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1 Introduction

We start with the paper [1] and thus come back to continuous convergence and to the
characterization of compactness with respect to this convergence structure for the space
C(X, Y ) of continuous functions, where X and Y are topological spaces. More generally
we can use for X, Y convergence spaces, as was done for instance in [11] and [15]. But in
the first paper of this title X and Y were topological spaces and we will continue with this
assumption.

What is the aim of our paper?

1. In the main theorems [15, (3.24), (3.27)], [1, 33] and corollary [11, 10] necessary and
sufficient conditions were given to ensure that H ⊆ C(X, Y ) is relatively compact
w. r. t. continuous convergence. Here, as a corollary, we characterize compactness of
H.

2. In the papers [11], [1] not provided examples which show that the assumptions in our
theorems (for instance that Y is Hausdorff) we cannot omit.

3. It is known for long time that the important notion of equicontinuity can be char-
acterized using the canonical map as used in duality theory (embedding in a second
dual) ([7], and [15, theorem 4.36]). In the paper [8] and especially in the book [12] this
approach was extended to include even continuity too. But the two Ascoli-Arzela the-
orems ([12, (13.15), (13.21)]) based on this approach are not correct. We will show this
by an instructive counter example. And we will give some comments for this situation.
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2 Compactness in (C(X, Y ), c- lim)(C(X, Y ), c- lim)(C(X, Y ), c- lim)

We will use the following notion of relative compactness: Let X be a topological space, then
A ⊂ X is called relatively compact iff for each ultrafilter π on X,

A ∈ π =⇒ ∃ x ∈ X : π −→ x . (see [16], [3])

We still need a lemma.

Lemma 2.1 Let X be a topological space, Y a Hausdorff topological space; let η be a
topology (lim a convergence structure) on C(X, Y ) with τp ≤ η (τp-lim ≤ lim). If H ⊆
C(X, Y ) is η-compact, then H is τp-closed in Y X .

For a (simple) proof see lemma [3, theorem 3.1].

Now [1, theorem 33] states: If X, Y topological spaces, H ⊆ C(X, Y ), H 6= ∅ and we consider
for H the two conditions:

(α) ∀x ∈ X : H(x) = {f(x)|f ∈ H} is relatively compact.

(β) H is evenly continuous.

then the following holds:

1. Let X be Hausdorff; H relatively c-compact =⇒ (α), (β).

2. Let X be a T3-space, (α), (β) =⇒ H is in (C(X, Y ), c- lim) relatively compact.

Theorem 2.2 [Corollary of [1, theorem33]] Let be X, Y topological spaces, H ⊆ C(X, Y );
for H we consider the conditions:

(α) ∀x ∈ X : H(x) is relatively compact

(β) H is evenly continuous

(γ) H is in Y Xτp-closed.

Then hold:

1. Let Y be Hausdorff, H is c- lim-compact =⇒ (α), (β), (γ).

2. (α), (β), (γ) =⇒ H is in (C(X, Y ), c- lim) compact.

Proof. 1. H c- lim-compact in C(X, Y ) =⇒ H is c- lim-relatively compact; then follows
(α), (β) by theorem 33. Now since τp ≤ c- lim holds in C(X, Y ), lemma 2.1 yields
condition (γ) too.
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2. By the Tychonoff theorem: (α) =⇒ H is τp-relatively compact in Y X , hence H is
τp-compact in Y X by (γ); H ⊆ C(X, Y ) =⇒ H is in C(X, Y )τp-compact too. Now let
π be an ultrafilter on C(X, Y ) with H ∈ π: we find g ∈ H : π

τp−→ g, but then follows:
π

c−→ g by (β) and by [1, theorem 31]. Hence H is in C(X, Y ) c- lim-compact.

3 Examples

For the construction of our examples we need a result of S.Mrowka which we found in [6]
and a corollary of this result.

Proposition 3.1 Let (X, τ) be a Hausdorff topologigal space, where of course τ means
the system of all open sets of X; let (Ai)i∈I be a net in 2X , 2X is the set of closed sets of X.
Then (Ai) has a subnet Kuratowski-Hausdorff-converging in 2X .

Proof. We know: a net(Bi) (from 2X) converges iff LsBi ⊆ LiBi holds, meaning:

∀x ∈ X, ∀G ∈ τ : x ∈ G and G ∩Bi 6= ∅

for all i from a confinal set of I it follows that eventually G ∩ Bi 6= ∅, since {G ∈ τ |x ∈ G}
is a basis of the neighborhood filter U(x). Here by Ls, Li we denote the limit superior and
limit inferior respectively.

Now we consider the two-point space {0, 1} provided with discrete topology.

∀i ∈ I : let be fi ∈ {0, 1}τ : ∀G ∈ τ : fi(G) =

1, Ai ∩G 6= ∅

0, Ai ∩G = ∅ .

Obviously, the map fi → Ai is injective.

{0, 1}τ with pointwise topology τp is compact by the Tychonoff theorem, and hence for (fi)

there exists a subnet (fik) and a f from {0, 1}τ such that fik
τp−→ f . Now we want to show

Ls(Aik) ⊆ Li(Aik) : ∀(x,G) ∈ X × τ : x ∈ Ls(Aik) and x ∈ G: there exists a confinal subset

K1 ⊆ K such that ∀k ∈ K1 : Aik ∩G 6= ∅

implying ∀k ∈ K1 : fik(G) = 1. We assume that f(G) = 0 holds, {0} is open and for our net
(fik)k∈K holds: fik(G) −→ f(G) implying eventually fik(G) = 0, yielding a contradiction
because K1 is kofinal in K and ∀k ∈ K1 : fik(G) = 1.

Hence we have f(G) = 1; now fik(G) −→ f(G) = 1 and {1} is open implies: eventually
fik(G) = 1 and thus eventually Aik ∩G 6= ∅ showing that x ∈ Li(Aik).

Corollary 3.2 Let X be a Hausdorff topological space, F the Sierpinski-space with open
sets: ∅, {0}, {0, 1} = F . Then (C(X,F ), c- lim) = Cc(X,F ) is compact.
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Proof. Let χAi
be a net from C(X,F ), meaning that all Ai are closed sets in X, hence

∀i ∈ I : Ai ∈ 2X . By the proposition 3.1 (Ai) has a subnet (Aik) converging to a set A ∈ 2X .
Hence we get LsAik = LiAik = A, LsAik = A shows:

χ
Aik

c−→ χ
A in C(X,F ) ,

hence we found a subnet converging continuously to χA.

Thus Cc(X,F ) is compact.

At first we show that lemma 2.1 does not work if Y is not Hausdorff.

Example 3.3 Let be X = R, the reals with Euclidian topology and F the Sierpinski-space.
By corollary 3.2 (C(R, F ), c- lim) is compact; the pointwise topology τp is splitting and thus
τp- lim ≤ c- lim.

But by example [15, (2.16) (b)] Cc(R, F ) is not closed in FX .

The basic result that for conjoining topologies the (relative) compactness of H ⊆ C(X, Y )

implies that H is evenly continuous is well-known ([10, chapt. 7, theorem 20]; [1, theorem
32]; [15, theorem 3.21]).

For a concrete formulation we take here [1, theorem 32]:

Let X be a topological space, Y a Hausdorff topological space and let H ⊆ C(X, Y ) ⊆ Y X .
Let lim be a convergence structure for C(X, Y ) such that

1. H is in (C(X, Y ), lim) relatively compact

2. lim is conjoining for C(X, Y )

Then H is evenly continuous.

In theorem [15, theorem (3.21)] X is a convergence space and Y is a Hausdorff pseudotopo-
logical convergence space.

Our next example shows that we cannot omit the assumption that Y is Hausdorff.

Example 3.4 We use the same space as in example 3.3. Again we have a space Y = F

which is not Hausdorff. We have here H = C(R, F ) and the convergence structure lim for
C(R, F ) is the continuous convergence: lim = c- lim; c- lim is conjoining for C(R, F ) and
Cc(R, F ) is compact. We will show that C(R, F ) is not evenly continuous. R and F are first
countable spaces and hence by [15, theorem 3.18] we can use sequences instead of filters or
nets to characterize even continuity: For n ∈ N, n ≥ 1 let An =

[
1
n
, 1
]
⊆ R and χAn denotes,

as usual, the characteristic function of An. For 0 ∈ R we find χAn → 0 ∈ F , 1
n
→ 0 ∈ R.

Now we assume that C(R, F ) is evenly continuous; then follows χAn

(
1
n

)
→ 0 ∈ F ; since {0}

is open in F there exists n0 ∈ N: ∀n ≥ n0: χAn

(
1
n

)
= 0 ∈ F , but ∀n ∈ N, n ≥ 1 : χAn

(
1
n

)
=

1 ∈ F , a contradiction.
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Remark 3.5 Example 3.4 of course works for assertion 1 of theorem 2.2 too. Since
Cc(R, F ) also is relatively compact and c- lim is conjoining our example shows that we
cannot omit in assertion 1 of [1, theorem 33] that Y is Hausdorff.

We consider a nice topological space Y , meaning that Y is at least Hausdorff and a topology
τ for C(X, Y ). The fact that H ⊆ C(X, Y ) is τ -compact must not imply that H is evenly
continuous if τ is not conjoining for C(X, Y ). We will explain this situation by an example.
As concrete topologies τ we consider the pointwise topology τp and the uniform topology τu.

Example 3.6 We use an example from classical analysis of a sequence of functions from

C([0, 1],R) : ∀(n, x) ∈ (N− {0})× [0, 1] : fn : fn(x) =
nx

1 + (nx)2
, f0 : ∀x ∈ [0, 1] : f0(x) = 0 .

then holds:

1. fn
τp−→ f0

2. (fn) does not converge uniformly to f0

Proof. 1. ∀n, n ≥ 1 : fn(0) = 0→ 0 = f0(0);
∀x ∈ (x, 1] : (nx)2

1+(nx)2
≤ 1 =⇒ |fn| = fn = nx

1+(nx)2
≤ 1

x
· 1
n
→ 0, hence |fn(x)− f0(x)| → 0

for n→ +∞.

2. ∀n ≥ 1 : x = 1
n
∈ (0, 1] and fn

(
1
n

)
= 1

2
. But then (fn) cannot converges uniformly to

f0 on [0, 1].

Now let be H = {fn|n ≥ 1} ∪ {f0} ⊆ C([0, 1],R).

Then holds:

1. H is τp-compact

2. H is not evenly continuous

3. τp is not conjoining for C([0, 1],R).

Proof. 1. is obvious

2. (fn) does not converge continuously to f0 : [0, 1] is compact (and Hausdorff) implying
that then c- lim = τu- lim, yielding thatfn → f0 uniformly, a contradiction.

If we assume that H is evenly continuous then fn
τp−→ f0 =⇒ fn

c−→ f0 by the basis
[1, theorem 31], a contradiction.

3. If τp is conjoining then c- lim ≤ τp- lim since c- lim is splitting (and conjoining) for
C([0, 1],R) implying fn

τp−→ f0 =⇒ fn
c−→ f0, a contradiction.

Finally, we will show that assertion 2 of theorem 2.2 is not true if condition (γ) is not fulfilled.
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Example 3.7 Let be X = Y = R we consider the sequence (fn), n ∈ N, n ≥ 1 : fn :

fn(x) = 1
n
x, ∀x ∈ R; again let be f0 : ∀x ∈ R : f(x) = 0, hence ∀n ∈ N : fn ∈ C(R,R).

H = {fn|n ∈ N, n ≥ 1}; for fixed x ∈ R : H(x) =
{

1
n
x|n ∈ N, n ≥ 1

}
is bounded and hence

relatively compact in Y = R. Thus condition (α) holds for H.

Moreover let be x ∈ R;

∀(ε, n) ∈ (0,+∞)× (N− {0})

let be δ = ε and y ∈ Uδ(x) : |fn(y)− fn(x)| = | 1
n
y− 1

n
x| = 1

n
|y−x| ≤ |y−x| < ε; hence H is

equicontinuous on R which implies that H is evenly continuous showing that condition (β)

is fulfilled too.

We see at once that fn
τp−→ f0 and even fn

c−→ f0 hold. H ∪ {f0} is τp-compact; we have
f0 /∈ H and fm 6= fn∀(m,n) ∈ N × N, m 6= n, m ≥ 1, n ≥ 1, fn

τp−→ f0 in C(R,R) =⇒
fn

τp−→ f0 in RR: each τp-neighbourhood of f0 in RR contains infinitively many functions fn
implying that f0 is a τp-cluster point of H. Thus H is not τp-closed in RR and hence not
τp-compact since Y = R is Hausdorff. H ⊆ C(R,R) =⇒ H is not τp-compact in C(R,R)

implying that H is not c- lim-compact in C(R,R) since τp- lim ≤ c- lim holds.

4 Duality and the Ascoli-Arzela theorems

In the introduction we mentioned that the equicontinuity of a subset H ⊆ C(X, Y ) can be
characterized by embedding of X into a function space using the canonical map. In [8] this
approach was extended to include even continuity and also the topological equicontinuity of
Royden.

At length we find it in the book [12]. We want to consider here equicontinuity and even
continuity. In [2], [4] and [5] R.Bartsch and I developed and studied a general duality system

(X, Y,Xd, Xdd, J : X → Xdd)

where Xd is the first dual space of X with respect to Y,Xdd is the second dual space of X
w. r. t. Y and J denotes the canonical map as is known from classical duality examples.

And we can include these characterization of equicontinuity and even continuity into this
general scheme:

Let X, Y be topological spaces and H ⊆ C(X, Y ). We can consider (H, τp) as the redefined
first dual space of X w. r. t. Y according to [2, 4.3., p. 284]: Xd = (H, τp). by definition [2,
4.1.] we see that H = Xd has no defect since in H there are no algebraic operations defined.
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Hence by [2, definition 4.2.] and [4, definition 2.2.] the second dual space of X w. r. t. Y is
Xdd = C((H, τp), Y ). The canonical map

J : X → C((H, τp), Y ),

∀x ∈ X : Jx = ω(x, ·) ,
ω(x, ·) : (H, τp)→ Y ;

∀h ∈ H : ω(x, ·)(h) = ω(x, h) = h(x) .

We now need the convergence structure of strict (strong) continuous convergence.

Generalizing a formulation, where sequences were used ([9]), in ([15, 2.25]) I defined:

Definition 4.1 Let X, Y be topological spaces, Φ a filter in Y X ; we say that Φ converges
strictly continuous to f,Φ str c−→ f , iff for each y ∈ Y and each filter ϕ on X : fϕ → y =⇒
ω(Φ× ϕ) = Φ(ϕ)→ y.

Remark 4.2 1. Of course, a net (fi) from Y X converges strictly continuous to f ∈ Y X

iff for each y ∈ Y and each net (xk) from X holds: f(xk)→ y =⇒ fi(xk)→ y

2. str c- lim is conjoining for C(X, Y ) since we see at once that c- lim ≤ str c- lim holds.

3. Strict continuous convergence has similar properties as of continuous convergence, es-
pecially str c- lim is a pseudotopological convergence structure and if Y Hausdorff then
(C(X, Y ), str c- lim) is Hausdorff too.

4. If X is compact and Hausdorff then c- lim = str c- lim on C(X, Y ) (see [17], and also
[13]).

Now we come to the characterizations of even/equi-continuity as already announced.

Proposition 4.3 Let X, Y be topological spaces, H ⊆ C(X, Y ); equivalent are:

(1) J : X → (C((H, τp), Y ), str c- lim) is continuous

(2) H is evenly continuous

Proof. (1)=⇒(2): ∀(x, y) ∈ X × Y , for each net (xk) in X s. th. xk → x, for each net
(hi) from H s. th. hi(x)→ y we want to show: hi(xk)→ y.

Now by (1) xk → x =⇒ Jxk → Jx, meaning that ω(xk, ·)
str c−→ ω(x, ·).

∀k ∈ K : ω(xk, ·) : (H, τp)→ Y

is continuous and ω(x, ·) : (H, τp)→ Y is continuous by [2, lemma 4.1., (1)] and hence
ω(xk, ·), ω(x, ·) ∈ C((H, τp), Y ).
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By the definition of strict continuous convergence and since we know that hi(x)→ y,
which means ω(x, ·)(hi)→ y we get at once:

ω(xk, ·)(hi) = hi(xk)→ y .

Hence H is evenly continuous.

(2)=⇒(1): ∀(x, y) ∈ X × Y : ∀(xk), (xk) net from X s. th. xk → x, we will show:
Jxk → Jx w. r. t. str c- lim: ω(xk, ·)

str c−→ ω(x, ·): let (hi) be a net from H such that
ω(x, ·)(hi)→ y, hence hi(x)→ y; now by (2): xk → x and hi(x)→ y =⇒ hi(xk)→ y,
meaning ω(xk, ·)(hi)→ y. Thus ω(xk, ·)

str c−→ ω(x, ·) yielding that J is continuous.

Remark 4.4 Proposition 4.3 was proved in [12, theorem (13.16)]. But instead of strict
continuity here was used the notion of Pettis-convergence:

[12, (13.7) Definition]. A net (fi) from H ⊆ C(X, Y ) Pettis converges to f if for each
y ∈ Y and each neighborhood V of y there is a neighborhood W of y such that eventually
fi(f

−1(W )) ⊆ V .

But in [17] was shown that the two convergence structures are equivalent.

The following proposition was proved in [12, theorem (13.12)]. Our proof is somewhat more
clear.

Proposition 4.5 Let X be a topological and (Y,A) an uniform space; let be H ⊆
C(X, Y ).

Equivalent are:

(1) H is equicontinuous

(2) J : X → (C((H, τp), Y ), τu) is continuous

Proof. (1)=⇒(2): ((xk), x), (xk) a net in X, x ∈ X; we want to show:

xk → x =⇒ Jxk = ω(xk, ·)→ ω(x, ·) = Jx

w. r. t. the uniform topology τu : ∀V ∈ A, for (V, x) by (1) there exists a neighborhood

U ∈ U(x) :∀(y, h) ∈ U ×H : (h(y), h(x)) = (ω(y, ·)(h), ω(x, ·)(h)) ∈ V ;

∃k0 ∈ K : ∀k ≥ k0 : xk ∈ U .

Now we have:

∀(k, h) ∈ {k ∈ K|k ≥ k0} ×H : xk ∈ U =⇒ (h(xk), h(x)) = (ω(xk, h), w(x, h)) ∈ V

showing that ω(xk, ·)
τu−→ ω(x, ·) holds.
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(2)=⇒(1): ∀(x, V ) ∈ X × A, (H, V ) = {(p, q) ∈ C(H,Y ) × C(H, Y ) | ∀h ∈ H :

(p(h), q(h) ∈ V }; now ω(x, ·) ∈ C((H, τp), Y ); we consider

(H,V )(ω(x, ·)) = {p ∈ C(H, Y )|∀h ∈ H : (p(h), ω(x, ·)(h)) = (p(h), h(x)) ∈ V }

is a τu-neighborhood of ω(x, ·). Hence ∃U ∈ U(x) : J(U) ⊆ (H,V )(ω(x, ·)) by (2)
showing that holds:

∀(y, h) ∈ U(x)×H =⇒ (h(y), h(x)) = (ω(y, ·)(h), ω(x, ·)(h)) ∈ V ,

since ω(y, ·) ∈ (H, V )(ω(x, ·). But this means that H is equicontinuous.

A conjoining topology or convergence structure can be defined (or characterized) by the
continuity of the evaluation map ω. And if we consider the definition of continuous conver-
gence then it is nearby that a conjoining convergence structure also can be characterized in
a suitable way using the embedding into the second dual.

This is our next result.

Proposition 4.6 Let X, Y be topological spaces, let H ⊆ C(X, Y ) and let lim be a
convergence structure on H (maybe also lim is defined on C(X, Y ) s. th. (H, lim) is a con-
vergence space). We assume that τp- lim ≤ lim holds. Then are equivalent:

(1) lim is conjoining for H

(2) J : X → (C((H, lim), Y ), c- lim) is continuous

Proof. We know that lim is conjoining for H iff ω = ω(·, ·) : X× (H, lim)→ Y is continuous.

(1)=⇒(2): ∀(x, (xk)), x ∈ X, (xk) a net from X s. th. xk → x. We will show:

Jxk
c−→ Jx, hence ω(xxk , ·)

c−→ ω(x, ·) .

Since τp- lim ≤ lim holds:

∀k ∈ K, ∀x ∈ X : ω(xk, ·), ω(x, ·) ∈ C((H, lim), Y ) .

Let (hi) a net from H, h ∈ H and hi
lim−→ h; now

xk → x, hi
lim−→ h =⇒ ω(xk, hi)→ ω(x, h)

since ω is continuous, hence

hi(xk)→ h(x) =⇒ ω(xk, ·)(hi)→ ω(x, ·)(h)

showing that Jxk
c−→ Jx wich means: J is continuous.
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(2)=⇒(1): Let be (xk) a net from X, xk → x ∈ X, (hi) a net from H s. th. hi
lim−→ h ∈

H; by (2): xk → x =⇒ ω(xk, ·)
c−→ ω(x, ·); but then

hi
lim−→ h =⇒ ω(xk, ·)(hi) −→ ω(x, ·)(h) =⇒ ω(xk, hi) −→ ω(x, h)

yielding that lim is conjoining for H.

Corollary 4.7 We use the assumptions of proposition 4.6

1. Let lim = c- lim for C(X, Y ); since c- lim is conjoining for C(X, Y ) and hence for
H ⊆ C(X, Y ) too we get:

J : X → (C((H, c- lim), Y ), c- lim)

is continuous

Remark: For H = C(X, Y ) this result was shown in [11, theorem 3., 1.]

2. lim = str c- lim is conjoining and hence we get:

J : X → (C((H, str c- lim), Y ), c- lim)

is continuous.

As already mentioned in our text [1, theorem 32] provides a necessary compactness criterion:
for each conjoining topology or convergence structure: the compactness of H ⊆ C(X, Y ) im-
plies thatH is evenly continuous. But conversely we can’t obtain a smooth sufficient criterion
for an arbitrary conjoining convergence structure: We have a simple, but fundamental fact:
pointwise convergence plus even continuity equals continuous convergence but not more.
(see for instance [1, theorem 31]). And continuous convergence is the smallest conjoining
convergence structure for C(X, Y ). Already in a paper from 1971 ([14, theorem 1]) I proved
a necessary and sufficient compactness criterion for conjoining convergence structures. This
criterion shows that one can’t go beyond c- lim. With some slight improvements the original
theorem reads as follows:

Theorem 4.8 Let X, Y be topological spaces and Y is Hausdorff; let H ⊆ C(X, Y )

and lim be a pseudotopological convergence structure for C(X, Y ). We assume that lim is a
conjoining convergence structure for C(X, Y ). Equivalent are:

(1) H is lim-compact

(2) (α) ∀x ∈ X: H(x) is relatively compact

(β) H is evenly continuous

(γ) H is τp-closed in Y X

(δ) lim = c- lim on H
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Proof. (1)=⇒(2): Since lim is conjoining for C(X, Y ) we have c- lim ≤ lim and hence
H is also c- lim-compact. But then follow (α), (β), (γ) by theorem 2.2. We have c- lim ≤
lim on H; now let be: ∀(ψ, f), ψ ultrafilter on C(X, Y ), f ∈ H; let be H ∈ ψ and
ψ

c-lim−→ f ; (H, lim) is compact and hence ψ lim−→ g ∈ H and thus ψ c-lim−→ g.

Y is Hausdorff by assumption and thus (C(X, Y ), c- lim) is Hausdorff too implying: g =

f . But then we see: ψ c-lim−→ f =⇒ ψ
lim−→ f .since c- lim and lim are pseudotopological

convergence spaces we get: lim ≤ c- lim and hence lim = c- lim on H.

(2)=⇒(1): Theorem 2.2 shows (α), (β)and(γ) =⇒ H is c- lim compact in C(X, Y ); now
(H, c- lim) compact and (H, lim) = (H, c- lim) by (δ) implies that H is lim-compact too.

Concluding we will consider the two Ascoli-Arzela theorems in [12] (as announced in the
introduction), where we (partially), use our notations:

Theorem [12, (13.15)] Let X be a regular space and Y a uniform space. Then H ⊆
C(X, Y ) is compact w. r. t. a jointly continuous topology η if and only if

(a) H is η-closed

(b) H(x) has compact closures for each x ∈ X

(c) the natural map
J : X → (C((H, τp), Y ), τU)

is continuous.

By proposition 4.5 we know that condition (c) is equivalent to H being equicontinuous.

Now theorem 4.8 shows that in general (a), (b) and (c) of (13.15) do not imply the compact-
ness of H for each conjoining topology η for C(X, Y ) (or for H). For instance, if X is not
compact in general τu- lim is strictly stronger than c- lim. Look at our example 4.9. Thus the
sufficient assertion of theorem (13.15) is wrong. Quite analogously we find that [12, theorem
(13.21)] is not correct too.

Here we have even continuity instead of equicontinuity.

We come now to our last example.

Example 4.9 We consider again example 3.6. Now let be

H ⊆ C(R,R), H =

{
fn : ∀x ∈ R : fn(x) =

1

n
x|n ∈ N

}
∪ {f0} =

{
1

n
x|n ≥ 1

}
∪ {f0} ,

where f0 is the zerofunction on R. We show that hold:

(1) H is equicontinuous and hence evenly continuous.

(2) H(x) is compact for each x ∈ R
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(3) H is τp-compact

(4) H is in RRτp-closed

(5) H is c- lim-compact

(6) H is τco-compact

(7) H is τu-closed in C(R,R)

(8) H is not τu-compact

Proof. (1) For example 3.6 we showed that H − {f0} is equicontinuous, we show in the
same manner that H is equicontinuous:

∀(x, y) ∈ R× R, ∀n ≥ 1 : |fn(x)− fn(y)| = 1

n
|x− y|;

∀ε > 0 ∃δ = δ(ε) > 0, δ := ε : ∀(x, y) ∈ R× R : |x− y| < δ =⇒ 1

n
|x− y| ≤ δ

n
≤ ε ;

but also
|x− y| < δ =⇒ |f0(x)− f0(y)| = |0− 0| ≤ ε .

Thus H is uniformly equicontinuous and hence equicontinuous and evenly continuous.

(2) ∀x ∈ R : H(x) = {fn(x)|n ∈ N} is homeomorph to the compact set{
1

n
|n ∈ N, n ≥ 1

}
∪ {0} ⊆ R = Y .

(3) ∀x ∈ R : fn(x) = x
n
→ 0 showing fu

τp−→ f0 and hence H = {fn|n ∈ N\{0}} ∪ {f0} is
τp-compact.

(4) H is τp-compact in C(R,R) =⇒ H is τp-compact in RR; (RR, τp) is Hausdorff =⇒ H is
in RRτp-closed.

(5) By theorem 2.2 from (1), (2) and (4) follows that H is in C(R,R) c- lim-compact.

(6) R = X is locally compact and Hausdorff and thus τco- lim = c- lim, where τco is the
compact-open topology. Then (C(R,R), c- lim) is a topological space.

(7) The uniform topology τu in RR can be defined by the use of neighborhoods. And then
we see that τu is first countable. Hence we can work with sequences.

We assume that H has a τu-accumulation point g ∈ C(R,R); g /∈ H =⇒ g 6= f0 on R.

Then there exists a sequence (fn) from H s. th. fn
τu−→ g; then holds fn

τp−→ g too.
Otherwise ∀n ∈ N : fn ∈ H and (fn) cannot be a constant sequence. Hence we find a
subsequence (fnk

) s. th. fnk

τp−→ f0 implying that fnk

τp−→ g; but then g = f0 because
(C(R,R), τp) is Hausdorff; g = f0 yields a contradiction.

Thus H is τu-closed.
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(8) We assume that H is τu-compact; since H consists of a sequence there exists a subse-
quence (gnk

) of (fn) and a g ∈ H s. th. gnk

τu−→ g yielding gnk

τp−→ g too. But then we
know from the proof of (7) that g = f0 holds.

Now {gnk
|k ∈ N} is an infinite set of unbounded functions on R showing that gnk

τu−→ f0

is not possible, a contradiction. Hence H is not τu-compact.

Remarks 1. Here we have again an concrete example which shows that in general does
not hold: (fn) is converging pointwise, (fn) is equicontinuous implies that fn) converges
uniformly.

2. What is the result of example 4.9?

The uniform topology τu (for C(R,R)) is conjoining. By assertions (1), (2), (7) of 4.9
we see that the assumptions of [12, theorem (13.15)] are fullfilled.

Thus this theorem asserts that H is τu-compact, but this contradicts assertion (8) of
4.9 which states that H is not τu-compact.

Since H is evenly continuous too our example also works for [12, theorem (13.21)]
yielding that the sufficient assertion of this theorem also is wrong.
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