Counting the maximal partial clones on a finite set

KARSTEN SCHÖLZEL ${ }^{1 \star}$
Institute for Mathematics
University of Rostock
18051 Rostock
Germany

We show that different coherent relations specify different maximal partial clones. Then we describe a computer program to find all coherent relations and thus all maximal partial clones on 4 -element, 5 -element, and 6 -element sets.

Key words: completeness theorem; partial functions; maximal partial clones

1 INTRODUCTION

In many-valued logic finite basic sets are considered. We only have to consider the set $E_{k}:=\{0,1, \ldots, k-1\}$ with $k \geq 3$ being fixed in the rest of this paper.

The set $P_{k}:=\left\{f^{(n)} \mid f^{(n)}: E_{k}^{n} \rightarrow E_{k}, n \geq 1\right\}$ is the set of all total functions on E_{k}. Let $D \subseteq E_{k}^{n}, n \geq 1$ and $f^{(n)}: D \rightarrow E_{k}$. Then f is called an n-ary partial function on E_{k} with domain D. We also write $\operatorname{dom}(f)=D$. Let $\widetilde{P}_{k}^{(n)}$ be the set of all n-ary partial functions on E_{k} and

$$
\widetilde{P}_{k}:=\bigcup_{n \geq 1} \widetilde{P}_{k}^{(n)}
$$

$$
\text { Let } C_{\emptyset}:=\left\{f \in \widetilde{P}_{k} \mid \operatorname{dom}(f)=\emptyset\right\} .
$$

[^0]The n-ary function $e_{i}^{(n)}$ defined by $e_{i}^{(n)}\left(x_{1}, \ldots, x_{n}\right):=x_{i}$ is called the projection onto the i-th coordinate with $i \in\{1, \ldots, n\}$. Let the set of all projections be $J_{k}:=\left\{e_{i}^{(n)} \mid n \in \mathbb{N}, 1 \leq i \leq n\right\}$.

Let $f\left[g_{1}, \ldots, g_{n}\right] \in \widetilde{P}_{k}^{(m)}$ be the composition as given in [2] with $f \in \widetilde{P}_{k}^{(n)}$ and $g_{1}, \ldots, g_{n} \in \widetilde{P}_{k}^{(m)}$, i.e., for any $x \in E_{k}^{n}$

$$
\begin{array}{r}
x \in \operatorname{dom}\left(f\left[g_{1}, \ldots, g_{n}\right]\right) \Longleftrightarrow \\
\left(x \in \bigcap_{i=1}^{n} \operatorname{dom}\left(g_{i}\right)\right) \wedge\left(g_{1}(x), \ldots, g_{n}(x)\right) \in \operatorname{dom}(f)
\end{array}
$$

and

$$
f\left[g_{1}, \ldots, g_{n}\right]\left(x_{1}, \ldots, x_{m}\right):=f\left(g_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, g_{n}\left(x_{1}, \ldots, x_{m}\right)\right)
$$

for all $\left(x_{1}, \ldots, x_{m}\right) \in \operatorname{dom}\left(f\left[g_{1}, \ldots, g_{n}\right]\right)$.
A partial clone (clone) on E_{k} is a composition closed subset of $\widetilde{P}_{k}\left(P_{k}\right)$ containing J_{k}.

The set of all partial clones on E_{k} (clones on E_{k}), ordered by inclusion, forms an algebraic lattice $\mathbb{L} \widetilde{P}_{k}\left(\mathbb{L} P_{k}\right)$, whose smallest element is the set of all projections and greatest element is $\widetilde{P}_{k}\left(P_{k}\right)$, respectively. A maximal partial clone (a maximal clone) on E_{k} is a co-atom of \widetilde{P}_{k} and P_{k}, respectively. Thus a partial clone (clone) M is a maximal partial clone (maximal clone) if the inclusions $M \subset C \subset \widetilde{P}_{K}\left(M \subset C \subset P_{k}\right)$ hold for no partial clone (hold for no clone) C on E_{k}.

For $F \subseteq \widetilde{P}_{k}\left(F \subseteq P_{k}\right)$, we denote by $[F]_{\mathrm{P}}([F])$ the partial clone (clone) on E_{k} generated by F, i.e., the intersection of all partial clones (clones) containing the set F on E_{k}. Clearly $[F]_{\mathrm{P}}([F])$ is the least partial clone (clone) on E_{k} containing F.

A set F of partial functions (functions) on E_{k} is complete if $[F]_{\mathrm{P}}=\widetilde{P}_{k}$ and $[F]=P_{k}$, respectively. It is well known that a set $F \subseteq \widetilde{P}_{k}\left(F \subseteq P_{k}\right)$ is complete if and only if F is contained in no maximal partial clone (maximal clone) on E_{k} (see, e.g., [6] for the partial case and [9], Theorem 1.5.4.1, for the total case). Therefore maximal clones play a fundamental role for completeness. They are fully described in [12, 13] (see also [14]).

Similarly, maximal partial clones play a very important role for the completeness problem of finite partial algebras. Several descriptions of all maximal partial clones on a finite set can be found in the literature, we refer the reader to $[3,5]$ for the classification of all maximal partial clones.

In 1913, Sheffer described functions $f \in P_{2}$ for which every function on E_{2} can be expressed in terms of f only. Call a function $f \in P_{k}$ a Sheffer
function if every function on E_{k} can be obtained by composition from f and the projections. Thus f is a Sheffer function if $[f]=P_{k}$.

For example Webb [16] has shown that the function $f(x, y):=\min (x, y)+$ $1(\bmod k)$ is a Sheffer function for P_{k}. Sheffer functions have been well studied. We refer the reader to [14] for a list of references on the subject.

Partial Sheffer functions are defined similarly. A partial function f on E_{k} is a partial Sheffer function if every partial function on E_{k} can be obtained by composition from f and the projections, i.e., if $[f]_{\mathrm{P}}=\widetilde{P}_{k}$. On the other hand, very little is known about partial Sheffer functions for \widetilde{P}_{k}, essentially due to the difficulty of the problem. Indeed the family of all maximal partial clones on E_{k} is far more complex than the family of all maximal clones on E_{k}. For example, there are 58 maximal partial clones and 18 maximal clones on a 3element set, and there are 1102 maximal partial clones ($[7,15]$; complete list in the appendix) and 82 maximal clones ([9] Theorem 5.4.2) on a 4-element set. Results on partial Sheffer functions can be found in the papers [4, 11] and [2].

The completeness problem for partial Sheffer functions is the question if for a given partial function $f \in \widetilde{P}_{k}$ the identity $[f]_{\mathrm{P}}=\widetilde{P}_{k}$ holds. That means, criteria are investigated to decide if a partial function is a partial Sheffer function.

2 DEFINITIONS AND THEOREM OF HADDAD AND ROSENBERG

Relations are useful to describe the clones of \widetilde{P}_{k}. We often write the elements of relations as columns and a relation can then be given as a matrix. For example the relation $\varrho=\{(0,1,2),(1,2,0),(3,4,5),(2,3,1)\}$ can also be written as

$$
\varrho=\left(\begin{array}{llll}
0 & 1 & 3 & 2 \\
1 & 2 & 4 & 3 \\
2 & 0 & 5 & 1
\end{array}\right)
$$

Let a matrix be given by $C=\left(c_{i j}\right)_{h \times n}$. Then $c_{i *}$ is the i-th row of the matrix with $i \in\{1, \ldots, h\}$, i.e., $c_{i *}=\left(c_{i 1}, c_{i 2}, \ldots, c_{i n}\right)$, and $c_{* j}$ is the j-th column of the matrix with $j \in\{1, \ldots, n\}$, i.e., $c_{* j}=\left(c_{1 j}, c_{2 j}, \ldots, c_{h j}\right)^{\mathrm{T}}$.

Let $\mathcal{R}_{k}^{(h)}$ be the set of all h-ary relations on E_{k} and $\mathcal{R}_{k}:=\bigcup_{h \geq 1} \mathcal{R}_{k}^{(h)}$.
An n-ary function $f^{(n)} \in \widetilde{P}_{k}$ preserves an h-ary relation $\varrho^{(h)} \in \mathcal{R}_{k}$ iff for
all $c_{* 1}, c_{* 2}, \ldots, c_{* n} \in \varrho$ with $c_{1 *}, \ldots, c_{h *} \in \operatorname{dom}(f)$ holds

$$
f\left(c_{* 1}, \ldots, c_{* n}\right):=\left(\begin{array}{c}
f\left(c_{1 *}\right) \\
f\left(c_{2 *}\right) \\
\vdots \\
f\left(c_{h *}\right)
\end{array}\right):=\left(\begin{array}{c}
f\left(c_{11}, c_{12}, \ldots, c_{1 n}\right) \\
f\left(c_{21}, c_{22}, \ldots, c_{2 n}\right) \\
\vdots \\
f\left(c_{h 1}, c_{h 2}, \ldots, c_{h n}\right)
\end{array}\right) \in \varrho .
$$

Let $\mathrm{pPOL}_{k} \varrho$ be the set of all functions $f \in \widetilde{P}_{k}$ which preserve the relation $\varrho \in \mathcal{R}_{k}$.

Let $f \in \widetilde{P}_{k}^{(1)}$ be a unary function. Define $f^{0}:=e_{1}^{(1)}$ and $f^{n}:=f\left[f^{n-1}\right]$ for all $n \geq 1$.

For each $m \in \mathbb{N}$ let $\eta_{m}:=(0,1, \ldots, m-1)^{\mathrm{T}}$.
Define $\omega(v)$ to be the set of entries of any $v=\left(v_{1}, \ldots, v_{h}\right) \in E_{k}^{h}$, i.e., $\omega(v)=\omega\left(\left(v_{1}, \ldots, v_{h}\right)\right):=\left\{v_{1}, \ldots, v_{h}\right\}$. Additionally let $\omega(\varrho)=$ $\bigcup_{v \in \varrho} \omega(v)$.

Definition 2.1. Let for all h with $1 \leq h \leq k$

$$
\begin{aligned}
& \varrho_{1}:=\left\{(a, a, b, b),(a, b, a, b) \mid a, b \in E_{k}\right\}, \\
& \varrho_{2}:=\left\{(a, a, b, b),(a, b, a, b),(a, b, b, a) \mid a, b \in E_{k}\right\}, \\
& \iota_{k}^{h}:=\left\{\left(x_{1}, \ldots, x_{h}\right) \in E_{k}^{h}| |\left\{x_{1}, \ldots, x_{h}\right\} \mid \leq h-1\right\} .
\end{aligned}
$$

Definition 2.2. Let ε be an arbitrary equivalence relation on E_{h}. Define $\delta_{k, \varepsilon}^{(h)}:=\left\{\left(a_{0}, \ldots, a_{h-1}\right) \in E_{k}^{h} \mid(i, j) \in \varepsilon \Longrightarrow a_{i}=a_{j}\right\}$. If h or k can be deduced from the context we just write δ_{ε} or $\delta_{\varepsilon}^{(h)}$ or $\delta_{k, \varepsilon}$. If the relation ε is given by the non-singular equivalence classes $\varepsilon_{1}, \ldots, \varepsilon_{r}$ then we write $\delta_{k ; \varepsilon_{1}, \ldots, \varepsilon_{r}}^{(h)}$ or $\delta_{\varepsilon_{1}, \ldots, \varepsilon_{r}}$ instead of $\delta_{k, \varepsilon}^{(h)}$. For example if ε has only the equivalence class E_{h} then $\delta_{k ; E_{h}}^{(h)}=\left\{(x, x, \ldots, x) \in E_{k}^{h} \mid x \in E_{k}\right\}$.

Definition 2.3. Let $\varrho^{(h)} \subseteq E_{k}^{h}$. Then we write $\sigma(\varrho):=\varrho \backslash \iota_{k}^{h}$ and $\delta(\varrho):=$ $\varrho \cap \iota_{k}^{h}=\varrho \backslash \sigma(\varrho)$. If $\delta=\delta_{\varepsilon}$ for some equivalence relation ε then we write $\varepsilon(\varrho):=\varepsilon$.

Definition 2.4. Let $\varrho^{(h)} \subseteq E_{k}^{h}$. Then ϱ is

- areflexive, if $h \geq 2$ and $\delta(\varrho)=\emptyset$, i.e., for each $\left(x_{1}, \ldots, x_{h}\right) \in \varrho$ we have $x_{i} \neq x_{j}$ for all $1 \leq i<j \leq h$.
- quasi-diagonal, if $\sigma(\varrho)$ is a non-empty relation, $\delta(\varrho)=\delta_{\varepsilon}$ with $\varepsilon \neq \iota_{h}^{2}$ an equivalence relation.

Definition 2.5. Let $\varrho^{(h)} \subseteq E_{k}^{h}, \sigma:=\sigma(\varrho)$ and $\delta:=\delta(\varrho)$.
If $r=\left(r_{0}, r_{1}, \ldots, r_{n-1}\right) \in E_{k}^{n}$ is a tuple and $\pi \in S_{n}$ then we write $r^{[\pi]}:=$ $\left(r_{\pi(0)}, r_{\pi(1)}, \ldots, r_{\pi(n-1)}\right)$. Let $\Gamma_{\sigma}:=\left\{\pi \in S_{h} \mid \sigma \cap \sigma^{[\pi]} \neq \emptyset\right\}$, where S_{h} is the symmetric group on E_{h} and $\sigma^{[\pi]}:=\left\{s^{[\pi]} \mid s \in \sigma\right\}$.

The model of ϱ is the h-ary relation

$$
M(\varrho):=\left\{\eta_{h}^{[\pi]} \mid \pi \in \Gamma_{\sigma}\right\} \cup\left(\delta \cap E_{h}^{h}\right)
$$

on E_{h}.
The relation ϱ is coherent, if the following conditions hold:

1. $\varrho \neq E_{k}^{h}, \varrho \neq \emptyset$,
2. (a) ϱ is a unary relation, i.e., $h=1$, or
(b) ϱ is areflexive with $2 \leq h \leq k$, or
(c) ϱ is quasi-diagonal with $2 \leq h \leq k$, or
(d) $\delta=\iota_{k}^{h}$ with $3 \leq h \leq k$, or
(e) $\delta=\varrho_{i}$ with $i \in\{1,2\}$ (see Definition 2.1) and $h=4$,
3. $r^{[\pi]} \in \sigma$ for all $r \in \sigma$ and all $\pi \in \Gamma_{\sigma}$,
4. for every σ^{\prime} with $\emptyset \neq \sigma^{\prime} \subseteq \sigma$ there is a relational homomorphism $\varphi: E_{k} \rightarrow E_{h}$ mapping σ^{\prime} into $M(\varrho)$, such that $\varphi(r)=\eta_{h}$ for some $r \in \sigma^{\prime}$, i.e., $\left(\varphi\left(r_{0}\right), \ldots, \varphi\left(r_{h-1}\right)\right)=(0, \ldots, h-1)$ for some $r=$ $\left(r_{0}, \ldots, r_{h-1}\right) \in \sigma^{\prime}$,
5. (a) if $\delta=\iota_{k}^{h}$ and $h \geq 3$ then $\Gamma_{\sigma}=S_{h}$,
(b) if $\delta=\varrho_{1}$ then $\Gamma_{\sigma}=\langle(0231),(12)\rangle\left(\Gamma_{\sigma}\right.$ is the permutation group generated by the cycles (0231) and (12)),
(c) if $\delta=\varrho_{2}$ then $\Gamma_{\sigma}=S_{4}$.

Let $\widetilde{\mathcal{R}}_{k}^{\max }$ be the set of all coherent relations such that for each coherent relation $\varrho^{(h)}$ exactly one relation of the set $\left\{\varrho^{[\pi]} \mid \pi \in S_{h}\right\}$ occurs in $\widetilde{\mathcal{R}}_{k}^{\max }$. Let

$$
p \mathscr{M}_{k}:=\left\{P_{k} \cup C_{\emptyset}\right\} \cup\left\{\operatorname{pPOL}_{k} \varrho \mid \varrho \in \widetilde{\mathcal{R}}_{k}^{\max }\right\} .
$$

Theorem 2.6 (Haddad and Rosenberg; [3, 5]). Let $k \geq 2$. For each $A \subset \widetilde{P}_{k}$ with $A=[A]_{\mathrm{P}}$ there is a maximal partial clone M_{A} with $A \subseteq M_{A}$. A clone M is a maximal partial clone of \widetilde{P}_{k} if and only if $M \in p \mathscr{M}_{k}$, i.e., $p \mathscr{M}_{k}$ is the set of all maximal partial clones of \widetilde{P}_{k}.

Theorem 2.7 (Completeness criterion for \widetilde{P}_{k}; [5]). Let $C \subseteq \widetilde{P}_{k}$. Then $[C]_{\mathrm{P}}=\widetilde{P}_{k}$ if and only if $C \nsubseteq M$ for all $M \in p \mathscr{M}_{k}$.

Definition 2.8. The set of coherent relations $\widetilde{\mathcal{R}}_{k}^{\max }$ can be divided into the following sets:

$$
\begin{aligned}
\mathcal{U} & :=\left\{\chi^{(\mu)} \in \widetilde{\mathcal{R}}_{k}^{\max } \mid \mu=1\right\} \\
\mathcal{A} & :=\left\{\chi^{(\mu)} \in \widetilde{\mathcal{R}}_{k}^{\max } \mid \mu \geq 2 \wedge \chi \text { is areflexive }\right\} \\
\mathcal{Q} & :=\left\{\chi^{(\mu)} \in \widetilde{\mathcal{R}}_{k}^{\max } \mid \mu \geq 2 \wedge \chi \text { is quasi-diagonal }\right\}, \\
\mathcal{S} & :=\left\{\chi^{(\mu)} \in \widetilde{\mathcal{R}}_{k}^{\max } \mid \mu \geq 3 \wedge \delta(\chi)=\iota_{k}^{\mu}\right\} \\
\mathcal{L} & :=\left\{\chi^{(\mu)} \in \widetilde{\mathcal{R}}_{k}^{\max } \mid \mu=4 \wedge \delta(\chi) \in\left\{\varrho_{1}, \varrho_{2}\right\}\right\} .
\end{aligned}
$$

3 DIFFERENT RELATIONS - DIFFERENT CLONES

Lemma 3.1. Let ϱ and χ be two h-ary relations and $\pi \in S_{h}$ a permutation with $\varrho^{[\pi]}=\chi$. Then $\mathrm{pPOL}_{k} \varrho=\mathrm{pPOL}_{k} \chi$.
Proof. It suffices to show

$$
\mathrm{pPOL}_{k} \varrho \supseteq \mathrm{pPOL}_{k} \chi
$$

The other direction is symmetric if ϱ and χ are exchanged and π^{-1} instead of π is used.

Let $f \in \mathrm{pPOL}_{k} \chi$ and $r_{* 1}, r_{* 2}, \ldots, r_{* n} \in \varrho$. Then

$$
\forall i \in\{1, \ldots, n\}:\left(r_{* i}\right)^{[\pi]} \in \chi
$$

holds and thus

$$
f\left(\left(r_{* 1}\right)^{[\pi]},\left(r_{* 2}\right)^{[\pi]}, \ldots,\left(r_{* n}\right)^{[\pi]}\right) \in \chi=\varrho^{[\pi]}
$$

Then

$$
\begin{aligned}
f\left(r_{* 1}, r_{* 2}, \ldots, r_{* n}\right) & =\left(f\left(\left(r_{* 1}\right)^{[\pi]},\left(r_{* 2}\right)^{[\pi]}, \ldots,\left(r_{* n}\right)^{[\pi]}\right)\right)^{\left[\pi^{-1}\right]} \\
& \in \chi^{\left[\pi^{-1}\right]}=\left(\varrho^{[\pi]}\right)^{\left[\pi^{-1}\right]}=\varrho
\end{aligned}
$$

follows and we have $f \in \mathrm{pPOL}_{k} \varrho$.
Thus we call two coherent relations $\varrho^{(h)}$ and $\chi^{(h)}$ equivalent, if $\pi \in S_{h}$ with

$$
\varrho^{[\pi]}=\chi
$$

exists. If two clones resp. the corresponding relations are compared, it suffices to choose one representative of each equivalence class. Let $\varrho^{(h)}$ and $\chi^{(h)}$ be two h-ary relations. If $\varrho \cap \chi$ is considered, then let χ be one of the relations $\chi^{[\pi]}$ with $\pi \in S_{h}$, such that $\left|\varrho \cap \chi^{[\pi]}\right|$ is maximal. Thus χ is chosen such that

$$
\chi \in\left\{\chi^{\prime} \in S| | \varrho \cap \chi^{\prime}\left|=\max _{\chi^{\prime \prime} \in S}\right| \varrho \cap \chi^{\prime \prime} \mid\right\}
$$

holds with

$$
S=\left\{\chi^{[\pi]} \mid \pi \in S_{h}\right\} .
$$

$$
\text { Let } W:=\left\{\varrho_{1}, \varrho_{2}\right\} \cup\left\{\iota_{k}^{h} \mid 3 \leq h \leq k\right\} .
$$

Lemma 3.2. Let $\varrho^{(h)}$ and $\chi^{(\mu)}$ be coherent relations on E_{k} with $\varrho \neq \chi$ and $\varrho, \chi \notin W$. Then $\mathrm{pPOL}_{k} \varrho \neq \mathrm{pPOL}_{k} \chi$ holds.

Proof. We consider three cases:

- $\mu<h$: Let $s=\left(s_{1}, \ldots, s_{\mu}\right) \in \chi \backslash \iota_{k}^{\mu}$ and $v=\left(v_{1}, \ldots, v_{\mu}\right) \in E_{k}^{\mu} \backslash \chi$ be arbitrary. Then define a function $f^{(1)}: E_{k} \rightarrow E_{k}$ by $f\left(s_{i}\right):=v_{i}$ for all $i \in\{0, \ldots, \mu-1\}$ and $\operatorname{dom}(f):=\left\{s_{0}, \ldots, s_{\mu-1}\right\}$. Then f is welldefined, because $s_{i} \neq s_{j}$ holds for $i \neq j$. Additionally $f \notin \mathrm{pPOL}_{k} \chi$ follows from $f(s)=v \notin \chi$ and $s \in \chi$.
Assume $f \notin \mathrm{pPOL}_{k} \varrho$. Then there is an $r \in \varrho$ with $f(r) \notin \varrho$. But f is defined only at μ different values, thus r can only have μ different entries. That means, we have $r \in \delta_{\varepsilon}$ with ε equivalence relation on E_{h} and $\varepsilon \neq \iota_{h}^{2}$. Then follows $\delta_{\varepsilon} \subset \varrho$ by definition of a coherent relation. Then $r_{i}=r_{j} \Longrightarrow f\left(r_{i}\right)=f\left(r_{j}\right)$ implies $f(r) \in \delta_{\varepsilon} \subseteq \varrho$, in contradiction to the assumption, i.e., $f \in \mathrm{pPOL}_{k} \varrho$.
- $\mu>h$. Because the case $\mu>h$ is symmetrical to the case above we have $\mathrm{pPOL}_{k} \varrho \neq \mathrm{pPOL}_{k} \chi$ for $\mu \neq h$.
- $\mu=h$. Let the rows of χ be permuted such that $|\varrho \cap \chi|$ becomes maximal, as motivated by Lemma 3.1. Then the following cases need to be checked.
- $\varrho \cap \chi=\emptyset$. Let $s \in \chi \backslash \iota_{k}^{h}$ and $v \in E_{k}^{h} \backslash \chi$ be arbitrary. Then define a function $f^{(1)}: E_{k} \rightarrow E_{k}$ by $f\left(s_{i}\right):=v_{i}$ for all $i \in\{0, \ldots, \mu-1\}$ and $\operatorname{dom}(f):=\left\{s_{0}, \ldots, s_{\mu-1}\right\}$. Then f is well-defined because $s_{i} \neq s_{j}$ holds for $i \neq j$. Additionally we have $f \notin \mathrm{pPOL}_{k} \chi$ because $f(s)=v \notin \chi$ and $s \in \chi$.

Assume $f \notin \mathrm{pPOL}_{k} \varrho$. Then there is $r \in \varrho$ with $f(r) \notin \varrho$. The tuple r has less than h different entries. Otherwise r would be a permutation of s and thus there would be a permutation of rows of χ such that $\varrho \cap \chi \neq \emptyset$. But then a contradiction follows as in the case $\mu<h$ above, i.e., $\mathrm{pPOL}_{k} \varrho \neq \mathrm{pPOL}_{k} \chi$ holds.

- $\varrho \cap \chi \neq \emptyset, \varrho \not \subset \chi$. Let $s \in \chi \backslash \iota_{k}^{h}$ and $v \in \varrho \backslash \chi$ be arbitrary. Define a function $f^{(1)}: E_{k} \rightarrow E_{k}$ by $f\left(s_{i}\right):=v_{i}$ for all $i \in$ $\{0, \ldots, \mu-1\}$ and $\operatorname{dom}(f):=\left\{s_{0}, \ldots, s_{\mu-1}\right\}$. Then f is welldefined, because $s_{i} \neq s_{j}$ holds for $i \neq j$. Additionally we have $f \notin \mathrm{pPOL}_{k} \chi$ because $f(s)=v \notin \chi$ and $s \in \chi$.
Assume $f \notin \mathrm{pPOL}_{k} \varrho$. Then there is $r \in \varrho$ with $f(r) \notin \varrho$. If r has less than h different entries then a contradiction follows as in the case $\mu<h$ above. Thus r has exactly h different entries, i.e., $r=s^{[\alpha]}$ holds for some $\alpha \in \Gamma_{\varrho}$. Because ϱ is coherent we also have

$$
f(r)=f\left(s^{[\alpha]}\right)=v^{[\alpha]} \in \varrho .
$$

This is a contradiction. Thus $f \in \mathrm{pPOL}_{k} \varrho$ holds and this implies $\mathrm{pPOL}_{k} \varrho \neq \mathrm{pPOL}_{k} \chi$.

- The case $\varrho \subset \chi$ is the same as above if the roles of χ and ϱ are exchanged.

Lemma 3.3. Let $\varrho^{(h)} \in W$ and $\chi^{(\mu)} \notin W$ be coherent relations. Then $\mathrm{pPOL}_{k} \varrho \neq \mathrm{pPOL}_{k} \chi$ holds.

Proof. Let $s \in \chi \backslash \iota_{k}^{\mu}$ and $v \in E_{k}^{\mu} \backslash \chi$ be arbitrary. Define a function $f^{(1)}: E_{k} \rightarrow E_{k}$ by $f\left(s_{i}\right):=v_{i}$ for all $i \in\{0, \ldots, \mu-1\}$ and $\operatorname{dom}(f):=$ $\left\{s_{0}, \ldots, s_{\mu-1}\right\}$. Then f is well-defined because $s_{i} \neq s_{j}$ holds for $i \neq j$. Additionally we have $f \notin \mathrm{pPOL}_{k} \chi$ because $f(s)=v \notin \chi$ and $s \in \chi$.

Assume $f \notin \mathrm{pPOL}_{k} \varrho$. Then there is some $r \in \varrho$ with $f(r) \notin \varrho$. From $\varrho=\bigcup_{\varepsilon \in E} \delta_{\varepsilon}$ with E a set of equivalence relations on E_{h} follows $r \in \delta_{\varepsilon}$ for some $\varepsilon \neq \iota_{h}^{2}$. This implies $\delta_{\varepsilon} \subset \varrho$. From $r_{i}=r_{j} \Longrightarrow f\left(r_{i}\right)=f\left(r_{j}\right)$ follows $f(r) \in \delta_{\varepsilon} \subseteq \varrho$, in contradiction to the assumption. Thus $f \in \mathrm{pPOL}_{k} \varrho$.

Lemma 3.4. Let $3 \leq \mu<h \leq k$. Then $\mathrm{pPOL}_{k} \iota_{k}^{\mu} \neq \mathrm{pPOL}_{k} \iota_{k}^{h}$ holds.

Proof. Define the function $f^{(h)}$ by

$x_{* 1}$	$x_{* 2}$	$x_{* 3}$	\ldots	$x_{* h}$	$f(x)$
0	0	0	\ldots	0	0
0	1	1	\ldots	1	1
1	1	2	\ldots	2	2
2	2	2	\ldots	3	3
\vdots	\vdots	\vdots	\ddots	\vdots	\vdots
$h-3$	$h-3$	$h-3$	\ldots	$h-2$	$h-2$
$h-2$	$h-2$	$h-2$	\ldots	$h-2$	$h-1$
otherwise					

We have $f \notin \mathrm{pPOL}_{k} \iota_{k}^{h}$, because the columns $x_{* 1}$ to $x_{* h}$ are in ι_{k}^{h}, but $f(x)$ is not.

Assume $f \notin \mathrm{pPOL}_{k} \iota_{k}^{\mu}$. Then there are columns $c_{* 1}, \ldots, c_{* h} \in \iota_{k}^{\mu}$ with $f\left(c_{* 1}, \ldots, c_{* h}\right)=: d \notin \iota_{k}^{\mu}$. If the rows $c_{1 *}, \ldots, c_{\mu *}$ all different then there is a column $c_{* j}$ with $\left|\omega\left(c_{* j}\right)\right|=\mu$, i.e., $c_{* j}$ has μ different elements, in contradiction to $c_{* j} \in \iota_{k}^{\mu}$. Thus two rows are equal, i.e., two entries of d are equal in contradiction to $d \notin \iota_{k}^{\mu}$. Thus $f \in \mathrm{pPOL}_{k} \iota_{k}^{\mu}$.
Lemma 3.5. Let $\varrho=\varrho_{i}$ for some $i \in\{1,2\}$ and $\chi=\iota_{k}^{\mu}$ for some $\mu \in$ $\{3,4, \ldots, k\}$. Then $\operatorname{pPOL}_{k} \varrho \neq \mathrm{pPOL}_{k} \chi$.
Proof. Define the function $f^{(2)}$ by

$$
f\left(\begin{array}{ll}
0 & 0 \\
0 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right):=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

and not defined otherwise. Then $f \notin \mathrm{pPOL}_{k} \varrho$ because

$$
(0,0,1,1),(0,1,0,1) \in \varrho
$$

but $(0,0,0,1) \notin \varrho$. Because $|\{0,1\}|=2$ we get $f \in \operatorname{pPOL}_{k} \chi$.
Lemma 3.6. $\mathrm{pPOL}_{k} \varrho_{1} \neq \mathrm{pPOL}_{k} \varrho_{2}$.
Proof. Define the function $f^{(3)}$ by

$$
f\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right):=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

and not defined otherwise. Then $f \notin \mathrm{pPOL}_{k} \varrho_{2}$ because

$$
(0,0,1,1),(0,1,0,1),(0,1,1,0) \in \varrho_{2}
$$

but $(0,0,0,1) \notin \varrho_{2}$. Because $\{(0,0,1,1),(0,1,0,1),(0,1,1,0)\} \nsubseteq \varrho_{1}^{[\pi]}$ for all $\pi \in S_{4}$ we have $f \in \operatorname{pPOL}_{k} \varrho_{1}$.

Theorem 3.7. The relations in $\widetilde{\mathcal{R}}_{k}^{\max }$ describe distinct maximal partial clones.
Proof. Combining the Lemmas 3.2, 3.3, 3.4, 3.5 and 3.6 implies the theorem.

4 SHORTCUTS FOR FINDING COHERENT RELATIONS

We want to find all coherent relations $\widetilde{\mathcal{R}}_{k}^{\max }$, and determine $\left|p \mathscr{M}_{k}\right|$. The trivial approach is to enumerate all subsets of E_{k}^{h} for $h \in\{1, \ldots, k\}$, check if they are coherent and remove duplicates with respect to equivalence of the relations, see page 6 . But this approach needs too much memory and time because all coherent relations have to be in memory at the same time, all have to be checked for coherence, and relations generating the same clone have to be identified. Thus we need to use a better method.

Definition 4.1. Let $v:=\left(v_{1}, \ldots, v_{h}\right) \in E_{k}^{h}, w:=\left(w_{1}, \ldots, w_{h}\right) \in E_{k}^{h}$. We write $v \prec w$ if

$$
\exists i \in\{1,2, \ldots, h\}:\left(\forall j<i: v_{j}=w_{j}\right) \wedge v_{i}<w_{i} .
$$

Let $v \preceq w$ if $v \prec w$ or $v=w$. Then \preceq defines a lexicographical order on E_{k}^{h}.

Let $V=\left\{V_{1}, \ldots, V_{m}\right\} \subseteq E_{k}^{h}$ and $W=\left\{W_{1}, \ldots, W_{n}\right\} \subseteq E_{k}^{h}$ with $V_{i} \prec V_{j}$ and $W_{i} \prec W_{j}$ for all $i<j$. We write $V \prec W$ if

$$
\exists i \in\{1,2, \ldots, \min (m, n)\}:\left(\forall j<i: V_{j}=W_{j}\right) \wedge V_{i}<W_{i},
$$

or

$$
m<n \wedge\left(\forall i \in\{1,2 \ldots, m\}: V_{i}=W_{i}\right)
$$

Let $V \preceq W$ if $V \prec W$ or $V=W$. Thus \preceq defines a lexicographical order on the subsets of E_{k}^{h}.

Let $\min _{\prec} V:=x \in V$ with $x \preceq y$ for all $y \in V$.

Definition 4.2. Let $\varrho^{(h)} \in \widetilde{\mathcal{R}}_{k}^{\max }$.
Define the quasi-relation-class qclass(ϱ) by

$$
\operatorname{qclass}(\varrho):=\left\{\{f(v) \mid v \in \varrho\} \mid f \in S_{k}\right\}
$$

and we call ϱ a quasi-minimal relation if $\varrho=\min _{\prec} \mathrm{qclass}(\varrho)$.
Define the relation-class class($\varrho)$ by

$$
\operatorname{class}(\varrho):=\left\{\left\{(f(v))^{[\pi]} \mid v \in \varrho\right\} \mid f \in S_{k}, \pi \in \Gamma(\varrho)\right\}
$$

where

$$
\Gamma(\varrho):=\left\{\pi \in S_{h} \mid \pi(\varepsilon(\varrho))=\varepsilon(\varrho)\right\}
$$

i.e., all permutations which leave $\delta(\varrho)$ fixed. We call ϱ a minimal relation if $\varrho=\min _{\prec} \operatorname{class}(\varrho)$.

Every minimal relation is a quasi-minimal relation because qclass $(\varrho) \subseteq$ class (ϱ).

The general idea to find all coherent relations $\varrho^{(h)}$ in reasonable time is to

- traverse over all model $M(\varrho)$ with $\varepsilon(\varrho)$ given in such a way, that all equivalence classes are continuous intervals on E_{h} and sorted in decreasing order of size. The areflexive relations are represented by $\varepsilon(\varrho)=\emptyset$. The relations in \mathcal{S} are treated in a special way and no equivalence relation is given.
- For a given model $M(\varrho)$ check all relations χ with $M(\chi)=M(\varrho)$, i.e., traverse over all $\chi \subset E_{k}^{h}$ with $M(\chi)=M(\varrho)$. Let

$$
A_{\varrho}:=\left\{\min _{\prec}\left\{v^{[\pi]} \mid \pi \in \Gamma_{\sigma(\varrho)}\right\} \mid v \in \sigma\left(E_{k}^{h}\right)\right\},
$$

the set of all areflexive h-ary tuples on E_{k} modulo the group associated with the model $M(\varrho)$. Then any subset of A_{ϱ} uniquely identifies a relation with the given model $M(\varrho)$. The subsets are determined recursively starting at the empty set and adding tuples v_{1}, v_{2}, \ldots from A_{ϱ} such that $v_{i} \prec v_{j}$ for all $i<j$. Thus every subset of A_{ϱ} is given exactly once and we can make cut offs with the following two statements.

- We only print a relation ϱ if it is a minimal relation in the sense given above, and the size

$$
\left|\left\{\operatorname{pPOL}_{k} \chi \mid \chi \in \operatorname{class}(\varrho)\right\}\right|=\left|\left\{\min _{\prec} \operatorname{qclass}\left(\varrho^{[\pi]}\right) \mid \pi \in \Gamma(\varrho)\right\}\right| .
$$

Because there is exactly one minimal relation in each class (ϱ) we can deduce the number of all coherent relations.

Lemma 4.3. Let $\varrho \in \widetilde{\mathcal{R}}_{k}^{\max }$. Let $\chi \subset \varrho$ with
(1) $\emptyset \subset \sigma(\chi) \subset \sigma(\varrho)$,
(2) $M(\chi)=M(\varrho)$, and
(3) $\forall \pi \in \Gamma_{\sigma(\chi)} \forall v \in \sigma(\chi): v^{[\pi]} \in \sigma(\chi)$.

Then $\chi \in \widetilde{\mathcal{R}}_{k}^{\max }$.
Proof. Because of (1) the relation χ is non-trivial. Because of (3) we only have to show, that for every $\emptyset \subset \sigma^{\prime} \subseteq \sigma(\chi)$ there is a relational homomor$\operatorname{phism} \varphi: E_{k} \rightarrow E_{h}$ from σ^{\prime} to $M(\chi)$, such that $\varphi(r)=\eta_{h}$ for some $r \in \sigma^{\prime}$, i.e., $\left(\varphi\left(r_{0}\right), \ldots, \varphi\left(r_{h-1}\right)\right)=(0, \ldots, h-1)$ for some $r:=\left(r_{0}, \ldots, r_{h-1}\right) \in$ σ^{\prime}. But this follows from $\sigma^{\prime} \subseteq \sigma(\chi) \subset \sigma(\varrho),(2)$ and ϱ coherent. Thus χ is coherent.

Lemma 4.3 for a fixed $M(\varrho)$ implies that all $\chi^{\prime} \notin \widetilde{\mathcal{R}}_{k}^{\max }$ with $\chi \notin \widetilde{\mathcal{R}}_{k}^{\max }$, $\chi^{\prime} \supset \chi$ and $M\left(\chi^{\prime}\right)=M(\chi)$, i.e., we can cut off the subset tree early.
Lemma 4.4. Let $\varrho, \chi \in \widetilde{\mathcal{R}}_{k}^{\max }$. Let $\chi \subset \varrho$ and $\chi \prec \varrho$ with
(1) $\emptyset \subset \sigma(\chi) \subset \sigma(\varrho)$,
(2) $M(\chi)=M(\varrho)$, and
(3) ϱ is a quasi-minimal relation.

Then χ is a quasi-minimal relation.
Proof. Let $\varrho=:\left\{v_{1}, \ldots, v_{|\varrho|}\right\}$ with $v_{i} \prec v_{j}$ for all $i<j$. Then $\chi=$ $\left\{v_{1}, \ldots, v_{|\chi|}\right\}$ because $\chi \prec \varrho$ and $\chi \subset \varrho$.

Assume χ is not a quasi-minimal relation. Then there is some $\chi^{\prime} \in$ qclass (χ) with $\chi^{\prime} \prec \chi$, i.e., there is some $f \in S_{k}$ with $f(\chi) \prec \chi$. Thus there are $a \in\{1, \ldots,|\chi|-1\}$ and $w \in f(\chi)$ with $v_{a-1} \prec w \prec v_{a}$ and $\left\{v_{1}, \ldots, v_{a-1}\right\} \subseteq f(\chi)$. Then $\left\{v_{1}, \ldots v_{a-1}, w\right\} \subseteq f(\varrho)$ implying $f(\varrho) \prec \varrho$, i.e., ϱ is not a quasi-minimal relation, in contradiction to the assumption.

Lemma 4.4 for a fixed $M(\varrho)$ implies that all χ^{\prime} are not quasi-minimal and thus not minimal if χ is not quasi-minimal, $\chi^{\prime} \supset \chi$ and $M\left(\chi^{\prime}\right)=M(\chi)$. Thus we can cut off the subset tree early, if we encounter a coherent relation which is not quasi-minimal.

We can not cut off the subtree if we encounter a relation which is not a minimal relation. For example

$$
\varrho:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0 \\
2 & 2
\end{array}\right)
$$

is quasi-minimal, but not minimal because

$$
\left(\begin{array}{ll}
0 & 0 \\
1 & 2 \\
2 & 1
\end{array}\right)=\min _{\prec} \operatorname{class}(\varrho) .
$$

On the other hand

$$
\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
2 & 3 & 2 & 3
\end{array}\right)
$$

is minimal and is found in a subtree starting with ϱ.

5 CONCLUSION

The lists of all coherent relations for $k \in\{2,3,4,5,6\}$ as given by the program and the source code of the program can be found at
http://www.math.uni-rostock.de/~schoelzel/papers/numbers/ The program is written in Haskell, is single-threaded and needed about 52 hours on a SunFire V490 to compute all coherent relations for $k=6$. The number of coherent relations is given in the following tables. The numbers agree with the ones given without computer in [1] for $k=2$, [8] and [10] (independent from each other) for $k=3$, and [7] with corrections in [15] for $k=4$. As the number of maximal partial clones grows fast it does not seem feasible nor useful to find all coherent relations for any $k>6$.

k	$\left\|p \mathscr{M}_{k}\right\|$	$\|\mathcal{S}\|$					$\|\mathcal{L}\|$	$P_{k} \cup C_{\emptyset}$
		3	4	5	6			
2	8					1	1	1
3	58	1				1	1	1
4	1102	15	1			4	2	1
5	325722	1023	31	1		46	16	1
6	5242621816	1048575	32767	63	1	4141	786	1

k	$\|\mathcal{Q} \cup \mathcal{A}\|$					
	1	2	3	4	5	6
2	2	3				
3	6	30	18			
4	14	416	505	144		
5	30	16457	295080	11945	1092	
6	62	1934514	5008589703	230676900	319722	14581

REFERENCES

[1] R.V. Freivald. (1966). Completeness criteria for partial functions of the algebra of logic and many-valued logics. Dokl. AN SSSR, 167:1249-1250.
[2] L. Haddad and D. Lau. (2007). Some criteria for partial Sheffer functions in k-valued logic. Mult.-Valued Logic and Soft Computing, 13(4-6):415-446.
[3] L. Haddad and I.G. Rosenberg. (1989). Maximal partial clones determined by the areflexive relations. Discrete Appl. Math., 24(1-3):133-143.
[4] L. Haddad and I.G. Rosenberg. (1991). Partial Sheffer operations. Eur. J. Comb., 12(1):9-21.
[5] L. Haddad and I.G. Rosenberg. (1992). Completeness theory for finite partial algebras. Algebra Univers., 29(3):378-401.
[6] L. Haddad, I.G. Rosenberg, and D. Schweigert. (1990). A maximal partial clone and a Slupecki-type criterion. Acta Sci. Math., 54(1-2):89-98.
[7] L. Haddad and G.E. Simons. (2002). Maximal partial clones of 4-valued logic. Mult.Valued Logic and Soft Computing, 8(4):531-562.
[8] D. Lau. (1977). Eigenschaften gewisser abgeschlossener Klassen in Postschen Algebren. Dissertation A, Universität Rostock.
[9] D. Lau. (2006). Function algebras on finite sets. A basic course on many-valued logic and clone theory. Springer Monographs in Mathematics. Berlin: Springer. xiv, 668 p.
[10] B.A. Romov. Maximal subalgebras of algebras of partial multivalued logic functions.
[11] B.A. Romov. The algebras of partial functions and their invariants. Cybernetics, 17:157167, 1981.
[12] I.G. Rosenberg. (1965). La structure des fonctions de plusieurs variables sur un ensemble fini. C. R. Acad. Sci., Paris, 260:3817-3819.
[13] I.G. Rosenberg. (1970). Über die funktionale Vollständigkeit in den mehrwertigen Logiken. Rozpravy Ceskoslovenske Akad. Ved. Rada Mat. Přirod. Věd, 80:3-93.
[14] I.G. Rosenberg. (1984). Composition of functions on finite sets, completeness and relations, a short survey. In D. Rine (ed.) Multiple-valued Logic and Computer Science, 2nd edition, North-Holland, Amsterdam, pages 150-192.
[15] K. Schölzel. (May 2009). The Minimal Covering of Maximal Partial Clones in 4-valued Logic. In Multiple-Valued Logic, 39th IEEE International Symposium on, pages 126-131.
[16] D.L. Webb. (1935). Generation of an n-valued logic by one binary operation. Bull. Amer. Math. Soc., 41.

[^0]: * email: karsten.schoelzel@uni-rostock.de

