(p1, ..., pn) fulfills (4).

Let now ¢(™ € U(a, 3) be arbitrary. Then we have

_ egm—i-l)

g (gl7ua - Uq )a
~1 ~d

where
{a,,..a,t={z e E"\{0,1} | g(z) = oo}
and ¢’ € U*(a, 3) m-ary with ¢’(z) = g(z) for all z with

g(g) c b..

2): Let g™ ¢ F.\(f)(a, B) be arbitrary. Then, for every

0 € Vi (9(0),9(s0)) = (f(bo). £(5(by))) for some
by == (bu,1,bu,2,--,bu.n) € Vi It is easy to check that
there are functions g§m) e SNT (=1,2,...,n) with the
property g;(v) = b,; foralli € {1,..,n} and v € V,,.
Then we have g = f(g1, ..., gn), i.€. 2) holds. n

From (1), (2), Lemma 3 and Lemma 4 it follows

Theorem 5 The set Z,(S N 'T) is finite.

3 A classification of all partial Boolean clones

Theorem 6 Let A be a closed set of Py with
ACBEe {L, DU C,K @] C, TO,ooaTl,oo}~
Then the set Ty(A) has the cardinality of continuum.

Proof. The theorem has been proven in [12] for B €
{IPY),DUC, K UC, Ty oo, Th.oo}in [1] for A = L, and



is a conclusion of [1] for A € {LNTy,LNTy,LNS, LN
ToN S} L]

Theorem 7 Let A be a closed set of Py with
ToﬂTlﬂMgA or TQQSQA

Then Zy(A) is a finite set and it holds:

A | Z5(A))
P 3
T, (a € {0, 1}) 6
M 6
S 6
ToNTy 30
T,AM (ae{0,1})| 15
ToNnTiNM 101
ToNS 413

Proof. The finiteness of the set Z,(SNTy) results from The-
orem 5. The statement |Z(S N Tp)| = 413 was calculated
with the help of a computer (programme description in [9]).
One finds the proofs of the remaining statements in [2], [1],
[11], [13], [3], [4], and [6]. ]

We need the next theorem for the proof of Theorem 9.

Theorem 8 Let A be a clone of Py, and I a nonempty set.
Furthermore, for every i € I, let QQ; be a subset of ]5k with

the following three properties:

1) QiNP, =0,

2) [Qi] = Qs

3) QixAC Qyand AxQ; C Q.
Then, for every partial clone B with B C A, it holds:
(a) [Q; UB]=Q;UDBjforallic I

(b) |Tu(B)| =

Lif Qi # Qj foralli,j € I withi # j.

Proof. (a): Leti € I and B = [B] C A be arbitrary. Since
B and Q; are closed subsets of ﬁk, the set (); U B is closed
with respect to the operations ¢, 7, A and V. Thus, we have
to show that (); U B is closed with respect to the operation
x. Let (™ ¢(™) ¢ Q; U B be arbitrary. Then the following

two cases are possible:

Case 1: {f,g} C B.

Since B is a clone, f x g € B holds in this case.

Case 2: {f,g} N Q; # 0.

Obviously, by assumptions 2) and 3), we have f x g € Q;.
Therefore, (a) holds.

The statement (b) is a conclusion of 1) and (a). m

Theorem 9 Let A be a clone of Py with

Ae{To . To, N1, To,, "M, Ty, NTA N M, Ty,
Ty, NTo, Th,NM,T, NToNM,SNM}

for p € N\ {1}. Then Z5(A) is an infinite set.

Proof. Without loss of generality let A C Tj 5. Further, we
set Up := {f € P, | f(0) = oo} and

(n) = Tn = 07

oo for Tr1=...
4 (T1, .. Tp) =

0  otherwise,

forn € N.
To prove Theorem 9 we make use of Theorem 8 and choose
the sets A, I and @; as follows:

A:="Tppo,

I:=N,

Qi = [{q"}UTh o) N U fori € N.
Obviously, A and Q; are closed sets for every ¢ € N. Since
Ug N P, = 0, we have Q; N P, = () for all + € N. Next we
show that the above sets A and (); also satisfy the condition
3) from Theorem 8:

Let f € Q; * Tp 2 be arbitrary. Then there are functions
fisfo € Pwith fi € [{af’} UTo2] N U, fo € Ths
and f = f1 * fo. Then {f1, fa} C [{qg)} U To,2] and
f1 % fa € Uy, since Uy x Ty C Uy. Thus f belongs to
Qi = [{qéi)} U To2] Ny, ie., Qi xTh2 € Q;. Analo-
gously one can prove that T o x @); C @); holds.
Therefore, the above sets A and Q; fulfill the conditions 1)-
3) given in Theorem 8.

Let o1 := {(0,0),(0,1),(c0,0),(c0,1),(00,00)} and
Om =

{(0,a1,...;a,,) € By {i € {1,..,n} | a; = 1}| < 1}

U{(00,1, s bm) | (b, s byn) € 10,1, 00}™ \ E3*}



for m > 2. It is proved in [8] that the following statements

are valid:

[{Q(()i)} UTp 2] NUy C pPolagit1, and
{a} U To2) N U € pPolso; for i < 5.

Thus, the closed sets @; (i € N) are pairwise different.
Therefore, by Theorem 8, (a) and (b), we have that Z(B)
with B = [B] C T} 2 is an infinite set. "
Remarks

1) One finds some generalizations of the results given above
in [3], [5] and [9].

2y Let A € {Tv,,To, NTh,To, N M, T, NIy N
M, Ty, Ty, NTo, Th,, "M, Ty, N Ty N M, SN M} with
p € N\ {1}. The set Zy(A) is infinite by Theorem 6. The
authors, however, do not know whether Z5(A) is countable
or has the cardinality of continuum. The following state-
ment is proved in [8]: Assume, there is a partial clone in
T>(A) which has an infinite basis. Then T5(A) has the car-

dinality of continuum.
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