

HARRY POPPE

Ascoli-Arzela-Theory based on continuous convergence in an (almost) non-Hausdorff setting 2

1 Introduction

We start with the paper [1] and thus come back to continuous convergence and to the characterization of compactness with respect to this convergence structure for the space $C(X, Y)$ of continuous functions, where X and Y are topological spaces. More generally we can use for X, Y convergence spaces, as was done for instance in [11] and [15]. But in the first paper of this title X and Y were topological spaces and we will continue with this assumption.

What is the aim of our paper?

1. In the main theorems [15, (3.24), (3.27)], [1, 33] and corollary [11, 10] necessary and sufficient conditions were given to ensure that $H \subseteq C(X, Y)$ is relatively compact w. r. t. continuous convergence. Here, as a corollary, we characterize compactness of H .
2. In the papers [11], [1] not provided examples which show that the assumptions in our theorems (for instance that Y is Hausdorff) we cannot omit.
3. It is known for long time that the important notion of equicontinuity can be characterized using the canonical map as used in duality theory (embedding in a second dual) ([7], and [15, theorem 4.36]). In the paper [8] and especially in the book [12] this approach was extended to include even continuity too. But the two Ascoli-Arzela theorems ([12, (13.15), (13.21)]) based on this approach are not correct. We will show this by an instructive counter example. And we will give some comments for this situation.

2 Compactness in $(C(X, Y), c\text{-lim})$

We will use the following notion of relative compactness: Let X be a topological space, then $A \subset X$ is called relatively compact iff for each ultrafilter π on X ,

$$A \in \pi \implies \exists x \in X : \pi \longrightarrow x. \quad (\text{see [16], [3]})$$

We still need a lemma.

Lemma 2.1 *Let X be a topological space, Y a Hausdorff topological space; let η be a topology (lim a convergence structure) on $C(X, Y)$ with $\tau_p \leq \eta$ (τ_p -lim \leq lim). If $H \subseteq C(X, Y)$ is η -compact, then H is τ_p -closed in Y^X .*

For a (simple) proof see lemma [3, theorem 3.1].

Now [1, theorem 33] states: If X, Y topological spaces, $H \subseteq C(X, Y)$, $H \neq \emptyset$ and we consider for H the two conditions:

- (α) $\forall x \in X : H(x) = \{f(x) | f \in H\}$ is relatively compact.
- (β) H is evenly continuous.

then the following holds:

1. Let X be Hausdorff; H relatively c -compact \implies (α), (β).
2. Let X be a T_3 -space, (α), (β) $\implies H$ is in $(C(X, Y), c\text{-lim})$ relatively compact.

Theorem 2.2 [Corollary of [1, theorem33]] *Let be X, Y topological spaces, $H \subseteq C(X, Y)$; for H we consider the conditions:*

- (α) $\forall x \in X : H(x)$ is relatively compact
- (β) H is evenly continuous
- (γ) H is in $Y^X \tau_p$ -closed.

Then hold:

1. Let Y be Hausdorff, H is c -lim-compact \implies (α), (β), (γ).
2. (α), (β), (γ) $\implies H$ is in $(C(X, Y), c\text{-lim})$ compact.

Proof. 1. H c -lim-compact in $C(X, Y)$ $\implies H$ is c -lim-relatively compact; then follows (α), (β) by theorem 33. Now since $\tau_p \leq c\text{-lim}$ holds in $C(X, Y)$, lemma 2.1 yields condition (γ) too.

2. By the Tychonoff theorem: $(\alpha) \Rightarrow H$ is τ_p -relatively compact in Y^X , hence H is τ_p -compact in Y^X by (γ) ; $H \subseteq C(X, Y) \Rightarrow H$ is in $C(X, Y)\tau_p$ -compact too. Now let π be an ultrafilter on $C(X, Y)$ with $H \in \pi$: we find $g \in H : \pi \xrightarrow{\tau_p} g$, but then follows: $\pi \xrightarrow{c} g$ by (β) and by [1, theorem 31]. Hence H is in $C(X, Y)$ c -lim-compact.

3 Examples

For the construction of our examples we need a result of S. Mrowka which we found in [6] and a corollary of this result.

Proposition 3.1 *Let (X, τ) be a Hausdorff topological space, where of course τ means the system of all open sets of X ; let $(A_i)_{i \in I}$ be a net in 2^X , 2^X is the set of closed sets of X . Then (A_i) has a subnet Kuratowski-Hausdorff-converging in 2^X .*

Proof. We know: a net (B_i) (from 2^X) converges iff $L_s B_i \subseteq L_i B_i$ holds, meaning:

$$\forall x \in X, \forall G \in \tau : x \in G \text{ and } G \cap B_i \neq \emptyset$$

for all i from a confinal set of I it follows that eventually $G \cap B_i \neq \emptyset$, since $\{G \in \tau | x \in G\}$ is a basis of the neighborhood filter $\underline{U}(x)$. Here by L_s, L_i we denote the limit superior and limit inferior respectively.

Now we consider the two-point space $\{0, 1\}$ provided with discrete topology.

$$\forall i \in I : \text{let be } f_i \in \{0, 1\}^\tau : \forall G \in \tau : f_i(G) = \begin{cases} 1, & A_i \cap G \neq \emptyset \\ 0, & A_i \cap G = \emptyset. \end{cases}$$

Obviously, the map $f_i \rightarrow A_i$ is injective.

$\{0, 1\}^\tau$ with pointwise topology τ_p is compact by the Tychonoff theorem, and hence for (f_i) there exists a subnet (f_{i_k}) and a f from $\{0, 1\}^\tau$ such that $f_{i_k} \xrightarrow{\tau_p} f$. Now we want to show $L_s(A_{i_k}) \subseteq L_i(A_{i_k}) : \forall (x, G) \in X \times \tau : x \in L_s(A_{i_k})$ and $x \in G$: there exists a confinal subset

$$K_1 \subseteq K \text{ such that } \forall k \in K_1 : A_{i_k} \cap G \neq \emptyset$$

implying $\forall k \in K_1 : f_{i_k}(G) = 1$. We assume that $f(G) = 0$ holds, $\{0\}$ is open and for our net $(f_{i_k})_{k \in K}$ holds: $f_{i_k}(G) \rightarrow f(G)$ implying eventually $f_{i_k}(G) = 0$, yielding a contradiction because K_1 is kofinal in K and $\forall k \in K_1 : f_{i_k}(G) = 1$.

Hence we have $f(G) = 1$; now $f_{i_k}(G) \rightarrow f(G) = 1$ and $\{1\}$ is open implies: eventually $f_{i_k}(G) = 1$ and thus eventually $A_{i_k} \cap G \neq \emptyset$ showing that $x \in L_i(A_{i_k})$.

Corollary 3.2 *Let X be a Hausdorff topological space, F the Sierpinski-space with open sets: $\emptyset, \{0\}, \{0, 1\} = F$. Then $(C(X, F), c\text{-lim}) = C_c(X, F)$ is compact.*

Proof. Let χ_{A_i} be a net from $C(X, F)$, meaning that all A_i are closed sets in X , hence $\forall i \in I : A_i \in 2^X$. By the proposition 3.1 (A_i) has a subnet (A_{i_k}) converging to a set $A \in 2^X$. Hence we get $LsA_{i_k} = LiA_{i_k} = A$, $LsA_{i_k} = A$ shows:

$$\chi_{A_{i_k}} \xrightarrow{c} \chi_A \quad \text{in} \quad C(X, F),$$

hence we found a subnet converging continuously to χ_A .

Thus $C_c(X, F)$ is compact.

At first we show that lemma 2.1 does not work if Y is not Hausdorff.

Example 3.3 Let be $X = \mathbb{R}$, the reals with Euclidian topology and F the Sierpinski-space. By corollary 3.2 $(C(\mathbb{R}, F), c\text{-lim})$ is compact; the pointwise topology τ_p is splitting and thus $\tau_p\text{-lim} \leq c\text{-lim}$.

But by example [15, (2.16) (b)] $Cc(\mathbb{R}, F)$ is not closed in F^X .

The basic result that for conjoining topologies the (relative) compactness of $H \subseteq C(X, Y)$ implies that H is evenly continuous is well-known ([10, chapt. 7, theorem 20]; [1, theorem 32]; [15, theorem 3.21]).

For a concrete formulation we take here [1, theorem 32]:

Let X be a topological space, Y a Hausdorff topological space and let $H \subseteq C(X, Y) \subseteq Y^X$. Let lim be a convergence structure for $C(X, Y)$ such that

1. H is in $(C(X, Y), \text{lim})$ relatively compact
2. lim is conjoining for $C(X, Y)$

Then H is evenly continuous.

In theorem [15, theorem (3.21)] X is a convergence space and Y is a Hausdorff pseudotopological convergence space.

Our next example shows that we cannot omit the assumption that Y is Hausdorff.

Example 3.4 We use the same space as in example 3.3. Again we have a space $Y = F$ which is not Hausdorff. We have here $H = C(\mathbb{R}, F)$ and the convergence structure lim for $C(\mathbb{R}, F)$ is the continuous convergence: $\text{lim} = c\text{-lim}$; $c\text{-lim}$ is conjoining for $C(\mathbb{R}, F)$ and $C_c(\mathbb{R}, F)$ is compact. We will show that $C(\mathbb{R}, F)$ is not evenly continuous. \mathbb{R} and F are first countable spaces and hence by [15, theorem 3.18] we can use sequences instead of filters or nets to characterize even continuity: For $n \in \mathbb{N}$, $n \geq 1$ let $A_n = [\frac{1}{n}, 1] \subseteq \mathbb{R}$ and χ_{A_n} denotes, as usual, the characteristic function of A_n . For $0 \in \mathbb{R}$ we find $\chi_{A_n} \rightarrow 0 \in F$, $\frac{1}{n} \rightarrow 0 \in \mathbb{R}$.

Now we assume that $C(\mathbb{R}, F)$ is evenly continuous; then follows $\chi_{A_n}(\frac{1}{n}) \rightarrow 0 \in F$; since $\{0\}$ is open in F there exists $n_0 \in \mathbb{N}$: $\forall n \geq n_0: \chi_{A_n}(\frac{1}{n}) = 0 \in F$, but $\forall n \in \mathbb{N}, n \geq 1: \chi_{A_n}(\frac{1}{n}) = 1 \in F$, a contradiction.

Remark 3.5 Example 3.4 of course works for assertion 1 of theorem 2.2 too. Since $Cc(\mathbb{R}, F)$ also is relatively compact and c -lim is conjoining our example shows that we cannot omit in assertion 1 of [1, theorem 33] that Y is Hausdorff.

We consider a nice topological space Y , meaning that Y is at least Hausdorff and a topology τ for $C(X, Y)$. The fact that $H \subseteq C(X, Y)$ is τ -compact must not imply that H is evenly continuous if τ is not conjoining for $C(X, Y)$. We will explain this situation by an example. As concrete topologies τ we consider the pointwise topology τ_p and the uniform topology τ_u .

Example 3.6 We use an example from classical analysis of a sequence of functions from

$$C([0, 1], \mathbb{R}) : \forall(n, x) \in (\mathbb{N} - \{0\}) \times [0, 1] : f_n : f_n(x) = \frac{nx}{1 + (nx)^2}, f_0 : \forall x \in [0, 1] : f_0(x) = 0.$$

then holds:

1. $f_n \xrightarrow{\tau_p} f_0$
2. (f_n) does not converge uniformly to f_0

Proof. 1. $\forall n, n \geq 1 : f_n(0) = 0 \rightarrow 0 = f_0(0)$;

$\forall x \in (0, 1] : \frac{(nx)^2}{1 + (nx)^2} \leq 1 \implies |f_n| = f_n = \frac{nx}{1 + (nx)^2} \leq \frac{1}{x} \cdot \frac{1}{n} \rightarrow 0$, hence $|f_n(x) - f_0(x)| \rightarrow 0$ for $n \rightarrow +\infty$.

2. $\forall n \geq 1 : x = \frac{1}{n} \in (0, 1]$ and $f_n\left(\frac{1}{n}\right) = \frac{1}{2}$. But then (f_n) cannot converges uniformly to f_0 on $[0, 1]$.

Now let be $H = \{f_n | n \geq 1\} \cup \{f_0\} \subseteq C([0, 1], \mathbb{R})$.

Then holds:

1. H is τ_p -compact
2. H is not evenly continuous
3. τ_p is not conjoining for $C([0, 1], \mathbb{R})$.

Proof. 1. is obvious

2. (f_n) does not converge continuously to $f_0 : [0, 1]$ is compact (and Hausdorff) implying that then c -lim = τ_u -lim, yielding that $f_n \rightarrow f_0$ uniformly, a contradiction.

If we assume that H is evenly continuous then $f_n \xrightarrow{\tau_p} f_0 \implies f_n \xrightarrow{c} f_0$ by the basis [1, theorem 31], a contradiction.

3. If τ_p is conjoining then c -lim $\leq \tau_p$ -lim since c -lim is splitting (and conjoining) for $C([0, 1], \mathbb{R})$ implying $f_n \xrightarrow{\tau_p} f_0 \implies f_n \xrightarrow{c} f_0$, a contradiction.

Finally, we will show that assertion 2 of theorem 2.2 is not true if condition (γ) is not fulfilled.

Example 3.7 Let be $X = Y = \mathbb{R}$ we consider the sequence (f_n) , $n \in \mathbb{N}, n \geq 1$: $f_n : f_n(x) = \frac{1}{n}x$, $\forall x \in \mathbb{R}$; again let be $f_0 : \forall x \in \mathbb{R} : f(x) = 0$, hence $\forall n \in \mathbb{N} : f_n \in C(\mathbb{R}, \mathbb{R})$.

$H = \{f_n | n \in \mathbb{N}, n \geq 1\}$; for fixed $x \in \mathbb{R} : H(x) = \{\frac{1}{n}x | n \in \mathbb{N}, n \geq 1\}$ is bounded and hence relatively compact in $Y = \mathbb{R}$. Thus condition (α) holds for H .

Moreover let be $x \in \mathbb{R}$;

$$\forall(\varepsilon, n) \in (0, +\infty) \times (\mathbb{N} - \{0\})$$

let be $\delta = \varepsilon$ and $y \in U_\delta(x) : |f_n(y) - f_n(x)| = |\frac{1}{n}y - \frac{1}{n}x| = \frac{1}{n}|y - x| \leq |y - x| < \varepsilon$; hence H is equicontinuous on \mathbb{R} which implies that H is evenly continuous showing that condition (β) is fulfilled too.

We see at once that $f_n \xrightarrow{\tau_p} f_0$ and even $f_n \xrightarrow{c} f_0$ hold. $H \cup \{f_0\}$ is τ_p -compact; we have $f_0 \notin H$ and $f_m \neq f_n \forall (m, n) \in \mathbb{N} \times \mathbb{N}, m \neq n, m \geq 1, n \geq 1$, $f_n \xrightarrow{\tau_p} f_0$ in $C(\mathbb{R}, \mathbb{R}) \implies f_n \xrightarrow{\tau_p} f_0$ in $\mathbb{R}^\mathbb{R}$: each τ_p -neighbourhood of f_0 in $\mathbb{R}^\mathbb{R}$ contains infinitively many functions f_n implying that f_0 is a τ_p -cluster point of H . Thus H is not τ_p -closed in $\mathbb{R}^\mathbb{R}$ and hence not τ_p -compact since $Y = \mathbb{R}$ is Hausdorff. $H \subseteq C(\mathbb{R}, \mathbb{R}) \implies H$ is not τ_p -compact in $C(\mathbb{R}, \mathbb{R})$ implying that H is not c -lim-compact in $C(\mathbb{R}, \mathbb{R})$ since τ_p -lim $\leq c$ -lim holds.

4 Duality and the Ascoli-Arzela theorems

In the introduction we mentioned that the equicontinuity of a subset $H \subseteq C(X, Y)$ can be characterized by embedding of X into a function space using the canonical map. In [8] this approach was extended to include even continuity and also the topological equicontinuity of Royden.

At length we find it in the book [12]. We want to consider here equicontinuity and even continuity. In [2], [4] and [5] R. Bartsch and I developed and studied a general duality system

$$(X, Y, X^d, X^{dd}, J : X \rightarrow X^{dd})$$

where X^d is the first dual space of X with respect to Y , X^{dd} is the second dual space of X w. r. t. Y and J denotes the canonical map as is known from classical duality examples.

And we can include these characterization of equicontinuity and even continuity into this general scheme:

Let X, Y be topological spaces and $H \subseteq C(X, Y)$. We can consider (H, τ_p) as the redefined first dual space of X w. r. t. Y according to [2, 4.3., p. 284]: $X^d = (H, \tau_p)$. by definition [2, 4.1.] we see that $H = X^d$ has no defect since in H there are no algebraic operations defined.

Hence by [2, definition 4.2.] and [4, definition 2.2.] the second dual space of X w. r. t. Y is $X^{dd} = C((H, \tau_p), Y)$. The canonical map

$$\begin{aligned} J : X &\rightarrow C((H, \tau_p), Y), \\ \forall x \in X : Jx &= \omega(x, \cdot), \\ \omega(x, \cdot) : (H, \tau_p) &\rightarrow Y; \\ \forall h \in H : \omega(x, \cdot)(h) &= \omega(x, h) = h(x). \end{aligned}$$

We now need the convergence structure of strict (strong) continuous convergence.

Generalizing a formulation, where sequences were used ([9]), in ([15, 2.25]) I defined:

Definition 4.1 *Let X, Y be topological spaces, Φ a filter in Y^X ; we say that Φ converges strictly continuous to f , $\Phi \xrightarrow{\text{str } c} f$, iff for each $y \in Y$ and each filter φ on X : $f\varphi \rightarrow y \implies \omega(\Phi \times \varphi) = \Phi(\varphi) \rightarrow y$.*

Remark 4.2

1. Of course, a net (f_i) from Y^X converges strictly continuous to $f \in Y^X$ iff for each $y \in Y$ and each net (x_k) from X holds: $f(x_k) \rightarrow y \implies f_i(x_k) \rightarrow y$
2. str c -lim is conjoining for $C(X, Y)$ since we see at once that c -lim \leq str c -lim holds.
3. Strict continuous convergence has similar properties as of continuous convergence, especially str c -lim is a pseudotopological convergence structure and if Y Hausdorff then $(C(X, Y), \text{str } c\text{-lim})$ is Hausdorff too.
4. If X is compact and Hausdorff then c -lim = str c -lim on $C(X, Y)$ (see [17], and also [13]).

Now we come to the characterizations of even/equi-continuity as already announced.

Proposition 4.3 *Let X, Y be topological spaces, $H \subseteq C(X, Y)$; equivalent are:*

- (1) $J : X \rightarrow (C((H, \tau_p), Y), \text{str } c\text{-lim})$ is continuous
- (2) H is evenly continuous

Proof. (1) \implies (2): $\forall (x, y) \in X \times Y$, for each net (x_k) in X s. th. $x_k \rightarrow x$, for each net (h_i) from H s. th. $h_i(x) \rightarrow y$ we want to show: $h_i(x_k) \rightarrow y$.

Now by (1) $x_k \rightarrow x \implies Jx_k \rightarrow Jx$, meaning that $\omega(x_k, \cdot) \xrightarrow{\text{str } c} \omega(x, \cdot)$.

$$\forall k \in K : \omega(x_k, \cdot) : (H, \tau_p) \rightarrow Y$$

is continuous and $\omega(x, \cdot) : (H, \tau_p) \rightarrow Y$ is continuous by [2, lemma 4.1., (1)] and hence $\omega(x_k, \cdot), \omega(x, \cdot) \in C((H, \tau_p), Y)$.

By the definition of strict continuous convergence and since we know that $h_i(x) \rightarrow y$, which means $\omega(x, \cdot)(h_i) \rightarrow y$ we get at once:

$$\omega(x_k, \cdot)(h_i) = h_i(x_k) \rightarrow y.$$

Hence H is evenly continuous.

(2) \Rightarrow (1): $\forall (x, y) \in X \times Y : \forall (x_k), (x_k)$ net from X s. th. $x_k \rightarrow x$, we will show: $Jx_k \rightarrow Jx$ w. r. t. str c-lim: $\omega(x_k, \cdot) \xrightarrow{\text{str c}} \omega(x, \cdot)$: let (h_i) be a net from H such that $\omega(x, \cdot)(h_i) \rightarrow y$, hence $h_i(x) \rightarrow y$; now by (2): $x_k \rightarrow x$ and $h_i(x) \rightarrow y \Rightarrow h_i(x_k) \rightarrow y$, meaning $\omega(x_k, \cdot)(h_i) \rightarrow y$. Thus $\omega(x_k, \cdot) \xrightarrow{\text{str c}} \omega(x, \cdot)$ yielding that J is continuous.

Remark 4.4 Proposition 4.3 was proved in [12, theorem (13.16)]. But instead of strict continuity here was used the notion of Pettis-convergence:

[12, (13.7) Definition]. A net (f_i) from $H \subseteq C(X, Y)$ Pettis converges to f if for each $y \in Y$ and each neighborhood V of y there is a neighborhood W of y such that eventually $f_i(f^{-1}(W)) \subseteq V$.

But in [17] was shown that the two convergence structures are equivalent.

The following proposition was proved in [12, theorem (13.12)]. Our proof is somewhat more clear.

Proposition 4.5 Let X be a topological and (Y, \mathcal{A}) an uniform space; let be $H \subseteq C(X, Y)$.

Equivalent are:

- (1) H is equicontinuous
- (2) $J : X \rightarrow (C((H, \tau_p), Y), \tau_u)$ is continuous

Proof. (1) \Rightarrow (2): $((x_k), x), (x_k)$ a net in $X, x \in X$; we want to show:

$$x_k \rightarrow x \Rightarrow Jx_k = \omega(x_k, \cdot) \rightarrow \omega(x, \cdot) = Jx$$

w. r. t. the uniform topology $\tau_u : \forall V \in \mathcal{A}$, for (V, x) by (1) there exists a neighborhood

$$\begin{aligned} U \in \underline{U}(x) : \forall (y, h) \in U \times H : (h(y), h(x)) = (\omega(y, \cdot)(h), \omega(x, \cdot)(h)) \in V; \\ \exists k_0 \in K : \forall k \geq k_0 : x_k \in U. \end{aligned}$$

Now we have:

$$\forall (k, h) \in \{k \in K | k \geq k_0\} \times H : x_k \in U \Rightarrow (h(x_k), h(x)) = (\omega(x_k, h), \omega(x, h)) \in V$$

showing that $\omega(x_k, \cdot) \xrightarrow{\tau_u} \omega(x, \cdot)$ holds.

(2) \Rightarrow (1): $\forall(x, V) \in X \times \mathcal{A}$, $(H, V) = \{(p, q) \in C(H, Y) \times C(H, Y) \mid \forall h \in H : (p(h), q(h)) \in V\}$; now $\omega(x, \cdot) \in C((H, \tau_p), Y)$; we consider

$$(H, V)(\omega(x, \cdot)) = \{p \in C(H, Y) \mid \forall h \in H : (p(h), \omega(x, \cdot)(h)) = (p(h), h(x)) \in V\}$$

is a τ_u -neighborhood of $\omega(x, \cdot)$. Hence $\exists U \in \underline{U}(x) : J(U) \subseteq (H, V)(\omega(x, \cdot))$ by (2) showing that holds:

$$\forall(y, h) \in \underline{U}(x) \times H \Rightarrow (h(y), h(x)) = (\omega(y, \cdot)(h), \omega(x, \cdot)(h)) \in V,$$

since $\omega(y, \cdot) \in (H, V)(\omega(x, \cdot))$. But this means that H is equicontinuous.

A conjoining topology or convergence structure can be defined (or characterized) by the continuity of the evaluation map ω . And if we consider the definition of continuous convergence then it is nearby that a conjoining convergence structure also can be characterized in a suitable way using the embedding into the second dual.

This is our next result.

Proposition 4.6 *Let X, Y be topological spaces, let $H \subseteq C(X, Y)$ and let \lim be a convergence structure on H (maybe also \lim is defined on $C(X, Y)$ s. th. (H, \lim) is a convergence space). We assume that τ_p - $\lim \leq \lim$ holds. Then are equivalent:*

- (1) \lim is conjoining for H
- (2) $J : X \rightarrow (C((H, \lim), Y), c\text{-}\lim)$ is continuous

Proof. We know that \lim is conjoining for H iff $\omega = \omega(\cdot, \cdot) : X \times (H, \lim) \rightarrow Y$ is continuous.

(1) \Rightarrow (2): $\forall(x, (x_k)), x \in X, (x_k)$ a net from X s. th. $x_k \rightarrow x$. We will show:

$$Jx_k \xrightarrow{c} Jx, \text{ hence } \omega(x_{x_k}, \cdot) \xrightarrow{c} \omega(x, \cdot).$$

Since τ_p - $\lim \leq \lim$ holds:

$$\forall k \in K, \forall x \in X : \omega(x_k, \cdot), \omega(x, \cdot) \in C((H, \lim), Y).$$

Let (h_i) a net from $H, h \in H$ and $h_i \xrightarrow{\lim} h$; now

$$x_k \rightarrow x, h_i \xrightarrow{\lim} h \Rightarrow \omega(x_k, h_i) \rightarrow \omega(x, h)$$

since ω is continuous, hence

$$h_i(x_k) \rightarrow h(x) \Rightarrow \omega(x_k, \cdot)(h_i) \rightarrow \omega(x, \cdot)(h)$$

showing that $Jx_k \xrightarrow{c} Jx$ which means: J is continuous.

(2) \Rightarrow (1): Let be (x_k) a net from X , $x_k \rightarrow x \in X$, (h_i) a net from H s. th. $h_i \xrightarrow{\lim} h \in H$; by (2): $x_k \rightarrow x \Rightarrow \omega(x_k, \cdot) \xrightarrow{c} \omega(x, \cdot)$; but then

$$h_i \xrightarrow{\lim} h \Rightarrow \omega(x_k, \cdot)(h_i) \rightarrow \omega(x, \cdot)(h) \Rightarrow \omega(x_k, h_i) \rightarrow \omega(x, h)$$

yielding that \lim is conjoining for H .

Corollary 4.7 *We use the assumptions of proposition 4.6*

1. *Let $\lim = c\text{-lim}$ for $C(X, Y)$; since $c\text{-lim}$ is conjoining for $C(X, Y)$ and hence for $H \subseteq C(X, Y)$ too we get:*

$$J : X \rightarrow (C((H, c\text{-lim}), Y), c\text{-lim})$$

is continuous

Remark: For $H = C(X, Y)$ this result was shown in [11, theorem 3., 1.]

2. *$\lim = \text{str } c\text{-lim}$ is conjoining and hence we get:*

$$J : X \rightarrow (C((H, \text{str } c\text{-lim}), Y), c\text{-lim})$$

is continuous.

As already mentioned in our text [1, theorem 32] provides a necessary compactness criterion: for each conjoining topology or convergence structure: the compactness of $H \subseteq C(X, Y)$ implies that H is evenly continuous. But conversely we can't obtain a smooth sufficient criterion for an arbitrary conjoining convergence structure: We have a simple, but fundamental fact: pointwise convergence plus even continuity equals continuous convergence but not more. (see for instance [1, theorem 31]). And continuous convergence is the smallest conjoining convergence structure for $C(X, Y)$. Already in a paper from 1971 ([14, theorem 1]) I proved a necessary and sufficient compactness criterion for conjoining convergence structures. This criterion shows that one can't go beyond $c\text{-lim}$. With some slight improvements the original theorem reads as follows:

Theorem 4.8 *Let X, Y be topological spaces and Y is Hausdorff; let $H \subseteq C(X, Y)$ and \lim be a pseudotopological convergence structure for $C(X, Y)$. We assume that \lim is a conjoining convergence structure for $C(X, Y)$. Equivalent are:*

- (1) *H is \lim -compact*
- (2) (α) $\forall x \in X : H(x)$ *is relatively compact*
 - (β) *H is evenly continuous*
 - (γ) *H is τ_p -closed in Y^X*
 - (δ) *$\lim = c\text{-lim}$ on H*

Proof. (1) \Rightarrow (2): Since \lim is conjoining for $C(X, Y)$ we have $c\text{-lim} \leq \lim$ and hence H is also $c\text{-lim}$ -compact. But then follow (α) , (β) , (γ) by theorem 2.2. We have $c\text{-lim} \leq \lim$ on H ; now let be: $\forall(\psi, f)$, ψ ultrafilter on $C(X, Y)$, $f \in H$; let be $H \in \psi$ and $\psi \xrightarrow{c\text{-lim}} f$; (H, \lim) is compact and hence $\psi \xrightarrow{\lim} g \in H$ and thus $\psi \xrightarrow{c\text{-lim}} g$.

Y is Hausdorff by assumption and thus $(C(X, Y), c\text{-lim})$ is Hausdorff too implying: $g = f$. But then we see: $\psi \xrightarrow{c\text{-lim}} f \Rightarrow \psi \xrightarrow{\lim} f$. since $c\text{-lim}$ and \lim are pseudotopological convergence spaces we get: $\lim \leq c\text{-lim}$ and hence $\lim = c\text{-lim}$ on H .

(2) \Rightarrow (1): Theorem 2.2 shows (α) , (β) and $(\gamma) \Rightarrow H$ is $c\text{-lim}$ compact in $C(X, Y)$; now $(H, c\text{-lim})$ compact and $(H, \lim) = (H, c\text{-lim})$ by (δ) implies that H is \lim -compact too.

Concluding we will consider the two Ascoli-Arzela theorems in [12] (as announced in the introduction), where we (partially), use our notations:

Theorem [12, (13.15)] *Let X be a regular space and Y a uniform space. Then $H \subseteq C(X, Y)$ is compact w. r. t. a jointly continuous topology η if and only if*

- (a) H is η -closed
- (b) $H(x)$ has compact closures for each $x \in X$
- (c) the natural map

$$J : X \rightarrow (C((H, \tau_p), Y), \tau_U)$$

is continuous.

By proposition 4.5 we know that condition (c) is equivalent to H being equicontinuous.

Now theorem 4.8 shows that in general (a), (b) and (c) of (13.15) do not imply the compactness of H for each conjoining topology η for $C(X, Y)$ (or for H). For instance, if X is not compact in general τ_u -lim is strictly stronger than $c\text{-lim}$. Look at our example 4.9. Thus the sufficient assertion of theorem (13.15) is wrong. Quite analogously we find that [12, theorem (13.21)] is not correct too.

Here we have even continuity instead of equicontinuity.

We come now to our last example.

Example 4.9 We consider again example 3.6. Now let be

$$H \subseteq C(\mathbb{R}, \mathbb{R}), \quad H = \left\{ f_n : \forall x \in \mathbb{R} : f_n(x) = \frac{1}{n}x | n \in \mathbb{N} \right\} \cup \{f_0\} = \left\{ \frac{1}{n}x | n \geq 1 \right\} \cup \{f_0\},$$

where f_0 is the zerofunction on \mathbb{R} . We show that hold:

- (1) H is equicontinuous and hence evenly continuous.
- (2) $H(x)$ is compact for each $x \in \mathbb{R}$

- (3) H is τ_p -compact
- (4) H is in $\mathbb{R}^{\mathbb{R}} \tau_p$ -closed
- (5) H is c -lim-compact
- (6) H is τ_{co} -compact
- (7) H is τ_u -closed in $C(\mathbb{R}, \mathbb{R})$
- (8) H is not τ_u -compact

Proof. (1) For example 3.6 we showed that $H - \{f_0\}$ is equicontinuous, we show in the same manner that H is equicontinuous:

$$\forall (x, y) \in \mathbb{R} \times \mathbb{R}, \forall n \geq 1 : |f_n(x) - f_n(y)| = \frac{1}{n}|x - y|;$$

$$\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) > 0, \delta := \varepsilon : \forall (x, y) \in \mathbb{R} \times \mathbb{R} : |x - y| < \delta \implies \frac{1}{n}|x - y| \leq \frac{\delta}{n} \leq \varepsilon;$$

but also

$$|x - y| < \delta \implies |f_0(x) - f_0(y)| = |0 - 0| \leq \varepsilon.$$

Thus H is uniformly equicontinuous and hence equicontinuous and evenly continuous.

- (2) $\forall x \in \mathbb{R} : H(x) = \{f_n(x) | n \in \mathbb{N}\}$ is homeomorph to the compact set

$$\left\{ \frac{1}{n} |n \in \mathbb{N}, n \geq 1 \right\} \cup \{0\} \subseteq \mathbb{R} = Y.$$

- (3) $\forall x \in \mathbb{R} : f_n(x) = \frac{x}{n} \rightarrow 0$ showing $f_u \xrightarrow{\tau_p} f_0$ and hence $H = \{f_n | n \in \mathbb{N} \setminus \{0\}\} \cup \{f_0\}$ is τ_p -compact.
- (4) H is τ_p -compact in $C(\mathbb{R}, \mathbb{R}) \implies H$ is τ_p -compact in $\mathbb{R}^{\mathbb{R}}$; $(\mathbb{R}^{\mathbb{R}}, \tau_p)$ is Hausdorff $\implies H$ is in $\mathbb{R}^{\mathbb{R}} \tau_p$ -closed.
- (5) By theorem 2.2 from (1), (2) and (4) follows that H is in $C(\mathbb{R}, \mathbb{R})$ c -lim-compact.
- (6) $\mathbb{R} = X$ is locally compact and Hausdorff and thus τ_{co} -lim = c -lim, where τ_{co} is the compact-open topology. Then $(C(\mathbb{R}, \mathbb{R}), c\text{-lim})$ is a topological space.
- (7) The uniform topology τ_u in $\mathbb{R}^{\mathbb{R}}$ can be defined by the use of neighborhoods. And then we see that τ_u is first countable. Hence we can work with sequences.

We assume that H has a τ_u -accumulation point $g \in C(\mathbb{R}, \mathbb{R})$; $g \notin H \implies g \neq f_0$ on \mathbb{R} . Then there exists a sequence (f_n) from H s.th. $f_n \xrightarrow{\tau_u} g$; then holds $f_n \xrightarrow{\tau_p} g$ too. Otherwise $\forall n \in \mathbb{N} : f_n \in H$ and (f_n) cannot be a constant sequence. Hence we find a subsequence (f_{n_k}) s.th. $f_{n_k} \xrightarrow{\tau_p} f_0$ implying that $f_{n_k} \xrightarrow{\tau_p} g$; but then $g = f_0$ because $(C(\mathbb{R}, \mathbb{R}), \tau_p)$ is Hausdorff; $g = f_0$ yields a contradiction.

Thus H is τ_u -closed.

(8) We assume that H is τ_u -compact; since H consists of a sequence there exists a subsequence (g_{n_k}) of (f_n) and a $g \in H$ s. th. $g_{n_k} \xrightarrow{\tau_u} g$ yielding $g_{n_k} \xrightarrow{\tau_p} g$ too. But then we know from the proof of (7) that $g = f_0$ holds.

Now $\{g_{n_k} | k \in \mathbb{N}\}$ is an infinite set of unbounded functions on \mathbb{R} showing that $g_{n_k} \xrightarrow{\tau_u} f_0$ is not possible, a contradiction. Hence H is not τ_u -compact.

Remarks 1. Here we have again an concrete example which shows that in general does not hold: (f_n) is converging pointwise, (f_n) is equicontinuous implies that f_n converges uniformly.

2. What is the result of example 4.9?

The uniform topology τ_u (for $C(\mathbb{R}, \mathbb{R})$) is conjoining. By assertions (1), (2), (7) of 4.9 we see that the assumptions of [12, theorem (13.15)] are fullfilled.

Thus this theorem asserts that H is τ_u -compact, but this contradicts assertion (8) of 4.9 which states that H is not τ_u -compact.

Since H is evenly continuous too our example also works for [12, theorem (13.21)] yielding that the sufficient assertion of this theorem also is wrong.

References

- [1] **Bartsch, R., Dencker, P., and Poppe, H.** : *Ascoli-Arzela-Theory based on continuous convergence in an (almost) non-Hausdorff setting*. Categorical Topology, E. Guli, ed., Kluwer Academic Publisher, Dordrecht 1996, 221–240
- [2] **Bartsch, R., and Poppe, H.** : *An abstract algebraic-topological approach to the notions of a first and a second dual space, I*. In: Caserta, Dipartimento di Matematica, Seconda Universita di Napoli; Rome: Aracne 2009
- [3] **Bartsch, R., and Poppe, H.** : *Compactness in function spaces with splitting topologies*. Rostocker Math. Kolloq. **66**, 2011, 69–73
- [4] **Bartsch, R., and Poppe, H.** : *An abstract algebraic-topological approach to the notions of a first and a second dual space, II*. Int. J. Pure, Appl. Math. **84**, 2013, 651–667
- [5] **Bartsch, R., and Poppe, H.** : *An abstract algebraic-topological approach to the notions of a first and a second dual space, III*. N. Z. J. Math. **46**, 2016, 1–8
- [6] **Beer, G.** : *Topologies on closed and closed convex sets*. Kluwer Academic Publishers 1993
- [7] **Bourbaki, N.** : *General Topology, Part 2*. Addison-Wesley 1966

- [8] **Di Maio, G, Meccariello, E., and Naimpally, S.** : *Duality in function spaces.* *Medterr. J. Math.* **3**, 2006, 189–204
- [9] **Isiwata, T.** : *On strictly continuous convergence of continuous functions.* *Proc. Japan Acad.* **34**, 1958, 82–86
- [10] **Kelley, J.** : *General Topology.* Van Nostrand 1955
- [11] **Mynard, F.** : *A convergence-theoretic Viewpoint on the Arzela-Ascoli theorem.* *Real. Anal. Exch.* **38**, No. 2, 2013, 431–444
- [12] **Naimpally, S.** : *Proximity Approach to Problems in Topology and Analysis.* Oldenburg Verlag München 2009
- [13] **Poppe, H.** : *Charakterisierung der Kompaktheit eines topologischen Raumes X durch Konvergenz in $C(X)$.* *Math. Nachrichten* **29**, 1965, 205–216
- [14] **Poppe, H.** : *Compactness Criterion for Hausdorff admissible (jointly continuous) convergence structures in function spaces, General Topology and its Relation to Modern Analysis and Algebra III.* Proceedings of the Third Prague Topological Symposium, 1971, 353–357
- [15] **Poppe, H.** : *Compactness in General Function Spaces.* Deutscher Verlag der Wissenschaften, Berlin 1974
- [16] **Poppe, H.** : *On locally defined topological notions, Quest. Answers. Gen. Topology* **13(1)**, 1995, 39–53
- [17] **Zeuch, M.** : *Untersuchungen zur stark stetigen Konvergenz.* Bachelorarbeit, Technische Universität Darmstadt 2016

received: July, 2020

Author:

Harry Poppe
 Universität Rostock
 Institut für Mathematik

e-mail: harry.poppe@uni-rostock.de