

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction

Searching for members of the minimal covering

Result

The minimal covering of maximal partial clones in 4-valued logic

Karsten Schölzel

Institute of Mathematics, University of Rostock, Germany

May 21, 2009

Outline

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction

Searching for members of the minimal covering

Result

1 Introduction

2 Searching for members of the minimal covering

3 Result

Some sets

Definition

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction

Searching fo members of the minimal covering

Result

$\begin{array}{lll} E_k & := & \{0, 1, \dots, k-1\} \\ P_k & := & \left\{ f^{(n)} \middle| f^{(n)} : E_k^n \to E_k, n \ge 1 \right\} \end{array}$

Let $D \subseteq E_k^n$, $n \ge 1$ and $f^{(n)} : D \to E_k$. Then *f* is called a *n*-ary partial function on E_k with domain *D*. We also write dom(f) = D. Let \tilde{P}_k be the set of all *n*-ary partial functions on E_k with $n \ge 1$.

Partial clones

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction

Searching fo members of the minimal covering

Result

Definition The set $A \subseteq \tilde{P}_k$ is a partial clone iff it is closed under composition and contains all projections.

The composition $f[g_1, \ldots, g_n] \in \widetilde{P}_k^{(m)}$ with $f \in \widetilde{P}_k^{(n)}$ and $g_1, \ldots, g_n \in \widetilde{P}_k^{(m)}$ is defined by

$$f[g_1,\ldots,g_n](\mathbf{x}) := \begin{cases} f(g_1(\mathbf{x}),\ldots,g_n(\mathbf{x})) \\ & \text{if } \mathbf{x} \in \bigcap_{i=1}^n \operatorname{dom}(g_i), \\ & \text{not defined otherwise.} \end{cases}$$

Maximal partial clones

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction

Searching fo members of the minimal covering

Result

Definition

A clone $A \neq \widetilde{P}_k$ is called maximal, if there is no clone A' with

$$A \subset A' \subset \widetilde{P}_k.$$

Let $p\mathcal{M}_k$ be the set of all maximal partial clones.

Coverings of maximal partial clones

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction

Searching fo members of the minimal covering

Result

Let $\hat{\mathcal{C}} := \{ C_i \mid i \in I \}$ with $C_i \subseteq P$ for some set P. $\hat{\mathcal{X}} \subseteq \hat{\mathcal{C}}$ is a covering of $\hat{\mathcal{C}}$ if $\bigcup \hat{\mathcal{X}} = \bigcup \hat{\mathcal{C}}$. A covering $\hat{\mathcal{X}}$ is minimal if $\bigcup \hat{\mathcal{Y}} \subset \bigcup \hat{\mathcal{X}}$ for all $\hat{\mathcal{Y}} \subset \hat{\mathcal{X}}$.

Theorem

There is a unique minimal covering of $p\mathcal{M}_k$ for each $k \geq 2$.

Aim

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction

Searching for members of the minimal covering

Result

Show which clones represent sinks in the graph and which do not

- k = 2: determined by Haddad and Rosenberg in 1991 (4 maximal clones in the minimal covering out of 8)
- k = 3: determined by Haddad and Lau in 2006 (26 out of 58)

Preservation of relations

The minimal covering of maximal partial clones in 4-valued logic

Schölze

Introduction

Searching for members of the minimal covering

Result

A (partial) function $f^{(n)} \in \widetilde{P}_k$ preserves the relation $\varrho \subseteq E_k^h$, if for all $\mathbf{r}_{*1}, \ldots, \mathbf{r}_{*n}$ with $\mathbf{r}_{*j} = (r_{1j}, \ldots, r_{hj})^T \in \varrho$ and $\mathbf{r}_{i*} = (r_{i1}, \ldots, r_{in}) \in \operatorname{dom}(f)$ holds:

$$f(\mathbf{r}_{*1},\ldots,\mathbf{r}_{*n}) := \begin{pmatrix} f(r_{11},r_{12},\ldots,r_{1n}) \\ f(r_{21},r_{22},\ldots,r_{2n}) \\ \vdots \\ f(r_{h1},r_{h2},\ldots,r_{hn}) \end{pmatrix} \in \varrho.$$

Short: $f \in pPOL_k \varrho$.

Haddad-Rosenberg Theorem [Haddad, Rosenberg, 1989, 1992]

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction

Searching for members of the minimal covering

Result

Theorem

If C is a maximal partial clone of \tilde{P}_k , then

$$C = P_k \cup \{f \in \widetilde{P}_k \mid \operatorname{dom}(f) = \emptyset\}$$

or

$$C = pPOL_k \varrho$$

for some relation $\varrho \in \widetilde{R}_k^{\max}$.

The relations in \widetilde{R}_{k}^{\max} describe only maximal partial clones. The description of these given by Haddad and Rosenberg is quite complex and not needed here.

Partition of \widetilde{R}_k^{\max} with a coarse description

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction

Searching for members of the minimal covering

Result

$\widehat{R}_k^{\max} = \mathcal{U} \cup \mathcal{A} \cup \mathcal{Q} \cup \mathcal{S} \cup \mathcal{L}$

- \mathcal{U} : unary relations ($\varrho \in \mathcal{U} \iff \emptyset \subset \varrho \subset E_k$),
- *A*: areflexive relations,
- Q: quasi-diagonal relations, i.e. if $\rho \in Q$ then $\rho = \sigma \cup \delta_{\varepsilon}$ with σ areflexive and ε a non-trivial equivalence relation.
 - **\mathcal{Q}_0:** ε has no singular equivalence classes,
 - **\mathbb{Q}_1:** ε has at least one singular equivalence class,
- S: non-trivial totally reflexive, totally symmetric relations,

 \blacksquare \mathcal{L} : special quaternary relations.

Let $\hat{\mathcal{U}} := \{ pPOL_k \varrho \mid \varrho \in \mathcal{U} \}, \ldots$

A member of the minimal covering $\hat{\mathcal{X}}_4$ of $p_{\mathcal{M}_4}$

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction

Searching for members of the minimal covering

Result

Lemma

$$\textit{Let } \varrho := \left(\begin{array}{cc} 0 & 2 \\ 1 & 3 \end{array} \right) \in \mathcal{A}. \textit{ Then } C := \textit{pPOL}_4 \varrho \in \hat{\mathcal{X}}_4.$$

Proof.

- show there is some $f \in C$ with $f \notin X$ for all $X \in p\mathcal{M}_4 \setminus \{C\}$,
 - do it step by step:
 - find partial functions $f_0, ..., f_l \in C$ such that for each $X \in p\mathcal{M}_4 \setminus \{C\}$ there is some f_i with $f_i \notin X$
 - **generate** *f* from a good combination of f_0, \ldots, f_l
 - start with a unary function f_0 .

Doing it step by step — a product of partial functions

The minimal covering of maximal partial clones in 4-valued logic

Schölze

Introduction

Searching for members of the minimal covering

Result

- $f^{(n)}, g^{(m)} \in \widetilde{P}_k$ and $D := \operatorname{dom} f, E := \operatorname{dom} g$
- D' is a matrix representing D (every row of D' is an element of D)
- E' is analogous, i.e. if m = 3, $E = \{(1, 2, 3), (2, 3, 0)\}$ then $E' = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 0 \end{pmatrix}$

• $f \otimes g$ is an *nm*-ary function with $A := \text{dom}(f \otimes g)$, $A' := \begin{pmatrix} D'_1 & \cdots & D'_m \\ E' & \cdots & E' \end{pmatrix}$ (D'_i is the *i*-th column of D')

and
$$(f \otimes g) \begin{pmatrix} D'_1 & \dots & D'_m \\ E' & \dots & E' \end{pmatrix} = \begin{pmatrix} f(D') \\ g(E') \end{pmatrix}$$

Doing it step by step — a product of partial functions

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction

Searching for members of the minimal covering

Result

f \otimes g is an nm-ary function with A := dom(f \otimes g),
 A' :=
$$\begin{pmatrix} D'_1 & \cdots & D'_m \\ E' & \cdots & E' \end{pmatrix}$$
 (D'_i is the i-th column of D')
 and $(f \otimes g) \begin{pmatrix} D'_1 & \cdots & D'_m \\ E' & \cdots & E' \end{pmatrix} = \begin{pmatrix} f(D') \\ g(E') \end{pmatrix}$

 D' := $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, $f(D') = f \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$:= $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$

 E' := $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 0 \end{pmatrix}$, $f(E') := \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

 (f \otimes g) $\begin{pmatrix} 0 & 0 & 0 & | & 0 & 0 & 0 \\ 0 & 0 & | & 1 & 1 & 1 \\ 1 & 2 & 3 & | & 2 & 3 \\ 2 & 3 & 0 & | & 2 & 3 & 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix}$

The function f_0

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction

Searching for members of the minimal covering

Result

Proof.

The unary function f_0 should be defined such that $f_0 \notin pPOL_4\{x\}$ for all $x \in E_4$. Define f_0 by

$$\begin{array}{c|cc}
x & f_0(x) \\
0 & 2 \\
1 & 3 \\
2 & 0 \\
3 & 1
\end{array}$$

Then $f_0 \in C$ and $f_0 \notin pPOL_4\{a\}$ for all $a \in E_4$.

The next step f_1

Proof.

The minimal covering of maximal partial clones in 4-valued logic

Schölze

Introduction

Searching for members of the minimal covering

Result

Now pick a $X \in p\mathcal{M}_4$ with $f_0 \in X$ and $X \neq C$, e.g.
$X = pPOL_4\psi \text{ with } \psi = \begin{pmatrix} 0 & 2 & 0 & 1 & 2 & 3 \\ 1 & 3 & 0 & 1 & 2 & 3 \end{pmatrix}$
Define f_1 with $(\text{dom } f_1)' = \begin{pmatrix} 0 & 2 & 0 & 1 & 2 & 3 \\ 1 & 3 & 0 & 1 & 2 & 3 \end{pmatrix}$ and
$f_1\left(\begin{array}{rrrrr} 0 & 2 & 0 & 1 & 2 & 3 \\ 1 & 3 & 0 & 1 & 2 & 3 \end{array}\right) = \left(\begin{array}{r} 0 \\ 3 \end{array}\right).$
Then $f_1 \in C$ and $f_1 \notin X$.
Continue for all other $Y \in p\mathcal{M}_4$ and find f_2, \ldots, f_l .
Let $f := f_0 \otimes f_1 \otimes \cdots \otimes f_l$. Then $f \in C$ by construction.

Not a member of the minimal covering $\hat{\mathcal{X}}_4$ of $p\mathcal{M}_4$

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction

Searching for members of the minimal covering

Result

Lemma
Let
$$\varrho := \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 2 & 2 \\ 2 & 3 & 3 & 3 \end{pmatrix} \cup \left\{ \begin{pmatrix} a \\ a \\ b \end{pmatrix} \middle| a, b \in E_4 \right\} \in Q_1.$$
Then $C := pPOL_4 \varrho \notin \hat{X}_4.$

Proof.

Let
$$\psi = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 2 & 2 \end{pmatrix} \cup \left\{ \begin{pmatrix} a \\ a \end{pmatrix} \middle| a \in E_4 \right\} \in Q_2.$$

Let $f^{(n)} \in C$ and assume $f \notin pPOL_4\{3\}$ and $f \notin pPOL_4\psi$.
Then exist $x_1, \ldots, x_n \in \{3\}$ with $x := f(x_1, \ldots, x_n) \in E_4 \setminus \{3\}$
and $y_1, \ldots, y_n \in \psi$ with $y := f(y_1, \ldots, y_n) \in E_4^2 \setminus \psi$.
Then $\begin{pmatrix} y_i \\ x_i \end{pmatrix} \in \varrho$ for all i but $\begin{pmatrix} y \\ x \end{pmatrix} \notin \varrho$, i.e. $f \notin C$.
Contradiction. Thus $C \subseteq pPOL_4\{3\} \cup pPOL_4\psi$.

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction

Searching for members of the minimal covering

Result

Theorem

The minimal covering of $p_{\mathcal{M}_4}$ has 449 elements and all the elements of the covering have been determined.

The End

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction

Searching fo members of the minimal covering

Result

Thank you for your attention.