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1 INTRODUCTION

In many-valued logic finite basic sets are considered. We only have to con-
sider the set Ek := {0, 1, . . . , k−1} with k ≥ 3 being fixed in the rest of this
paper.

The set Pk := {f (n) | f (n) : Enk → Ek, n ≥ 1} is the set of all total
functions on Ek. Let D ⊆ Enk , n ≥ 1 and f (n) : D → Ek. Then f is called
an n-ary partial function on Ek with domain D. We also write dom(f) = D.
Let P̃ (n)

k be the set of all n-ary partial functions on Ek and

P̃k :=
⋃
n≥1

P̃
(n)
k .

Let C∅ :=
{
f ∈ P̃k

∣∣∣ dom(f) = ∅
}
.
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The n-ary function e(n)
i defined by e(n)

i (x1, . . . , xn) := xi is called the
projection onto the i-th coordinate with i ∈ {1, . . . , n}. Let the set of all
projections be Jk :=

{
e
(n)
i

∣∣∣ n ∈ N, 1 ≤ i ≤ n
}

.

Let f [g1, . . . , gn] ∈ P̃ (m)
k be the composition as given in [2] with f ∈ P̃ (n)

k

and g1, . . . , gn ∈ P̃ (m)
k , i.e., for any x ∈ Enk

x ∈ dom(f [g1, . . . , gn]) ⇐⇒(
x ∈

n⋂
i=1

dom(gi)

)
∧ (g1(x), . . . , gn(x)) ∈ dom(f)

and

f [g1, . . . , gn](x1, . . . , xm) := f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm))

for all (x1, . . . , xm) ∈ dom(f [g1, . . . , gn]).
A partial clone (clone) on Ek is a composition closed subset of P̃k (Pk)

containing Jk.
The set of all partial clones on Ek (clones on Ek), ordered by inclusion,

forms an algebraic lattice LP̃k (LPk), whose smallest element is the set of all
projections and greatest element is P̃k (Pk), respectively. A maximal partial
clone (a maximal clone) on Ek is a co-atom of P̃k and Pk, respectively. Thus
a partial clone (clone) M is a maximal partial clone (maximal clone) if the
inclusions M ⊂ C ⊂ P̃K (M ⊂ C ⊂ Pk) hold for no partial clone (hold for
no clone) C on Ek.

For F ⊆ P̃k (F ⊆ Pk), we denote by [F ]P ([F ]) the partial clone (clone)
on Ek generated by F , i.e., the intersection of all partial clones (clones) con-
taining the set F on Ek. Clearly [F ]P ([F ]) is the least partial clone (clone)
on Ek containing F .

A set F of partial functions (functions) on Ek is complete if [F ]P = P̃k
and [F ] = Pk, respectively. It is well known that a set F ⊆ P̃k (F ⊆ Pk) is
complete if and only if F is contained in no maximal partial clone (maximal
clone) on Ek (see, e.g., [6] for the partial case and [9], Theorem 1.5.4.1,
for the total case). Therefore maximal clones play a fundamental role for
completeness. They are fully described in [12, 13] (see also [14]).

Similarly, maximal partial clones play a very important role for the com-
pleteness problem of finite partial algebras. Several descriptions of all max-
imal partial clones on a finite set can be found in the literature, we refer the
reader to [3, 5] for the classification of all maximal partial clones.

In 1913, Sheffer described functions f ∈ P2 for which every function on
E2 can be expressed in terms of f only. Call a function f ∈ Pk a Sheffer
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function if every function on Ek can be obtained by composition from f and
the projections. Thus f is a Sheffer function if [f ] = Pk.

For example Webb [16] has shown that the function f(x, y) := min(x, y)+
1 (mod k) is a Sheffer function for Pk. Sheffer functions have been well
studied. We refer the reader to [14] for a list of references on the subject.

Partial Sheffer functions are defined similarly. A partial function f on Ek
is a partial Sheffer function if every partial function on Ek can be obtained by
composition from f and the projections, i.e., if [f ]P = P̃k. On the other hand,
very little is known about partial Sheffer functions for P̃k, essentially due to
the difficulty of the problem. Indeed the family of all maximal partial clones
on Ek is far more complex than the family of all maximal clones on Ek. For
example, there are 58 maximal partial clones and 18 maximal clones on a 3-
element set, and there are 1102 maximal partial clones ([7, 15]; complete list
in the appendix) and 82 maximal clones ([9] Theorem 5.4.2) on a 4-element
set. Results on partial Sheffer functions can be found in the papers [4, 11]
and [2].

The completeness problem for partial Sheffer functions is the question if
for a given partial function f ∈ P̃k the identity [f ]P = P̃k holds. That means,
criteria are investigated to decide if a partial function is a partial Sheffer func-
tion.

2 DEFINITIONS AND THEOREM OF HADDAD AND ROSENBERG

Relations are useful to describe the clones of P̃k. We often write the elements
of relations as columns and a relation can then be given as a matrix. For
example the relation % = {(0, 1, 2), (1, 2, 0), (3, 4, 5), (2, 3, 1)} can also be
written as

% =

 0 1 3 2
1 2 4 3
2 0 5 1

 .

Let a matrix be given by C = (cij)h×n. Then ci∗ is the i-th row of the
matrix with i ∈ {1, . . . , h}, i.e., ci∗ = (ci1, ci2, . . . , cin), and c∗j is the j-th
column of the matrix with j ∈ {1, . . . , n}, i.e., c∗j = (c1j , c2j , . . . , chj)T.

LetR(h)
k be the set of all h-ary relations on Ek andRk :=

⋃
h≥1R

(h)
k .

An n-ary function f (n) ∈ P̃k preserves an h-ary relation %(h) ∈ Rk iff for
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all c∗1, c∗2, . . . , c∗n ∈ % with c1∗, . . . , ch∗ ∈ dom(f) holds

f(c∗1, . . . , c∗n) :=


f(c1∗)
f(c2∗)

...
f(ch∗)

 :=


f(c11, c12, . . . , c1n)
f(c21, c22, . . . , c2n)

...
f(ch1, ch2, . . . , chn)

 ∈ %.

Let pPOLk % be the set of all functions f ∈ P̃k which preserve the relation
% ∈ Rk.

Let f ∈ P̃ (1)
k be a unary function. Define f0 := e

(1)
1 and fn := f [fn−1]

for all n ≥ 1.
For each m ∈ N let ηm := (0, 1, . . . ,m− 1)T.
Define ω(v) to be the set of entries of any v = (v1, . . . , vh) ∈ Ehk ,

i.e., ω(v) = ω((v1, . . . , vh)) := {v1, . . . , vh}. Additionally let ω(%) =⋃
v∈% ω(v).

Definition 2.1. Let for all h with 1 ≤ h ≤ k

%1 := {(a, a, b, b), (a, b, a, b) | a, b ∈ Ek} ,
%2 := {(a, a, b, b), (a, b, a, b), (a, b, b, a) | a, b ∈ Ek} ,
ιhk :=

{
(x1, . . . , xh) ∈ Ehk

∣∣ |{x1, . . . , xh}| ≤ h− 1
}
.

Definition 2.2. Let ε be an arbitrary equivalence relation on Eh. Define
δ
(h)
k,ε :=

{
(a0, . . . , ah−1) ∈ Ehk

∣∣ (i, j) ∈ ε =⇒ ai = aj
}
. If h or k can be

deduced from the context we just write δε or δ(h)ε or δk,ε. If the relation
ε is given by the non-singular equivalence classes ε1, . . . , εr then we write
δ
(h)
k;ε1,...,εr

or δε1,...,εr
instead of δ(h)k,ε . For example if ε has only the equiva-

lence class Eh then δ(h)k;Eh
=
{

(x, x, . . . , x) ∈ Ehk
∣∣ x ∈ Ek}.

Definition 2.3. Let %(h) ⊆ Ehk . Then we write σ(%) := % \ ιhk and δ(%) :=
% ∩ ιhk = % \ σ(%). If δ = δε for some equivalence relation ε then we write
ε(%) := ε.

Definition 2.4. Let %(h) ⊆ Ehk . Then % is

• areflexive, if h ≥ 2 and δ(%) = ∅, i.e., for each (x1, . . . , xh) ∈ % we
have xi 6= xj for all 1 ≤ i < j ≤ h.

• quasi-diagonal, if σ(%) is a non-empty relation, δ(%) = δε with ε 6= ι2h
an equivalence relation.
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Definition 2.5. Let %(h) ⊆ Ehk , σ := σ(%) and δ := δ(%).
If r = (r0, r1, . . . , rn−1) ∈ Enk is a tuple and π ∈ Sn then we write r[π] :=

(rπ(0), rπ(1), . . . , rπ(n−1)). Let Γσ :=
{
π ∈ Sh

∣∣ σ ∩ σ[π] 6= ∅
}

, where Sh is
the symmetric group on Eh and σ[π] :=

{
s[π]

∣∣ s ∈ σ}.
The model of % is the h-ary relation

M(%) :=
{
η
[π]
h

∣∣∣ π ∈ Γσ
}
∪ (δ ∩ Ehh)

on Eh.
The relation % is coherent, if the following conditions hold:

1. % 6= Ehk , % 6= ∅,

2. (a) % is a unary relation, i.e., h = 1, or

(b) % is areflexive with 2 ≤ h ≤ k, or

(c) % is quasi-diagonal with 2 ≤ h ≤ k, or

(d) δ = ιhk with 3 ≤ h ≤ k, or

(e) δ = %i with i ∈ {1, 2} (see Definition 2.1) and h = 4,

3. r[π] ∈ σ for all r ∈ σ and all π ∈ Γσ ,

4. for every σ′ with ∅ 6= σ′ ⊆ σ there is a relational homomorphism
ϕ : Ek → Eh mapping σ′ into M(%), such that ϕ(r) = ηh for some
r ∈ σ′, i.e., (ϕ(r0), . . . , ϕ(rh−1)) = (0, . . . , h − 1) for some r =
(r0, . . . , rh−1) ∈ σ′,

5. (a) if δ = ιhk and h ≥ 3 then Γσ = Sh,

(b) if δ = %1 then Γσ = 〈(0231), (12)〉 (Γσ is the permutation group
generated by the cycles (0231) and (12)),

(c) if δ = %2 then Γσ = S4.

Let R̃max
k be the set of all coherent relations such that for each coherent

relation %(h) exactly one relation of the set {%[π] | π ∈ Sh} occurs in R̃max
k .

Let
pMk := {Pk ∪ C∅} ∪

{
pPOLk %

∣∣∣ % ∈ R̃max
k

}
.

Theorem 2.6 (Haddad and Rosenberg; [3, 5]). Let k ≥ 2. For each A ⊂ P̃k
with A = [A]P there is a maximal partial clone MA with A ⊆ MA. A clone
M is a maximal partial clone of P̃k if and only if M ∈ pMk, i.e., pMk is the
set of all maximal partial clones of P̃k.
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Theorem 2.7 (Completeness criterion for P̃k; [5]). Let C ⊆ P̃k. Then
[C]P = P̃k if and only if C 6⊆M for all M ∈ pMk.

Definition 2.8. The set of coherent relations R̃max
k can be divided into the

following sets:

U := {χ(µ) ∈ R̃max
k | µ = 1},

A := {χ(µ) ∈ R̃max
k | µ ≥ 2 ∧ χ is areflexive},

Q := {χ(µ) ∈ R̃max
k | µ ≥ 2 ∧ χ is quasi-diagonal},

S := {χ(µ) ∈ R̃max
k | µ ≥ 3 ∧ δ(χ) = ιµk},

L := {χ(µ) ∈ R̃max
k | µ = 4 ∧ δ(χ) ∈ {%1, %2}}.

3 DIFFERENT RELATIONS – DIFFERENT CLONES

Lemma 3.1. Let % and χ be two h-ary relations and π ∈ Sh a permutation
with %[π] = χ. Then pPOLk % = pPOLk χ.

Proof. It suffices to show

pPOLk % ⊇ pPOLk χ.

The other direction is symmetric if % and χ are exchanged and π−1 instead of
π is used.

Let f ∈ pPOLk χ and r∗1, r∗2, . . . , r∗n ∈ %. Then

∀i ∈ {1, . . . , n} : (r∗i)[π] ∈ χ

holds and thus

f
(

(r∗1)[π], (r∗2)[π], . . . , (r∗n)[π]
)
∈ χ = %[π].

Then

f(r∗1, r∗2, . . . , r∗n) =
(
f
(

(r∗1)[π], (r∗2)[π], . . . , (r∗n)[π]
))[π−1]

∈ χ[π−1] =
(
%[π]
)[π−1]

= %

follows and we have f ∈ pPOLk %.

Thus we call two coherent relations %(h) and χ(h) equivalent, if π ∈ Sh
with

%[π] = χ
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exists. If two clones resp. the corresponding relations are compared, it suf-
fices to choose one representative of each equivalence class. Let %(h) and
χ(h) be two h-ary relations. If % ∩ χ is considered, then let χ be one of the
relations χ[π] with π ∈ Sh, such that |% ∩ χ[π]| is maximal. Thus χ is chosen
such that

χ ∈
{
χ′ ∈ S

∣∣∣∣ |% ∩ χ′| = max
χ′′∈S

|% ∩ χ′′|
}

holds with
S =

{
χ[π]

∣∣∣ π ∈ Sh} .
Let W := {%1, %2} ∪

{
ιhk
∣∣ 3 ≤ h ≤ k

}
.

Lemma 3.2. Let %(h) and χ(µ) be coherent relations on Ek with % 6= χ and
%, χ /∈W . Then pPOLk % 6= pPOLk χ holds.

Proof. We consider three cases:

• µ < h: Let s = (s1, . . . , sµ) ∈ χ \ ιµk and v = (v1, . . . , vµ) ∈ Eµk \ χ
be arbitrary. Then define a function f (1) : Ek → Ek by f(si) := vi for
all i ∈ {0, . . . , µ−1} and dom(f) := {s0, . . . , sµ−1}. Then f is well-
defined, because si 6= sj holds for i 6= j. Additionally f /∈ pPOLk χ
follows from f(s) = v /∈ χ and s ∈ χ.

Assume f /∈ pPOLk %. Then there is an r ∈ % with f(r) /∈ %. But f
is defined only at µ different values, thus r can only have µ different
entries. That means, we have r ∈ δε with ε equivalence relation on
Eh and ε 6= ι2h. Then follows δε ⊂ % by definition of a coherent
relation. Then ri = rj =⇒ f(ri) = f(rj) implies f(r) ∈ δε ⊆ %, in
contradiction to the assumption, i.e., f ∈ pPOLk %.

• µ > h. Because the case µ > h is symmetrical to the case above we
have pPOLk % 6= pPOLk χ for µ 6= h.

• µ = h. Let the rows of χ be permuted such that |% ∩ χ| becomes
maximal, as motivated by Lemma 3.1. Then the following cases need
to be checked.

– %∩χ = ∅. Let s ∈ χ\ιhk and v ∈ Ehk \χ be arbitrary. Then define a
function f (1) : Ek → Ek by f(si) := vi for all i ∈ {0, . . . , µ−1}
and dom(f) := {s0, . . . , sµ−1}. Then f is well-defined because
si 6= sj holds for i 6= j. Additionally we have f /∈ pPOLk χ
because f(s) = v /∈ χ and s ∈ χ.
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Assume f /∈ pPOLk %. Then there is r ∈ % with f(r) /∈ %. The
tuple r has less than h different entries. Otherwise r would be a
permutation of s and thus there would be a permutation of rows
of χ such that % ∩ χ 6= ∅. But then a contradiction follows as in
the case µ < h above, i.e., pPOLk % 6= pPOLk χ holds.

– % ∩ χ 6= ∅, % 6⊂ χ. Let s ∈ χ \ ιhk and v ∈ % \ χ be arbitrary.
Define a function f (1) : Ek → Ek by f(si) := vi for all i ∈
{0, . . . , µ − 1} and dom(f) := {s0, . . . , sµ−1}. Then f is well-
defined, because si 6= sj holds for i 6= j. Additionally we have
f /∈ pPOLk χ because f(s) = v /∈ χ and s ∈ χ.

Assume f /∈ pPOLk %. Then there is r ∈ % with f(r) /∈ %. If r
has less than h different entries then a contradiction follows as in
the case µ < h above. Thus r has exactly h different entries, i.e.,
r = s[α] holds for some α ∈ Γ%. Because % is coherent we also
have

f (r) = f
(
s[α]
)

= v[α] ∈ %.

This is a contradiction. Thus f ∈ pPOLk % holds and this implies
pPOLk % 6= pPOLk χ.

– The case % ⊂ χ is the same as above if the roles of χ and % are
exchanged.

Lemma 3.3. Let %(h) ∈ W and χ(µ) 6∈ W be coherent relations. Then
pPOLk % 6= pPOLk χ holds.

Proof. Let s ∈ χ \ ιµk and v ∈ Eµk \ χ be arbitrary. Define a function
f (1) : Ek → Ek by f(si) := vi for all i ∈ {0, . . . , µ − 1} and dom(f) :=
{s0, . . . , sµ−1}. Then f is well-defined because si 6= sj holds for i 6= j.
Additionally we have f /∈ pPOLk χ because f(s) = v /∈ χ and s ∈ χ.

Assume f /∈ pPOLk %. Then there is some r ∈ % with f(r) /∈ %. From
% =

⋃
ε∈E

δε with E a set of equivalence relations on Eh follows r ∈ δε for

some ε 6= ι2h. This implies δε ⊂ %. From ri = rj =⇒ f(ri) = f(rj) follows
f(r) ∈ δε ⊆ %, in contradiction to the assumption. Thus f ∈ pPOLk %.

Lemma 3.4. Let 3 ≤ µ < h ≤ k. Then pPOLk ι
µ
k 6= pPOLk ιhk holds.
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Proof. Define the function f (h) by

x∗1 x∗2 x∗3 . . . x∗h f(x)
0 0 0 . . . 0 0
0 1 1 . . . 1 1
1 1 2 . . . 2 2
2 2 2 . . . 3 3
...

...
...

. . .
...

...
h− 3 h− 3 h− 3 . . . h− 2 h− 2
h− 2 h− 2 h− 2 . . . h− 2 h− 1

otherwise undefined

We have f /∈ pPOLk ιhk , because the columns x∗1 to x∗h are in ιhk , but f(x)
is not.

Assume f 6∈ pPOLk ι
µ
k . Then there are columns c∗1, . . . , c∗h ∈ ιµk with

f(c∗1, . . . , c∗h) =: d 6∈ ιµk . If the rows c1∗, . . . , cµ∗ all different then there
is a column c∗j with |ω(c∗j)| = µ, i.e., c∗j has µ different elements, in
contradiction to c∗j ∈ ιµk . Thus two rows are equal, i.e., two entries of d are
equal in contradiction to d 6∈ ιµk . Thus f ∈ pPOLk ι

µ
k .

Lemma 3.5. Let % = %i for some i ∈ {1, 2} and χ = ιµk for some µ ∈
{3, 4, . . . , k}. Then pPOLk % 6= pPOLk χ.

Proof. Define the function f (2) by

f


0 0
0 1
1 0
1 1

 :=


0
0
0
1


and not defined otherwise. Then f 6∈ pPOLk % because

(0, 0, 1, 1), (0, 1, 0, 1) ∈ %

but (0, 0, 0, 1) 6∈ %. Because |{0, 1}| = 2 we get f ∈ pPOLk χ.

Lemma 3.6. pPOLk %1 6= pPOLk %2.

Proof. Define the function f (3) by

f


0 0 0
0 1 1
1 0 1
1 1 0

 :=


0
0
0
1
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and not defined otherwise. Then f 6∈ pPOLk %2 because

(0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0) ∈ %2

but (0, 0, 0, 1) 6∈ %2. Because {(0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0)} 6⊆ %
[π]
1 for

all π ∈ S4 we have f ∈ pPOLk %1.

Theorem 3.7. The relations in R̃max
k describe distinct maximal partial clones.

Proof. Combining the Lemmas 3.2, 3.3, 3.4, 3.5 and 3.6 implies the theorem.

4 SHORTCUTS FOR FINDING COHERENT RELATIONS

We want to find all coherent relations R̃max
k , and determine |pMk|. The

trivial approach is to enumerate all subsets of Ehk for h ∈ {1, . . . , k}, check
if they are coherent and remove duplicates with respect to equivalence of the
relations, see page 6. But this approach needs too much memory and time
because all coherent relations have to be in memory at the same time, all have
to be checked for coherence, and relations generating the same clone have to
be identified. Thus we need to use a better method.

Definition 4.1. Let v := (v1, . . . , vh) ∈ Ehk , w := (w1, . . . , wh) ∈ Ehk . We
write v ≺ w if

∃i ∈ {1, 2, . . . , h} : (∀j < i : vj = wj) ∧ vi < wi.

Let v � w if v ≺ w or v = w. Then � defines a lexicographical order on
Ehk .

Let V = {V1, . . . , Vm} ⊆ Ehk and W = {W1, . . . ,Wn} ⊆ Ehk with
Vi ≺ Vj and Wi ≺Wj for all i < j. We write V ≺W if

∃i ∈ {1, 2, . . . ,min(m,n)} : (∀j < i : Vj = Wj) ∧ Vi < Wi,

or

m < n ∧ (∀i ∈ {1, 2 . . . ,m} : Vi = Wi).

Let V � W if V ≺ W or V = W . Thus � defines a lexicographical order
on the subsets of Ehk .

Let min≺ V := x ∈ V with x � y for all y ∈ V .
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Definition 4.2. Let %(h) ∈ R̃max
k .

Define the quasi-relation-class qclass(%) by

qclass(%) := {{f(v) | v ∈ %} | f ∈ Sk}

and we call % a quasi-minimal relation if % = min≺ qclass(%).
Define the relation-class class(%) by

class(%) := {{(f(v))[π] | v ∈ %} | f ∈ Sk, π ∈ Γ(%)}

where
Γ(%) := {π ∈ Sh | π(ε(%)) = ε(%)},

i.e., all permutations which leave δ(%) fixed. We call % a minimal relation if
% = min≺ class(%).

Every minimal relation is a quasi-minimal relation because qclass(%) ⊆
class(%).

The general idea to find all coherent relations %(h) in reasonable time is to

• traverse over all model M(%) with ε(%) given in such a way, that all
equivalence classes are continuous intervals on Eh and sorted in de-
creasing order of size. The areflexive relations are represented by
ε(%) = ∅. The relations in S are treated in a special way and no equiv-
alence relation is given.

• For a given model M(%) check all relations χ with M(χ) = M(%),
i.e., traverse over all χ ⊂ Ehk with M(χ) = M(%). Let

A% :=
{

min
≺

{
v[π]

∣∣∣ π ∈ Γσ(%)

} ∣∣∣∣ v ∈ σ(Ehk )
}
,

the set of all areflexive h-ary tuples on Ek modulo the group associ-
ated with the model M(%). Then any subset of A% uniquely identifies a
relation with the given model M(%). The subsets are determined recur-
sively starting at the empty set and adding tuples v1, v2, . . . from A%
such that vi ≺ vj for all i < j. Thus every subset ofA% is given exactly
once and we can make cut offs with the following two statements.

• We only print a relation % if it is a minimal relation in the sense given
above, and the size

|{pPOLk χ | χ ∈ class(%)}| = |{min
≺

qclass(%[π]) | π ∈ Γ(%)}|.

Because there is exactly one minimal relation in each class(%) we can
deduce the number of all coherent relations.
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Lemma 4.3. Let % ∈ R̃max
k . Let χ ⊂ % with

(1) ∅ ⊂ σ(χ) ⊂ σ(%),

(2) M(χ) = M(%), and

(3) ∀π ∈ Γσ(χ) ∀v ∈ σ(χ) : v[π] ∈ σ(χ).

Then χ ∈ R̃max
k .

Proof. Because of (1) the relation χ is non-trivial. Because of (3) we only
have to show, that for every ∅ ⊂ σ′ ⊆ σ(χ) there is a relational homomor-
phism ϕ : Ek → Eh from σ′ to M(χ), such that ϕ(r) = ηh for some r ∈ σ′,
i.e., (ϕ(r0), . . . , ϕ(rh−1)) = (0, . . . , h− 1) for some r := (r0, . . . , rh−1) ∈
σ′. But this follows from σ′ ⊆ σ(χ) ⊂ σ(%), (2) and % coherent. Thus χ is
coherent.

Lemma 4.3 for a fixed M(%) implies that all χ′ 6∈ R̃max
k with χ 6∈ R̃max

k ,
χ′ ⊃ χ and M(χ′) = M(χ), i.e., we can cut off the subset tree early.

Lemma 4.4. Let %, χ ∈ R̃max
k . Let χ ⊂ % and χ ≺ % with

(1) ∅ ⊂ σ(χ) ⊂ σ(%),

(2) M(χ) = M(%), and

(3) % is a quasi-minimal relation.

Then χ is a quasi-minimal relation.

Proof. Let % =: {v1, . . . , v|%|} with vi ≺ vj for all i < j. Then χ =
{v1, . . . , v|χ|} because χ ≺ % and χ ⊂ %.

Assume χ is not a quasi-minimal relation. Then there is some χ′ ∈
qclass(χ) with χ′ ≺ χ, i.e., there is some f ∈ Sk with f(χ) ≺ χ. Thus
there are a ∈ {1, . . . , |χ| − 1} and w ∈ f(χ) with va−1 ≺ w ≺ va and
{v1, . . . , va−1} ⊆ f(χ). Then {v1, . . . va−1, w} ⊆ f(%) implying f(%) ≺ %,
i.e., % is not a quasi-minimal relation, in contradiction to the assumption.

Lemma 4.4 for a fixed M(%) implies that all χ′ are not quasi-minimal and
thus not minimal if χ is not quasi-minimal, χ′ ⊃ χ and M(χ′) = M(χ).
Thus we can cut off the subset tree early, if we encounter a coherent relation
which is not quasi-minimal.
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We can not cut off the subtree if we encounter a relation which is not a
minimal relation. For example

% :=

 0 1
1 0
2 2


is quasi-minimal, but not minimal because 0 0

1 2
2 1

 = min
≺

class(%).

On the other hand  0 0 1 1
1 1 0 0
2 3 2 3


is minimal and is found in a subtree starting with %.

5 CONCLUSION

The lists of all coherent relations for k ∈ {2, 3, 4, 5, 6} as given by the pro-
gram and the source code of the program can be found at
http://www.math.uni-rostock.de/˜schoelzel/papers/numbers/

The program is written in Haskell, is single-threaded and needed about 52
hours on a SunFire V490 to compute all coherent relations for k = 6. The
number of coherent relations is given in the following tables. The numbers
agree with the ones given without computer in [1] for k = 2, [8] and [10]
(independent from each other) for k = 3, and [7] with corrections in [15] for
k = 4. As the number of maximal partial clones grows fast it does not seem
feasible nor useful to find all coherent relations for any k > 6.

k |pMk| |S| |L| Pk ∪ C∅
3 4 5 6

2 8 1 1 1
3 58 1 1 1 1
4 1102 15 1 4 2 1
5 325722 1023 31 1 46 16 1
6 5242621816 1048575 32767 63 1 4141 786 1
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k |Q ∪ A|
1 2 3 4 5 6

2 2 3
3 6 30 18
4 14 416 505 144
5 30 16457 295080 11945 1092
6 62 1934514 5008589703 230676900 319722 14581
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