A Criterion for partial Sheffer functions in 4-valued logic

Karsten Schölzel

2007-04-15
Outline

1. Introduction
 - Definitions

2. Results

3. Minimal covering
Aim

- Criterion for partial Sheffer functions in 4-valued logic by determining a minimal covering of the maximal partial classes given by Haddad and Rosenberg
- Show that this minimal covering is unique
Definitions

Some sets

\[E_k := \{0, 1, \ldots, k - 1\} \]
\[\tilde{E}_k := E_k \cup \{\infty\} \]
\[P_k := \{ f \mid f^{(n)} : E^n_k \rightarrow E_k, n \in \mathbb{N}_0 \} \]
\[\tilde{P}_k := \{ f \mid f^{(n)} : E^n_k \rightarrow \tilde{E}_k, n \in \mathbb{N}_0 \} \]
We consider the algebra \(\tilde{P}_k; \zeta, \tau, \Delta, \nabla, \star \). For functions \(f^{(n)}, g^{(m)} \in \tilde{P}_k \) let

\[
(\zeta f)(x_1, \ldots, x_n) := f(x_2, x_3, \ldots, x_n, x_1)
\]

\[
(\tau f)(x_1, \ldots, x_n) := f(x_2, x_1, x_3, \ldots, x_n)
\]

\[
(\Delta f)(x_1, \ldots, x_{n-1}) := f(x_1, x_1, x_2, \ldots, x_{n-1}) \quad \text{if } n \geq 2
\]

\[
\zeta f = \tau f = \Delta f := f \quad \text{if } n = 1
\]

\[
(\nabla f)(x_1, \ldots, x_{n+1}) := f(x_2, \ldots, x_{n+1})
\]

\[
(f \star g)(x_1, \ldots, x_{m+n-1}) := \begin{cases} f(g(x_1, \ldots, x_m), x_{m+1}, \ldots, x_{m+n-1}) & \text{if } g(x_1, \ldots, x_m) \in E_k \\ \infty & \text{otherwise} \end{cases}
\]
A is called a class, if \(A = [A]_{\zeta, \tau, \Delta, \nabla, \star} \) holds. If \(J_k \subseteq A \) also holds, \(A \) is called a (partial) clone.

\[
e_i^n(x_1, \ldots, x_n) := x_i,
\]

\[
J_k := \{e_i^n | n \in \mathbb{N}, 1 \leq i \leq n\}.
\]
A (partial) function f is called a (partial) Sheffer function, if

$$\tilde{P}_k = [\{f\}].$$
A class A is called maximal, if

$$\forall A' \subset \tilde{P}_k : A \subset A' = [A'] \subset \tilde{P}_k.$$

Let $p\mathcal{M}_k$ be the set of all maximal partial classes.

Remark: every maximal class is a clone.
Because

$$\forall A \subset \tilde{P}_k, A = [A] \exists M_A \in p\mathcal{M}_k : A \subset M_A$$

it holds

$$f \text{ Sheffer} \iff \forall X \in p\mathcal{M}_k : f \notin X.$$
A (partial) function $f^{(n)} \in \widetilde{P}_k$ preserves the relation $\varrho^{(h)}$, if for all r^1, \ldots, r^n with $r^i = (r_{1i}, \ldots, r_{hi})^T \in \varrho$ holds:

$$f(r^1, \ldots, r^n) := \left(\begin{array}{c} f(r_{11}, r_{12}, \ldots, r_{1n}) \\
 f(r_{21}, r_{22}, \ldots, r_{2n}) \\
 \vdots \\
 f(r_{h1}, r_{h2}, \ldots, r_{hn}) \end{array} \right) \in \varrho.$$

Short: $f \in pPol_k \varrho$.
For $\varrho \subseteq E^h_k$ define

$$pPOL_k \varrho := pPol_k \left(\varrho \cup \left(\widetilde{E}^h_k \setminus E^h_k \right) \right).$$
Haddad-Rosenberg Theorem [Haddad, Rosenberg, 1989, 1992]

If C is a maximal partial clone of \tilde{P}_k, i.e. $C \in p\mathcal{M}_k$, then

$$C = P_k \cup \{c_\infty\} = P_k \cup \{f \in \tilde{P}_k | \text{dom}(f) = \emptyset\}$$

or

$$C = p\text{POL}_k \varrho$$

with a coherent relation ϱ.

The definition of *coherent relation* is complex, so just some examples:

- non-trivial unary relations
- totally symmetric, totally reflexive relations
- non-trivial partial orders
- equivalence relations

A coherent relation is at most $\max(k, 4)$–ary.
Number of maximal (partial) clones

| k | $|\mathcal{M}_k|$ | $|p\mathcal{M}_k|$ | References |
|-----|------------------|-----------------|-------------|
| 2 | 5 | 8 | [Freivald 1966] |
| 3 | 18 | 58 | [Lau 1977], [Romov 1980] |
| 4 | 82 | **1 102** | |
| 5 | 643 | $>16 487$ | |
| 6 | 15 182 | ? | |
| 7 | 7 848 984 | ? | |
| 8 | 549 758 283 980 | ? | |

Haddad and Simons determined the maximal partial clones for $k = 4$ in 2002 and gave $|p\mathcal{M}_4| = 1 235$. This was due to errors while counting so we gave a full list and determined $|p\mathcal{M}_4|$.
Unary relations

<table>
<thead>
<tr>
<th>Nr.</th>
<th>δ</th>
<th>σ</th>
<th>iso</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>\emptyset</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>\emptyset</td>
<td>0,1</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>\emptyset</td>
<td>0,1,2</td>
<td>4</td>
</tr>
</tbody>
</table>
Binary asymmetric areflexive relations

<table>
<thead>
<tr>
<th>Nr.</th>
<th>δ</th>
<th>σ</th>
<th>iso</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>\emptyset</td>
<td>01</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>\emptyset</td>
<td>01, 02</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>\emptyset</td>
<td>01, 23</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>\emptyset</td>
<td>01, 02, 03</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>\emptyset</td>
<td>01, 02, 32</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>\emptyset</td>
<td>01, 02, 31, 32</td>
<td>3</td>
</tr>
</tbody>
</table>
Binary symmetric areflexive relations

<table>
<thead>
<tr>
<th>Nr.</th>
<th>(\delta)</th>
<th>(\sigma)</th>
<th>iso</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(\emptyset)</td>
<td>01, 10</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>(\emptyset)</td>
<td>01, 10, 02, 20</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>(\emptyset)</td>
<td>01, 10, 23, 32</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>(\emptyset)</td>
<td>01, 10, 02, 20, 03, 30</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>(\emptyset)</td>
<td>01, 10, 12, 21, 23, 32</td>
<td>12</td>
</tr>
<tr>
<td>15</td>
<td>(\emptyset)</td>
<td>01, 10, 02, 20, 13, 31, 23, 32</td>
<td>3</td>
</tr>
</tbody>
</table>
Binary antisymmetric reflexive relations

<table>
<thead>
<tr>
<th>Nr.</th>
<th>δ</th>
<th>σ</th>
<th>iso</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>$\delta^2 {0,1}$</td>
<td>01</td>
<td>6</td>
</tr>
<tr>
<td>17</td>
<td>$\delta^2 {0,1}$</td>
<td>01, 02</td>
<td>12</td>
</tr>
<tr>
<td>18</td>
<td>$\delta^2 {0,1}$</td>
<td>01, 12</td>
<td>12</td>
</tr>
<tr>
<td>19</td>
<td>$\delta^2 {0,1}$</td>
<td>01, 23</td>
<td>6</td>
</tr>
<tr>
<td>20</td>
<td>$\delta^2 {0,1}$</td>
<td>01, 02, 03</td>
<td>4</td>
</tr>
<tr>
<td>21</td>
<td>$\delta^2 {0,1}$</td>
<td>01, 02, 30</td>
<td>12</td>
</tr>
<tr>
<td>22</td>
<td>$\delta^2 {0,1}$</td>
<td>01, 02, 12</td>
<td>12</td>
</tr>
<tr>
<td>23</td>
<td>$\delta^2 {0,1}$</td>
<td>01, 02, 13</td>
<td>24</td>
</tr>
<tr>
<td>24</td>
<td>$\delta^2 {0,1}$</td>
<td>01, 02, 32</td>
<td>12</td>
</tr>
<tr>
<td>25</td>
<td>$\delta^2 {0,1}$</td>
<td>01, 12, 23</td>
<td>12</td>
</tr>
</tbody>
</table>
Binary antisymmetric reflexive relations

<table>
<thead>
<tr>
<th>Nr.</th>
<th>δ</th>
<th>σ</th>
<th>iso</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>$\delta^2_{0,1}$</td>
<td>01, 02, 03, 12</td>
<td>24</td>
</tr>
<tr>
<td>27</td>
<td>$\delta^2_{0,1}$</td>
<td>01, 02, 30, 32</td>
<td>24</td>
</tr>
<tr>
<td>28</td>
<td>$\delta^2_{0,1}$</td>
<td>01, 02, 31, 32</td>
<td>3</td>
</tr>
<tr>
<td>29</td>
<td>$\delta^2_{0,1}$</td>
<td>01, 02, 12, 23</td>
<td>24</td>
</tr>
<tr>
<td>30</td>
<td>$\delta^2_{0,1}$</td>
<td>01, 03, 12, 23</td>
<td>12</td>
</tr>
<tr>
<td>31</td>
<td>$\delta^2_{0,1}$</td>
<td>01, 02, 13, 23</td>
<td>6</td>
</tr>
<tr>
<td>32</td>
<td>$\delta^2_{0,1}$</td>
<td>01, 02, 03, 12, 13</td>
<td>12</td>
</tr>
<tr>
<td>33</td>
<td>$\delta^2_{0,1}$</td>
<td>01, 02, 03, 12, 31</td>
<td>24</td>
</tr>
<tr>
<td>34</td>
<td>$\delta^2_{0,1}$</td>
<td>01, 02, 03, 13, 23</td>
<td>6</td>
</tr>
<tr>
<td>35</td>
<td>$\delta^2_{0,1}$</td>
<td>01, 02, 12, 13, 23</td>
<td>12</td>
</tr>
<tr>
<td>36</td>
<td>$\delta^2_{0,1}$</td>
<td>01, 02, 03, 12, 13, 23</td>
<td>12</td>
</tr>
</tbody>
</table>
Binary symmetric reflexive relations

<table>
<thead>
<tr>
<th>Nr.</th>
<th>δ</th>
<th>σ</th>
<th>iso</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>$\delta^2_{{0,1}}$</td>
<td>01, 10</td>
<td>6</td>
</tr>
<tr>
<td>38</td>
<td>$\delta^2_{{0,1}}$</td>
<td>01, 10, 02, 20</td>
<td>12</td>
</tr>
<tr>
<td>39</td>
<td>$\delta^2_{{0,1}}$</td>
<td>01, 10, 23, 32</td>
<td>3</td>
</tr>
<tr>
<td>40</td>
<td>$\delta^2_{{0,1}}$</td>
<td>01, 10, 02, 20, 12, 21</td>
<td>4</td>
</tr>
<tr>
<td>41</td>
<td>$\delta^2_{{0,1}}$</td>
<td>01, 10, 02, 20, 03, 30</td>
<td>4</td>
</tr>
<tr>
<td>42</td>
<td>$\delta^2_{{0,1}}$</td>
<td>01, 10, 12, 21, 23, 32</td>
<td>12</td>
</tr>
<tr>
<td>43</td>
<td>$\delta^2_{{0,1}}$</td>
<td>01, 10, 02, 20, 03, 30, 12, 21</td>
<td>12</td>
</tr>
<tr>
<td>44</td>
<td>$\delta^2_{{0,1}}$</td>
<td>01, 10, 02, 20, 13, 31, 23, 32</td>
<td>3</td>
</tr>
<tr>
<td>45</td>
<td>$\delta^2_{{0,1}}$</td>
<td>01, 10, 02, 20, 03, 30, 12, 21, 13, 31</td>
<td>6</td>
</tr>
</tbody>
</table>
Ternary areflexive relations

<table>
<thead>
<tr>
<th>Nr.</th>
<th>δ</th>
<th>σ</th>
<th>iso</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>\emptyset</td>
<td>012</td>
<td>4</td>
</tr>
<tr>
<td>47</td>
<td>\emptyset</td>
<td>012, 021</td>
<td>12</td>
</tr>
<tr>
<td>48</td>
<td>\emptyset</td>
<td>012, 120, 201</td>
<td>4</td>
</tr>
<tr>
<td>49</td>
<td>\emptyset</td>
<td>012(S_3)</td>
<td>4</td>
</tr>
<tr>
<td>50</td>
<td>\emptyset</td>
<td>012, 013</td>
<td>6</td>
</tr>
<tr>
<td>51</td>
<td>\emptyset</td>
<td>012, 013, 102, 103</td>
<td>6</td>
</tr>
<tr>
<td>52</td>
<td>\emptyset</td>
<td>012, 013, 021, 031</td>
<td>12</td>
</tr>
<tr>
<td>53</td>
<td>\emptyset</td>
<td>012, 120, 201, 013, 130, 301</td>
<td>6</td>
</tr>
<tr>
<td>54</td>
<td>\emptyset</td>
<td>012(S_3), 013(S_3)</td>
<td>6</td>
</tr>
</tbody>
</table>
Ternary relations with $\delta = \delta^3_{\{0,1,2\}}$

<table>
<thead>
<tr>
<th>Nr.</th>
<th>δ</th>
<th>σ</th>
<th>iso</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>$\delta^3_{{0,1,2}}$</td>
<td>012</td>
<td>4</td>
</tr>
<tr>
<td>56</td>
<td>$\delta^3_{{0,1,2}}$</td>
<td>012, 021</td>
<td>12</td>
</tr>
<tr>
<td>57</td>
<td>$\delta^3_{{0,1,2}}$</td>
<td>012, 120, 201</td>
<td>4</td>
</tr>
<tr>
<td>58</td>
<td>$\delta^3_{{0,1,2}}$</td>
<td>012(S_3)</td>
<td>4</td>
</tr>
<tr>
<td>59</td>
<td>$\delta^3_{{0,1,2}}$</td>
<td>012, 013</td>
<td>6</td>
</tr>
<tr>
<td>60</td>
<td>$\delta^3_{{0,1,2}}$</td>
<td>012, 013, 102, 103</td>
<td>6</td>
</tr>
<tr>
<td>61</td>
<td>$\delta^3_{{0,1,2}}$</td>
<td>012, 013, 021, 023</td>
<td>12</td>
</tr>
<tr>
<td>62</td>
<td>$\delta^3_{{0,1,2}}$</td>
<td>012, 120, 201, 013, 130, 301</td>
<td>6</td>
</tr>
<tr>
<td>63</td>
<td>$\delta^3_{{0,1,2}}$</td>
<td>012(S_3), 013(S_3)</td>
<td>6</td>
</tr>
</tbody>
</table>
Ternary relations with $\delta = \delta^3_{\{0,1\}}$ and $G_\sigma = \{\text{id}\}$

<table>
<thead>
<tr>
<th>Nr.</th>
<th>δ</th>
<th>σ</th>
<th>iso</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>$\delta^3_{{0,1}}$</td>
<td>012</td>
<td>12</td>
</tr>
<tr>
<td>65</td>
<td>$\delta^3_{{0,1}}$</td>
<td>012, 013</td>
<td>6</td>
</tr>
<tr>
<td>66</td>
<td>$\delta^3_{{0,1}}$</td>
<td>012, 023</td>
<td>24</td>
</tr>
<tr>
<td>67</td>
<td>$\delta^3_{{0,1}}$</td>
<td>012, 032</td>
<td>12</td>
</tr>
<tr>
<td>68</td>
<td>$\delta^3_{{0,1}}$</td>
<td>012, 123</td>
<td>24</td>
</tr>
<tr>
<td>69</td>
<td>$\delta^3_{{0,1}}$</td>
<td>012, 132</td>
<td>12</td>
</tr>
<tr>
<td>70</td>
<td>$\delta^3_{{0,1}}$</td>
<td>012, 230</td>
<td>12</td>
</tr>
<tr>
<td>71</td>
<td>$\delta^3_{{0,1}}$</td>
<td>012, 231</td>
<td>12</td>
</tr>
</tbody>
</table>
Ternary relations with $\delta = \delta_{\{0,1\}}^3$ and $G_\sigma = \{\text{id}\}$

<table>
<thead>
<tr>
<th>Nr.</th>
<th>δ</th>
<th>σ</th>
<th>iso</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>$\delta_{{0,1}}^3$</td>
<td>012, 031, 032</td>
<td>24</td>
</tr>
<tr>
<td>73</td>
<td>$\delta_{{0,1}}^3$</td>
<td>012, 023, 123</td>
<td>24</td>
</tr>
<tr>
<td>74</td>
<td>$\delta_{{0,1}}^3$</td>
<td>012, 032, 312</td>
<td>12</td>
</tr>
<tr>
<td>75</td>
<td>$\delta_{{0,1}}^3$</td>
<td>012, 230, 231</td>
<td>24</td>
</tr>
<tr>
<td>76</td>
<td>$\delta_{{0,1}}^3$</td>
<td>012, 130, 132</td>
<td>24</td>
</tr>
<tr>
<td>77</td>
<td>$\delta_{{0,1}}^3$</td>
<td>012, 013, 023, 123</td>
<td>24</td>
</tr>
<tr>
<td>78</td>
<td>$\delta_{{0,1}}^3$</td>
<td>012, 013, 230, 231</td>
<td>6</td>
</tr>
</tbody>
</table>
Ternary relations with $\delta = \delta^3_{\{0,1\}}$ and $G_\sigma = \{\text{id}, (0\ 1)\}$

<table>
<thead>
<tr>
<th>Nr.</th>
<th>δ</th>
<th>σ</th>
<th>iso</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>$\delta^3_{{0,1}}$</td>
<td>012, 102</td>
<td>12</td>
</tr>
<tr>
<td>80</td>
<td>$\delta^3_{{0,1}}$</td>
<td>012, 102, 013, 103</td>
<td>6</td>
</tr>
<tr>
<td>81</td>
<td>$\delta^3_{{0,1}}$</td>
<td>012, 102, 023, 203</td>
<td>24</td>
</tr>
<tr>
<td>82</td>
<td>$\delta^3_{{0,1}}$</td>
<td>012, 102, 032, 302</td>
<td>12</td>
</tr>
<tr>
<td>83</td>
<td>$\delta^3_{{0,1}}$</td>
<td>012, 102, 230, 320</td>
<td>12</td>
</tr>
<tr>
<td>84</td>
<td>$\delta^3_{{0,1}}$</td>
<td>012, 102, 031, 301, 032, 302</td>
<td>24</td>
</tr>
<tr>
<td>85</td>
<td>$\delta^3_{{0,1}}$</td>
<td>012, 102, 023, 203, 123, 213</td>
<td>12</td>
</tr>
<tr>
<td>86</td>
<td>$\delta^3_{{0,1}}$</td>
<td>012, 102, 032, 302, 312, 132</td>
<td>4</td>
</tr>
<tr>
<td>87</td>
<td>$\delta^3_{{0,1}}$</td>
<td>012, 102, 230, 320, 231, 321</td>
<td>12</td>
</tr>
<tr>
<td>88</td>
<td>$\delta^3_{{0,1}}$</td>
<td>012, 102, 013, 103, 023, 203, 123, 213</td>
<td>12</td>
</tr>
<tr>
<td>89</td>
<td>$\delta^3_{{0,1}}$</td>
<td>012, 102, 013, 103, 230, 320, 231, 321</td>
<td>3</td>
</tr>
</tbody>
</table>
Ternary totally reflexive, totally symmetric relations

<table>
<thead>
<tr>
<th>Nr.</th>
<th>δ</th>
<th>σ</th>
<th>iso</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>ν_4^3</td>
<td>\emptyset</td>
<td>1</td>
</tr>
<tr>
<td>91</td>
<td>ν_4^3</td>
<td>012(S_3)</td>
<td>4</td>
</tr>
<tr>
<td>92</td>
<td>ν_4^3</td>
<td>012(S_3), 013(S_3)</td>
<td>6</td>
</tr>
<tr>
<td>93</td>
<td>ν_4^3</td>
<td>012(S_3), 013(S_3), 023(S_3)</td>
<td>4</td>
</tr>
</tbody>
</table>
Quartary areflexive relations

<table>
<thead>
<tr>
<th>Nr.</th>
<th>(\delta)</th>
<th>(\sigma)</th>
<th>iso</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
<td>(\emptyset)</td>
<td>0123</td>
<td>1</td>
</tr>
<tr>
<td>95</td>
<td>(\emptyset)</td>
<td>0123, 1023</td>
<td>6</td>
</tr>
<tr>
<td>96</td>
<td>(\emptyset)</td>
<td>0123, 1032</td>
<td>3</td>
</tr>
<tr>
<td>97</td>
<td>(\emptyset)</td>
<td>0123, 1203, 2013</td>
<td>4</td>
</tr>
<tr>
<td>98</td>
<td>(\emptyset)</td>
<td>0123, 1230, 2301, 3012</td>
<td>3</td>
</tr>
<tr>
<td>99</td>
<td>(\emptyset)</td>
<td>0123, 0132, 1023, 1032</td>
<td>3</td>
</tr>
<tr>
<td>100</td>
<td>(\emptyset)</td>
<td>0123, 1032, 3210, 2301</td>
<td>1</td>
</tr>
<tr>
<td>101</td>
<td>(\emptyset)</td>
<td>0123, 0132, 0213, 0231, 0312, 0321</td>
<td>4</td>
</tr>
<tr>
<td>102</td>
<td>(\emptyset)</td>
<td>0123, 1230, 2301, 3012, 2103, 3210, 0321, 1032</td>
<td>3</td>
</tr>
<tr>
<td>103</td>
<td>(\emptyset)</td>
<td>(0123(A_4))</td>
<td>1</td>
</tr>
<tr>
<td>104</td>
<td>(\emptyset)</td>
<td>(0123(S_4))</td>
<td>1</td>
</tr>
</tbody>
</table>
Quartary relations with $\delta = \delta^4_{\{0,1,2,3\}}$

<table>
<thead>
<tr>
<th>Nr.</th>
<th>δ</th>
<th>σ</th>
<th>iso</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>$\delta^4_{{0,1,2,3}}$</td>
<td>0123</td>
<td>1</td>
</tr>
<tr>
<td>106</td>
<td>$\delta^4_{{0,1,2,3}}$</td>
<td>0123, 1023</td>
<td>6</td>
</tr>
<tr>
<td>107</td>
<td>$\delta^4_{{0,1,2,3}}$</td>
<td>0123, 1032</td>
<td>3</td>
</tr>
<tr>
<td>108</td>
<td>$\delta^4_{{0,1,2,3}}$</td>
<td>0123, 1203, 2013</td>
<td>4</td>
</tr>
<tr>
<td>109</td>
<td>$\delta^4_{{0,1,2,3}}$</td>
<td>0123, 1230, 2301, 3012</td>
<td>3</td>
</tr>
<tr>
<td>110</td>
<td>$\delta^4_{{0,1,2,3}}$</td>
<td>0123, 0132, 1023, 1032</td>
<td>3</td>
</tr>
<tr>
<td>111</td>
<td>$\delta^4_{{0,1,2,3}}$</td>
<td>0123, 1032, 3210, 2301</td>
<td>1</td>
</tr>
<tr>
<td>112</td>
<td>$\delta^4_{{0,1,2,3}}$</td>
<td>0123, 0132, 0213, 0231, 0312, 0321</td>
<td>4</td>
</tr>
<tr>
<td>113</td>
<td>$\delta^4_{{0,1,2,3}}$</td>
<td>0123, 1230, 2301, 3012, 2103, 3210, 0321, 1032</td>
<td>3</td>
</tr>
<tr>
<td>114</td>
<td>$\delta^4_{{0,1,2,3}}$</td>
<td>0123(A_4)</td>
<td>1</td>
</tr>
<tr>
<td>115</td>
<td>$\delta^4_{{0,1,2,3}}$</td>
<td>0123(S_4)</td>
<td>1</td>
</tr>
</tbody>
</table>
Quartary relations with $\delta = \delta^4_{\{0,1,2\}}$

<table>
<thead>
<tr>
<th>Nr.</th>
<th>δ</th>
<th>σ</th>
<th>iso</th>
</tr>
</thead>
<tbody>
<tr>
<td>116</td>
<td>$\delta^4_{{0,1,2}}$</td>
<td>0123</td>
<td>4</td>
</tr>
<tr>
<td>117</td>
<td>$\delta^4_{{0,1,2}}$</td>
<td>0123, 1023</td>
<td>12</td>
</tr>
<tr>
<td>118</td>
<td>$\delta^4_{{0,1,2}}$</td>
<td>0123, 1203, 2013</td>
<td>4</td>
</tr>
<tr>
<td>119</td>
<td>$\delta^4_{{0,1,2}}$</td>
<td>0123, 0213, 1023, 1203, 2013, 2103</td>
<td>4</td>
</tr>
</tbody>
</table>
Quartary relations with $\delta = \delta_4^{\{0,1\}}$

<table>
<thead>
<tr>
<th>Nr.</th>
<th>δ</th>
<th>σ</th>
<th>iso</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>$\delta_4^{{0,1}}$</td>
<td>0123</td>
<td>6</td>
</tr>
<tr>
<td>121</td>
<td>$\delta_4^{{0,1}}$</td>
<td>0123, 1023</td>
<td>6</td>
</tr>
<tr>
<td>122</td>
<td>$\delta_4^{{0,1}}$</td>
<td>0123, 0132</td>
<td>6</td>
</tr>
<tr>
<td>123</td>
<td>$\delta_4^{{0,1}}$</td>
<td>0123, 1032</td>
<td>6</td>
</tr>
<tr>
<td>124</td>
<td>$\delta_4^{{0,1}}$</td>
<td>0123, 0132, 1023, 1032</td>
<td>6</td>
</tr>
</tbody>
</table>
Quartary relations with $\delta = \delta_4^{\{0,1\},\{2,3\}}$

<table>
<thead>
<tr>
<th>Nr.</th>
<th>δ</th>
<th>σ</th>
<th>iso</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>$\delta_4^{{0,1},{2,3}}$</td>
<td>0123</td>
<td>3</td>
</tr>
<tr>
<td>126</td>
<td>$\delta_4^{{0,1},{2,3}}$</td>
<td>0123, 1023</td>
<td>6</td>
</tr>
<tr>
<td>127</td>
<td>$\delta_4^{{0,1},{2,3}}$</td>
<td>0123, 1032</td>
<td>3</td>
</tr>
<tr>
<td>128</td>
<td>$\delta_4^{{0,1},{2,3}}$</td>
<td>0123, 2301</td>
<td>6</td>
</tr>
<tr>
<td>129</td>
<td>$\delta_4^{{0,1},{2,3}}$</td>
<td>0123, 0132, 1023, 1032</td>
<td>3</td>
</tr>
<tr>
<td>130</td>
<td>$\delta_4^{{0,1},{2,3}}$</td>
<td>0123, 1032, 2310, 3201</td>
<td>3</td>
</tr>
<tr>
<td>131</td>
<td>$\delta_4^{{0,1},{2,3}}$</td>
<td>0123, 1032, 2301, 3210</td>
<td>3</td>
</tr>
<tr>
<td>132</td>
<td>$\delta_4^{{0,1},{2,3}}$</td>
<td>0123, 0132, 1023, 1032, 2301, 2310, 3201, 3210</td>
<td>3</td>
</tr>
</tbody>
</table>
Special quartary relations

<table>
<thead>
<tr>
<th>Nr.</th>
<th>(\delta)</th>
<th>(\sigma)</th>
<th>iso</th>
</tr>
</thead>
<tbody>
<tr>
<td>133</td>
<td>(\iota_4)</td>
<td>(\emptyset)</td>
<td>1</td>
</tr>
<tr>
<td>134</td>
<td>(\iota_1)</td>
<td>(\emptyset)</td>
<td>1</td>
</tr>
<tr>
<td>135</td>
<td>(\iota_2)</td>
<td>(\emptyset)</td>
<td>1</td>
</tr>
<tr>
<td>136</td>
<td>(\iota_1)</td>
<td>0123((S_4))</td>
<td>1</td>
</tr>
<tr>
<td>137</td>
<td>(\iota_2)</td>
<td>0123, 1230, 2301, 3012, 2103, 3210, 0321, 1032</td>
<td>3</td>
</tr>
</tbody>
</table>
Definition

A subset $\mathcal{X} \subset \mathcal{P}_k$ is a minimal covering if

$$\forall f \in \tilde{P}_k : ([\{f\}] = \tilde{P}_k \iff \forall A \in \mathcal{X} : f \notin A)$$

(1)

$$\forall A \in \mathcal{X} \exists f \in A \forall B \in \mathcal{X} \setminus \{A\} : f \notin B$$

(2)
Minimal covering for $k = 4$

Theorem

There is exactly one minimal covering of \mathcal{P}_4 and it has 449 elements.

| k | $|\mathcal{P}_k|$ | $|\mathcal{X}|$ | Source |
|-----|-----------------|-----------------|------------------------|
| 2 | 8 | 4 | [Haddad, Rosenberg, 1991] |
| 3 | 58 | 26 | [Haddad, Lau, 2006] |
| 4 | 1102 | 449 | |
A partial order on pM_k

Definition

Define $\alpha : pM_k \rightarrow \mathbb{N}$ by

$$\alpha(X) := \begin{cases}
1 & \text{if } X = P_k \cup \{\{c_\infty\}\}, \\
\ h & \text{if } X = pPOL_k \varrho \text{ and } \varrho \text{ is an } h\text{-ary coherent relation.}
\end{cases}$$

Lemma

Let $X \in pM_k \setminus \{P_k \cup \{c_\infty\}\}$ and ϱ a coherent relation with

$$X = pPOL_k \varrho.$$

Then ϱ is unique except for permutation of coordinates. Thus α is well-defined.
A partial order on $p\mathcal{M}_k$

Lemma

Let $X, Y \in p\mathcal{M}_k$. Then \prec given by

$$X \prec Y \iff \alpha(X) < \alpha(Y)$$

is a partial order on $p\mathcal{M}_k$.
Determine a minimal covering

Theorem

Let $O : p\mathcal{M}_k \rightarrow 2^{p\mathcal{M}_k}$ with

- $O(X) = \emptyset$, if $X \in p\mathcal{M}_k$ belongs to every minimal covering, i.e.
 \[\exists f \in X \forall Y \in p\mathcal{M}_k \setminus \{X\} : f \notin Y, \]
- and
 \[\forall X \in p\mathcal{M}_k \forall Y \in O(X) : Y \prec X. \]

Then

\[X := \{X \in p\mathcal{M}_k | O(X) = \emptyset\} \]

is the unique minimal covering of $p\mathcal{M}_k$.
Some elements of every minimal covering of \(pM_k \)

Let \(X = pPOL_k \varrho \in pM_k \) and \(\varrho \) an \(h \)-ary coherent relation. Then \(X \) is in every minimal covering, if

- \(\varrho = \sigma_1 \cup \sigma_2 \) and there is \(A \subset E_k \), \(A \neq \emptyset \) with \(\sigma_1 \subset A^h \) and \(\sigma_2 \subset E_k^h \setminus A^h \),
- \(\varrho \in \{ \iota^3_k, \varrho_1, \varrho_2 \} \) with
 \[
 \iota^h_k = \left\{ (x_1, \ldots, x_h) \in E_k^h \left| |\{x_1, \ldots, x_h\}| \leq h - 1 \right. \right\},
 \]
 \[
 R_1 = \left\{ (a, a, b, b), (a, b, a, b), (a, b, b, a) \mid a, b \in E_k \right\},
 \]
 \[
 R_2 = \left\{ (a, a, b, b), (a, b, a, b) \mid a, b \in E_k \right\}.
 \]

...
Maximal clones not in every minimal covering of $p\mathcal{M}_k$

Let $X = p\text{POL}_{k\varrho} \in p\mathcal{M}_k$ and ϱ an h-ary coherent relation. Then X is not every minimal covering, if

- $h = 2$ and the transitive closure of ϱ is a partial order with a central element, i.e.
 \[
 \exists c \in E_k \forall x \in E_k : (x, c) \in \varrho \lor (c, x) \in \varrho
 \]

- $\sigma \cup \iota^h_k$ for $h \geq 4$
 \[
 \iota^h_k := \left\{ (x_0, \ldots, x_{h-1}) \in E^h_k \left| \left| \{x_0, \ldots, x_{h-1}\} \right| \leq h - 1 \right. \right\}
 \]

- \ldots

I.e. if there is only one minimal covering, then these clones are not in this minimal covering.
A binary partial Sheffer function for $k \geq 3$

Lemma

The function f_k defined by

$$f_k(x, y) := \begin{cases}
 x + 1 \mod k & \text{if } x = y, \\
 x + 2 \mod k & \text{if } x \neq 0 \text{ and } y = 0, \\
 0 & \text{if } x = 0 \text{ and } y \neq 0, \\
 0 & \text{if } x \neq k - 1 \text{ and } y = x + 1, \\
 \infty & \text{otherwise}
\end{cases}$$

is a partial Sheffer function for k with $k \geq 3$.
What to do next?

- generalize the results for all $k \geq 3$
- a formula for the number of maximal partial clones for a given k
- determine generating sets (or the cardinality of these) for maximal partial clones
- ...
Thank you for your attention.