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Some sets

Definition

Ek := {0,1, . . . , k − 1}

Pk :=
{

f (n)
∣∣∣f (n) : En

k → Ek ,n ≥ 1
}

Let D ⊆ En
k , n ≥ 1 and f (n) : D → Ek . Then f is called a

n-ary partial function on Ek with domain D. We also write
dom(f ) = D. Let P̃k be the set of all n-ary partial functions
on Ek with n ≥ 1.
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Partial clones

Definition

The set A ⊆ P̃k is a partial clone iff it is closed under
composition and contains all projections.

The composition f [g1, . . . ,gn] ∈ P̃(m)
k with f ∈ P̃(n)

k and
g1, . . . ,gn ∈ P̃(m)

k is defined by

f [g1, . . . ,gn](x) :=


f (g1(x), . . . ,gn(x))

if x ∈
⋂n

i=1 dom(gi),
not defined otherwise.
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Maximal partial clones

Definition

A clone A 6= P̃k is called maximal, if there is no clone A′ with

A ⊂ A′ ⊂ P̃k .

Let pMk be the set of all maximal partial clones.
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Coverings of maximal partial clones

Let Ĉ := {Ci | i ∈ I} with Ci ⊆ P for some set P.
X̂ ⊆ Ĉ is a covering of Ĉ if

⋃
X̂ =

⋃
Ĉ.

A covering X̂ is minimal if
⋃
Ŷ ⊂

⋃
X̂ for all Ŷ ⊂ X̂ .

Theorem

There is a unique minimal covering of pMk for each k ≥ 2.
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Aim

Show which clones represent sinks in the graph and which
do not

Û Â Q̂0 Q̂1 Ŝ

L̂

k = 2: determined by Haddad and Rosenberg in 1991
(4 maximal clones in the minimal covering out of 8)
k = 3: determined by Haddad and Lau in 2006
(26 out of 58)
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Preservation of relations

A (partial) function f (n) ∈ P̃k preserves the relation % ⊆ Eh
k , if

for all r∗1, . . . , r∗n with r∗j = (r1j , . . . , rhj)
T ∈ % and

ri∗ = (ri1, . . . , rin) ∈ dom(f ) holds:

f (r∗1, . . . , r∗n) :=


f (r11, r12, . . . , r1n)
f (r21, r22, . . . , r2n)

...
f (rh1, rh2, . . . , rhn)

 ∈ %.
Short: f ∈ pPOLk%.
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Haddad-Rosenberg Theorem [Haddad,
Rosenberg, 1989, 1992]

Theorem

If C is a maximal partial clone of P̃k , then

C = Pk ∪ {f ∈ P̃k | dom(f ) = ∅}

or
C = pPOLk%

for some relation % ∈ R̃max
k .

The relations in R̃max
k describe only maximal partial clones.

The description of these given by Haddad and Rosenberg is
quite complex and not needed here.
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Partition of R̃max
k with a coarse description

R̃max
k = U ∪ A ∪Q ∪ S ∪ L
U : unary relations (% ∈ U ⇐⇒ ∅ ⊂ % ⊂ Ek ),
A: areflexive relations,
Q: quasi-diagonal relations, i.e. if % ∈ Q then % = σ ∪ δε
with σ areflexive and ε a non-trivial equivalence
relation.

Q0: ε has no singular equivalence classes,
Q1: ε has at least one singular equivalence class,

S: non-trivial totally reflexive, totally symmetric
relations,
L: special quaternary relations.

Let Û := {pPOLk% | % ∈ U}, . . .

δ(h)
ε := {(x1, . . . , xh) ∈ Eh

k | (i , j) ∈ ε =⇒ xi = xj}
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A member of the minimal covering X̂4 of pM 4

Lemma

Let % :=

(
0 2
1 3

)
∈ A. Then C := pPOL4% ∈ X̂4.

Proof.

show there is some f ∈ C with f 6∈ X for all
X ∈ pM 4 \ {C},
do it step by step:

find partial functions f0, . . . , fl ∈ C such that for each
X ∈ pM 4 \ {C} there is some fi with fi 6∈ X
generate f from a good combination of f0, . . . , fl

start with a unary function f0.
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Doing it step by step — a product of partial
functions

f (n),g(m) ∈ P̃k and D := dom f , E := dom g
D′ is a matrix representing D (every row of D′ is an
element of D)
E ′ is analogous, i.e. if m = 3, E = {(1,2,3), (2,3,0)}

then E ′ =
(

1 2 3
2 3 0

)
f ⊗ g is an nm-ary function with A := dom(f ⊗ g),

A′ :=
(

D′1 . . . D′m
E ′ . . . E ′

)
(D′i is the i-th column of D′)

and (f ⊗ g)

(
D′1 . . . D′m
E ′ . . . E ′

)
=

(
f (D′)
g(E ′)

)



The minimal
covering of

maximal
partial clones
in 4-valued

logic

Schölzel

Introduction

Searching for
members of
the minimal
covering

Result

Doing it step by step — a product of partial
functions

f ⊗ g is an nm-ary function with A := dom(f ⊗ g),

A′ :=
(

D′1 . . . D′m
E ′ . . . E ′

)
(D′i is the i-th column of D′)

and (f ⊗ g)

(
D′1 . . . D′m
E ′ . . . E ′

)
=

(
f (D′)
g(E ′)

)
D′ :=

(
0 0
0 1

)
, f (D′) = f

(
0 0
0 1

)
:=

(
1
2

)
E ′ :=

(
1 2 3
2 3 0

)
, f (E ′) :=

(
0
1

)

(f ⊗ g)


0 0 0 0 0 0
0 0 0 1 1 1
1 2 3 1 2 3
2 3 0 2 3 0

 =


1
2
0
1





The minimal
covering of

maximal
partial clones
in 4-valued

logic

Schölzel

Introduction

Searching for
members of
the minimal
covering

Result

The function f0

Proof.

The unary function f0 should be defined such that
f0 6∈ pPOL4{x} for all x ∈ E4.
Define f0 by

x f0(x)

0 2
1 3
2 0
3 1

Then f0 ∈ C and f0 6∈ pPOL4{a} for all a ∈ E4.
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The next step f1

Proof.

Now pick a X ∈ pM 4 with f0 ∈ X and X 6= C, e.g.

X = pPOL4ψ with ψ =

(
0 2 0 1 2 3
1 3 0 1 2 3

)
Define f1 with (dom f1)′ =

(
0 2 0 1 2 3
1 3 0 1 2 3

)
and

f1

(
0 2 0 1 2 3
1 3 0 1 2 3

)
=

(
0
3

)
.

Then f1 ∈ C and f1 6∈ X .
Continue for all other Y ∈ pM 4 and find f2, . . . , fl .
Let f := f0 ⊗ f1 ⊗ · · · ⊗ fl . Then f ∈ C by construction.
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Not a member of the minimal covering X̂4 of
pM 4

Lemma

Let % :=

 0 0 0 1
1 1 2 2
2 3 3 3

 ∪

 a

a
b

 ∣∣∣∣∣∣ a,b ∈ E4

 ∈ Q1.

Then C := pPOL4% 6∈ X̂4.

Proof.

Let ψ =

(
0 0 1
1 2 2

)
∪
{(

a
a

) ∣∣∣∣ a ∈ E4

}
∈ Q2.

Let f (n) ∈ C and assume f 6∈ pPOL4{3} and f 6∈ pPOL4ψ.
Then exist x1, . . . , xn ∈ {3} with x := f (x1, . . . , xn) ∈ E4 \ {3}
and y1, . . . , yn ∈ ψ with y := f (y1, . . . , yn) ∈ E2

4 \ ψ.

Then
(

yi
xi

)
∈ % for all i but

(
y
x

)
6∈ %, i.e. f 6∈ C.

Contradiction. Thus C ⊆ pPOL4{3} ∪ pPOL4ψ.
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Theorem

The minimal covering of pM 4 has 449 elements and all the
elements of the covering have been determined.

Û

Â(2)

Â(3)

Â(4)

Q̂(2)
0

Q̂(3)
0

Q̂(4)
0

Q̂(3)
1

Q̂(4)
1

Ŝ(3)

Ŝ(4)

L̂
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The End

Thank you for your attention.
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