The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction
Searching for

Result

The minimal covering of maximal partial clones in 4 -valued logic

Karsten Schölzel
Institute of Mathematics, University of Rostock, Germany

May 21, 2009

The minimal covering of maximal partial clones in 4-valued logic

Schölzel
1 Introduction

Introduction

Searching for members of the minimal covering

Result

Outline

Some sets

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction
Searching for

Result

Definition

$$
\begin{aligned}
E_{k} & :=\{0,1, \ldots, k-1\} \\
P_{k} & :=\left\{f^{(n)} \mid f^{(n)}: E_{k}^{n} \rightarrow E_{k}, n \geq 1\right\}
\end{aligned}
$$

Let $D \subseteq E_{k}^{n}, n \geq 1$ and $f^{(n)}: D \rightarrow E_{k}$. Then f is called a n-ary partial function on E_{k} with domain D. We also write $\operatorname{dom}(f)=D$. Let P_{k} be the set of all n-ary partial functions on E_{k} with $n \geq 1$.

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction
Searching for
members of
the minimal
covering
Result

Partial clones

Definition

The set $A \subseteq \widetilde{P}_{k}$ is a partial clone iff it is closed under composition and contains all projections.

The composition $f\left[g_{1}, \ldots, g_{n}\right] \in \widetilde{P}_{k}^{(m)}$ with $f \in \widetilde{P}_{k}^{(n)}$ and $g_{1}, \ldots, g_{n} \in \widetilde{P}_{k}^{(m)}$ is defined by

$$
f\left[g_{1}, \ldots, g_{n}\right](\mathbf{x}):= \begin{cases}f\left(g_{1}(\mathbf{x}), \ldots,\right. & \left.g_{n}(\mathbf{x})\right) \\ & \text { if } \mathbf{x} \in \bigcap_{i=1}^{n} \operatorname{dom}\left(g_{i}\right) \\ \text { not defined } & \text { otherwise }\end{cases}
$$

Maximal partial clones

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction

Searching for
members of
the minimal
covering
Result

Definition

A clone $A \neq \widetilde{P}_{k}$ is called maximal, if there is no clone A^{\prime} with

$$
A \subset A^{\prime} \subset \widetilde{P}_{k}
$$

Let $p \mathscr{M}_{k}$ be the set of all maximal partial clones.

Coverings of maximal partial clones

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction
Searching for members of the minimal covering

Result

Let $\hat{\mathcal{C}}:=\left\{C_{i} \mid i \in I\right\}$ with $C_{i} \subseteq P$ for some set P.
$\hat{\mathcal{X}} \subseteq \hat{\mathcal{C}}$ is a covering of $\hat{\mathcal{C}}$ if $\cup \hat{\mathcal{X}}=\bigcup \hat{\mathcal{C}}$.
A covering $\hat{\mathcal{X}}$ is minimal if $\cup \hat{\mathcal{Y}} \subset \bigcup \hat{\mathcal{X}}$ for all $\hat{\mathcal{Y}} \subset \hat{\mathcal{X}}$.

Theorem

There is a unique minimal covering of $p \mathscr{M}_{k}$ for each $k \geq 2$.

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction
Searching for members of the minimal covering

Result

Aim

Show which clones represent sinks in the graph and which do not

■ $k=2$: determined by Haddad and Rosenberg in 1991 (4 maximal clones in the minimal covering out of 8)
■ $k=3$: determined by Haddad and Lau in 2006 (26 out of 58)

Preservation of relations

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction
Searching for members of the minimal covering

Result

A (partial) function $f^{(n)} \in \widetilde{P}_{k}$ preserves the relation $\varrho \subseteq E_{k}^{h}$, if for all $\mathbf{r}_{* 1}, \ldots, \mathbf{r}_{* n}$ with $\mathbf{r}_{* j}=\left(r_{1 j}, \ldots, r_{n j}\right)^{\mathrm{T}} \in \varrho$ and $\mathbf{r}_{i *}=\left(r_{i 1}, \ldots, r_{i n}\right) \in \operatorname{dom}(f)$ holds:

$$
f\left(\mathbf{r}_{* 1}, \ldots, \mathbf{r}_{* n}\right):=\left(\begin{array}{c}
f\left(r_{11}, r_{12}, \ldots, r_{1 n}\right) \\
f\left(r_{21}, r_{22}, \ldots, r_{2 n}\right) \\
\vdots \\
f\left(r_{h 1}, r_{h 2}, \ldots, r_{h n}\right)
\end{array}\right) \in \varrho .
$$

Short: $f \in p P O L_{k} \varrho$.

Haddad-Rosenberg Theorem [Haddad, Rosenberg, 1989, 1992]

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Theorem

If C is a maximal partial clone of \widetilde{P}_{k}, then

$$
C=P_{k} \cup\left\{f \in \widetilde{P}_{k} \mid \operatorname{dom}(f)=\emptyset\right\}
$$

or

$$
C=p P O L_{k} \varrho
$$

for some relation $\varrho \in \widetilde{R}_{k}^{\max }$.
The relations in $\widetilde{R}_{k}^{\max }$ describe only maximal partial clones. The description of these given by Haddad and Rosenberg is quite complex and not needed here.

Partition of $\widetilde{R}_{k}^{\max }$ with a coarse description

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

$$
\widetilde{R}_{k}^{\max }=\mathcal{U} \cup \mathcal{A} \cup \mathcal{Q} \cup \mathcal{S} \cup \mathcal{L}
$$

- \mathcal{U} : unary relations $\left(\varrho \in \mathcal{U} \Longleftrightarrow \emptyset \subset \varrho \subset E_{k}\right)$,
- A: areflexive relations,
- \mathcal{Q} : quasi-diagonal relations, i.e. if $\varrho \in \mathcal{Q}$ then $\varrho=\sigma \cup \delta_{\varepsilon}$ with σ areflexive and ε a non-trivial equivalence relation.
- $\mathcal{Q}_{0}: \varepsilon$ has no singular equivalence classes,
- $\mathcal{Q}_{1}: \varepsilon$ has at least one singular equivalence class,
- \mathcal{S} : non-trivial totally reflexive, totally symmetric relations,
- \mathcal{L} : special quaternary relations.

Let $\hat{\mathcal{U}}:=\left\{p P O L_{k} \varrho \mid \varrho \in \mathcal{U}\right\}, \ldots$

A member of the minimal covering $\hat{\mathcal{X}}_{4}$ of $p \mathscr{M}_{4}$

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction
Searching for members of the minimal covering

Result

Lemma

$$
\text { Let } \varrho:=\left(\begin{array}{ll}
0 & 2 \\
1 & 3
\end{array}\right) \in \mathcal{A} \text {. Then } C:=p P O L_{4} \varrho \in \hat{\mathcal{X}}_{4} \text {. }
$$

Proof.

- show there is some $f \in C$ with $f \notin X$ for all $X \in p \mathscr{M}_{4} \backslash\{C\}$,
- do it step by step:

■ find partial functions $f_{0}, \ldots, f_{l} \in C$ such that for each $X \in p \mathscr{M}_{4} \backslash\{C\}$ there is some f_{i} with $f_{i} \notin X$

- generate f from a good combination of f_{0}, \ldots, f_{l}
- start with a unary function f_{0}.

Doing it step by step — a product of partial functions

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction
Searching for members of the minimal covering

Result
$\square f^{(n)}, g^{(m)} \in \widetilde{P}_{k}$ and $D:=\operatorname{dom} f, E:=\operatorname{dom} g$
■ D^{\prime} is a matrix representing D (every row of D^{\prime} is an element of D)
■ E^{\prime} is analogous, i.e. if $m=3, E=\{(1,2,3),(2,3,0)\}$ then $E^{\prime}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 0\end{array}\right)$
■ $f \otimes g$ is an $n m$-ary function with $A:=\operatorname{dom}(f \otimes g)$,
$A^{\prime}:=\left(\begin{array}{ccc}D_{1}^{\prime} & \ldots & D_{m}^{\prime} \\ E^{\prime} & \ldots & E^{\prime}\end{array}\right)\left(D_{i}^{\prime}\right.$ is the i-th column of $\left.D^{\prime}\right)$
and $(f \otimes g)\left(\begin{array}{lll}D_{1}^{\prime} & \ldots & D_{m}^{\prime} \\ E^{\prime} & \ldots & E^{\prime}\end{array}\right)=\binom{f\left(D^{\prime}\right)}{g\left(E^{\prime}\right)}$

Doing it step by step — a product of partial functions

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction
Searching for members of the minimal covering

Result

■ $f \otimes g$ is an $n m$-ary function with $A:=\operatorname{dom}(f \otimes g)$,
$A^{\prime}:=\left(\begin{array}{lll}D_{1}^{\prime} & \ldots & D_{m}^{\prime} \\ E^{\prime} & \ldots & E^{\prime}\end{array}\right)\left(D_{i}^{\prime}\right.$ is the i-th column of $\left.D^{\prime}\right)$
and $(f \otimes g)\left(\begin{array}{lll}D_{1}^{\prime} & \ldots & D_{m}^{\prime} \\ E^{\prime} & \ldots & E^{\prime}\end{array}\right)=\binom{f\left(D^{\prime}\right)}{g\left(E^{\prime}\right)}$
$\square D^{\prime}:=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right), f\left(D^{\prime}\right)=f\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right):=\binom{1}{2}$
$\square E^{\prime}:=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 0\end{array}\right), f\left(E^{\prime}\right):=\binom{0}{1}$
$■(f \otimes g)\left(\begin{array}{lll|lll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ \hline 1 & 2 & 3 & 1 & 2 & 3 \\ 2 & 3 & 0 & 2 & 3 & 0\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ \hline 0 \\ 1\end{array}\right)$

The function f_{0}

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction
Searching for members of the minimal covering

Result

Proof.

The unary function f_{0} should be defined such that $f_{0} \notin p P O L_{4}\{x\}$ for all $x \in E_{4}$.
Define f_{0} by

x	$f_{0}(x)$
0	2
1	3
2	0
3	1

Then $f_{0} \in C$ and $f_{0} \notin p P O L_{4}\{a\}$ for all $a \in E_{4}$.

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction
Searching for members of the minimal covering

Result

The next step f_{1}

Proof.

Now pick a $X \in p \mathscr{M}_{4}$ with $f_{0} \in X$ and $X \neq C$, e.g. $X=p P O L_{4} \psi$ with $\psi=\left(\begin{array}{cccccc}0 & 2 & 0 & 1 & 2 & 3 \\ 1 & 3 & 0 & 1 & 2 & 3\end{array}\right)$
Define f_{1} with $\left(\operatorname{dom} f_{1}\right)^{\prime}=\left(\begin{array}{llllll}0 & 2 & 0 & 1 & 2 & 3 \\ 1 & 3 & 0 & 1 & 2 & 3\end{array}\right)$ and $f_{1}\left(\begin{array}{llllll}0 & 2 & 0 & 1 & 2 & 3 \\ 1 & 3 & 0 & 1 & 2 & 3\end{array}\right)=\binom{0}{3}$.
Then $f_{1} \in C$ and $f_{1} \notin X$.
Continue for all other $Y \in p \mathscr{M}_{4}$ and find f_{2}, \ldots, f_{l}.
Let $f:=f_{0} \otimes f_{1} \otimes \cdots \otimes f_{l}$. Then $f \in C$ by construction.

Not a member of the minimal covering $\hat{\mathcal{X}}_{4}$ of

 $p \mathscr{M}_{4}$The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction
Searching for members of the minimal covering

Result

Lemma
Let $\varrho:=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 1 & 1 & 2 & 2 \\ 2 & 3 & 3 & 3\end{array}\right) \cup\left\{\left.\left(\begin{array}{l}a \\ a \\ b\end{array}\right) \right\rvert\, a, b \in E_{4}\right\} \in \mathcal{Q}_{1}$.
Then $C:=p \mathrm{POL}_{4} \varrho \notin \hat{\mathcal{X}}_{4}$.

Proof.

Let $\psi=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 2 & 2\end{array}\right) \cup\left\{\left.\binom{a}{a} \right\rvert\, a \in E_{4}\right\} \in \mathcal{Q}_{2}$.
Let $f^{(n)} \in C$ and assume $f \notin p P O L_{4}\{3\}$ and $f \notin p P O L_{4} \psi$.
Then exist $x_{1}, \ldots, x_{n} \in\{3\}$ with $x:=f\left(x_{1}, \ldots, x_{n}\right) \in E_{4} \backslash\{3\}$ and $y_{1}, \ldots, y_{n} \in \psi$ with $y:=f\left(y_{1}, \ldots, y_{n}\right) \in E_{4}^{2} \backslash \psi$. Then $\binom{y_{i}}{x_{i}} \in \varrho$ for all i but $\binom{y}{x} \notin \varrho$, i.e. $f \notin C$.
Contradiction. Thus $C \subseteq p \mathrm{PO}_{4}\{3\} \cup p P O L_{4} \psi$.

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction
Searching for members of the minimal covering

Result

Theorem

The minimal covering of $p \mathscr{M}_{4}$ has 449 elements and all the elements of the covering have been determined.

The End

The minimal covering of maximal partial clones in 4-valued logic

Schölzel

Introduction

Searching for members of the minimal covering

Result

Thank you for your attention.

